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An inability to recover lost cardiac muscle following acute ischemic injury remains 
the biggest shortcoming of current therapies to prevent heart failure. As compared 
to standard medical and surgical treatments, tissue engineering strategies offer the 
promise of improved heart function by inducing regeneration of functional heart muscle. 
Tissue engineering approaches that use stem cells and genetic manipulation have 
shown promise in preclinical studies but have also been challenged by numerous critical 
barriers preventing effective clinical translational. We believe that surgical intervention 
using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal 
translational hurdles. In this review, we outline the limitations of cellular-based tissue 
engineering strategies and the advantages of using acellular biomaterials with bioinductive 
properties. We highlight key anatomic targets enriched with cellular niches that can 
be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving 
cardiovascular tissue engineering landscape and provide critical insights into the potential 
therapeutic benefits of acellular scaffold therapy.
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intRodUCtion

Heart failure is a growing epidemic that is predicted to disable 1 in 5 Americans in their life time (1). 
Despite the prevalence of heart failure, effective treatment options remain limited. Pharmacological 
interventions can improve symptoms and prolong survival, but are unable to promote functional 
recovery of cardiomyocytes lost to injury  (2). Organ transplantation remains the only curative 
option but a disparity between donor heart supply and patient demand coupled with the need for 
immunosuppressive therapy makes this an ineffective solution to address the growing needs of the 
heart failure population (3). Durable mechanical support therapies continue to evolve and improve 
but complications for destination therapy patients are a concern.

As our understanding of the factors and mechanisms that regulate heart structure and function 
have improved, the concept of engineering cardiovascular tissues to restore heart function has rapidly 
advanced (4, 5). Whole organ regeneration is the ultimate goal of tissue engineering but at present 
exists only as a futuristic possibility. Early tissue engineering approaches using stem cell and gene 
therapy have shown promise, but remain fraught with translational hurdles. As such, there has 
been an increasing shift in focus towards utilizing tissue engineering strategies that can stimulate 
repair by modulating the host-substrate microenvironment and enhancing endogenous tissue repair 
processes (6).
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In this review, we focus on the translational limitations of 
contemporary cardiac regenerative approaches and describe how 
acellular bioactive ECM scaffolds may provide an effective solution. 
Specifically, we outline important anatomical and cellular targets 
that may benefit from bioactive scaffold therapy and provide 
insights into the future of cardiovascular tissue engineering and 
its translation into viable clinical applications.

eARly tiSSUe engineeRing 
StRAtegieS towARdS CARdiAC 
RegeneRAtion

The field of cardiovascular tissue engineering was born out of a 
need to design functional substitutes for tissue that was presumed 
irreversibly damaged. Leveraging the plasticity of stem cells and 
direct genetic manipulation became popular options to achieve 
this goal.

The ability to effectively isolate and expand endogenous stem 
cells offered the exciting promise of leveraging the cells’ inherent 
regenerative capacity to treat cardiovascular disease (7). Over the past 
decades there has been significant enthusiasm within the scientific 
community for cell-therapies based on a foundation of encouraging 
preclinical evidence. Why is it that cell-mediated regeneration 
remains absent from conventional treatment modalities? Part of 
the problem lies in the biology surrounding exogenous cell delivery 
to the microenvironment of a failing heart. Damaged myocardium 
lacks the necessary structural and biological microenvironment 
to support proper cell health and function. Accordingly, it is no 
surprise that stem cell survival and engraftment is poor and this 
remains a dominant issue preventing effective clinical translation (8). 
Interestingly, the benefits of cell therapy are well documented in 
preclinical animal models despite the fact that cells are delivered to 
similar hostile microenvironments in the heart. Long term donor cell 
engraftment and survival is poor yet functional myocardial recovery 
is readily observed. These findings represent a paradigm shift in our 
understanding of the cell-mediated therapeutic effect, indicating that 
the benefits of cell therapy may lie in their ability to act as source of 
regenerative and reparative paracrine factors (9, 10).

Gene therapy allows targeted control of specific molecular 
pathways, typically through adenoviral vectors, that can 
restore lost functionality or enhance endogenous cardiac repair 
processes  (11). Contemporary gene therapy approaches have 
targeted a number of cardiovascular systems, including: cell 
metabolic activity, calcium regulation, vasculogenesis, and 
stem cell activation (12). The concept of targeting single genes 
to drive critical repair pathways toward functional recovery is 
exciting but clinical outcomes of gene therapy have been mostly 
unsuccessful. Of the five cardiac gene therapy clinical trials 
published to date, all five have shown safety but failed to meet 
primary efficacy endpoints (13–17). Indeed, targeting a single 
gene in a pathway that involves multiple complex molecular 
mechanisms is unlikely to yield appreciable clinical benefit. 
Interestingly, trials that aimed to genetically bolster stem cell 
recruitment to the myocardium showed benefit in a cohort of 
patients with advanced ischemic cardiomyopathy (16).

The lessons learned from attempts at gene therapy for heart 
failure are important: enhancing targeted molecular pathways 
and signalling mechanisms in failing myocardium can have 
substantial therapeutic benefits (18). This challenged the notion 
that tissue engineering must necessarily be an “outside-in” 
approach and instead, argued that tissue engineering can occur 
from within by rescuing and/or stimulating endogenous repair 
pathways.

leveRAging ACellUlAR BioACtive 
SCAffoldS towARdS CARdiAC 
RegeneRAtion

The paracrine hypothesis of cell therapy and direct genetic 
manipulation of endogenous repair mechanisms highlights that a 
failing heart can be primed toward tissue regeneration and repair 
by altering the signalling environment of the host cells. Acellular 
bioactive scaffolds serve as niche signalling microenvironments 
that may be used toward driving cardiac repair (19). While such 
scaffolds can be synthetic or semi-synthetic and injectable or non-
injectable, this report will focus on extracellular matrix (ECM)-
based patch biomaterials.

The mainstay of acellular bioactive materials is the extracellular 
matrix, a structural scaffold that has all of the necessary cues and 
signals to support proper cell health, function and tissue repair 
processes (4). Some studies have utilized a simple ECM scaffold 
consisting of either type I collagen or gelatin as a vessel to deliver 
a single protein or cell type (20, 21). Conversely, more complex 
ECM scaffolds may be derived through the decellularization of 
biological tissue. These scaffolds may exert bioactive effects by way 
of growth factor reservoirs, matricellular proteins and complex 
ultrastructural compositions (22, 23).

Early studies characterizing acellular biological tissues have 
shown that the decellularization process does not disrupt native 
bioactive constituents present in the ECM scaffolds, such as FGF-2 
and VEGF (24). Additionally, degradation products produced 
by the remodeling of the ECM materials by the host tissue has 
been shown to affect endogenous cell activity  (25). As such, 
decellularized ECM scaffolds from highly regenerative organs, 
like the gastrointestinal system, may be used to circumvent 
the limited regenerative capacity of the heart  (26). Following 
decellularization, the bioactive properties of the ECM can be 
leveraged without the underlying safety concern of an adverse 
immunogenic response (22, 24). In fact, Dziki and colleagues 
demonstrated that acellular bioactive scaffolds may influence 
macrophage polarization away from a pro-inflammatory M1 
phenotype towards a pro-reparative M2 phenotype (27). To date, 
there have been an abundance of convincing preclinical studies 
that outline the cardioprotective benefits of ECM biomaterials 
in the heart (28–32).

Our group has explored epicardially implanted acellular 
bioactive scaffolds across a number of clinically relevant models 
of ischemic injury. We first established efficacy in a rodent chronic 
heart failure model where we demonstrated that surgically 
implanted ECM scaffolds can attenuate infarct expansion 
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and LV remodeling while simultaneously improving cardiac 
function (Figure 1). Importantly, we demonstrated that bioactive 
scaffolds can be further enhanced with exogenous growth factors 
highlighting its capacity as a platform therapy (28, 33). Using 
a large preclinical porcine model of ischemia-reperfusion, we 
were able to observe regional myocardial improvements by 
serial cardiac MRI following surgical implantation of bioactive 
scaffolds during the acute stage post-MI (Figure 2). Interestingly, 
histological examination of the infarct area in bioactive scaffold-

treated animals showed small arteriole formation next to islands 
of surviving cardiomyocytes (29). We later confirmed that these 
beneficial effects are due to bioactive constituents present within 
the scaffolds and were not the result of a passive myocardial 
restraint effect  (34). Collectively, these findings have given 
us insight into the optimal therapeutic window for bioactive 
scaffold therapy and suggest that the greatest benefit may be 
as an adjunct to surgical macroscopic revascularization where 
hibernating myocardium is perfused by bioactive scaffold-

figURe 1 |  Representative images of normal myocardium, infarcted myocardium from a sham, and infarcted myocardium following surgical implantation of 
bioactive scaffold on the epicardial surface (blue = nucleus, orange = collagen). The infarct area of bioactive scaffold-treated animals showed less collagen density 
and ECM architecture more consistent with normal cardiac tissue (Reprinted from The Journal of Thoracic and Cardiovascular Surgery, Vol 147/Issue 5, Holly EM 
Mewhort, Jeannine D Turnbull, Christopher Meijndert, Janet MC Ngu, Paul WM Fedak, Epicardial infarct repair with basic fibroblast growth factor–enhanced 
CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling, 1650–1659., Copyright 2014, with permission from Elsevier) (28).

figURe 2 | 3-D images of the LV reconstructed from MRI data depicting wall thickening in sham versus bioactive scaffold-treated animals 6 weeks after the initial 
ischemic event (green = normal, yellow = hypokinetic, red = akinetic). Bioactive scaffold treatment resulted in regional improvement in myocardial function (29).
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mediated microvascular formation. At present, we are completing 
a first-in-man pilot clinical feasibility trial ( ClinicalTrials. gov ID: 
NCT02887768) where acellular bioactive scaffolds are surgically 
implanted at the time of CABG surgery (Figure 3).

Although passive mechanical restraint has been shown 
to benefit functional recovery of the failing heart, this was 
not theprimary mechanism observed in our studies as scaffold 
implants did not alter ventricular compliance and vasculogenesis 
was observed  (35, 36). How is it then that acellular bioactive 
scaffolds can induce adaptive tissue remodeling and improve 
function? Emerging evidence has identified the plasticity 
and regenerative capacity of endogenous cells and anatomic 
structures of the heart (34, 37). Surgically implanted bioactive 
scaffolds introduce a new signalling microenvironment in the 
heart that may potentiate these innate regeneration processes. 
Specifically, altering the function of the epicardium and matrix-
modulating cardiac fibroblasts may demonstrate how nature’s 
own platform can be leveraged to promote endogenous cardiac 
regeneration.

the epicardium as an Anatomic niche for 
endogenous Repair
Over the past decade, insights from vertebrate studies have 
identified the epicardium as the key structure responsible for their 
high cardiac regenerative capacity (38). Understandably, targeting 
the epicardium for tissue regeneration has been the subject of great 
therapeutic interest.

The epicardium is the outermost mesothelial layer of the 
heart surrounding the myocardium (39). In early development, 
the epicardium is a source of progenitor cells that undergo 
epithelial to mesenchymal (EMT) transition to yield vascular 
smooth muscle cells and fibroblasts, with a few studies showing 
their differentiation into cardiomyocytes and endothelial cells 

as well  (40–43). Collectively, it is the progenitor cell migration 
from the pro-epicardial layer that dictates and coordinates 
cardiomyocyte proliferation and organization, electro-conduction, 
coronary vasculature assembly, and structural valve and chamber 
development (44).

While the epicardium plays an active role in the development 
of the embryonic heart, it exists as a dormant cell layer in the 
adult uninjured heart (44). However, studies have demonstrated 
that the genetic programme that drives epicardial-derived cell 
migration during development is rapidly reactivated in the 
adult heart in response to ischemic injury  (45). Interestingly, 
the reactivation of the epicardium appears to occur globally 
throughout the heart and is not localized exclusive to the site 
of the injury. It was hypothesized that epicardial activation can 
occur due to external factors present in the pericardial fluid 
following myocardial infarction (46, 47).

The ability of the epicardium to orchestrate cardiac regeneration 
versus cardiac repair remains a highly debated topic. Studies in 
zebrafish and fetal non-vertebrates have identified the epicardium 
as source of key paracrine factors that are capable of restoring 
lost cardiac muscle and rescuing heart function after injury   
(38, 48). Conversely, epicardial activation in adult non-vertebrates 
following ischemic injury is limited by the number of activated 
progenitor cells that then differentiate exclusively to non-myocyte 
cells of the heart (21, 45). The mechanisms that limit regeneration 
despite preservation of the same embryonic gene programme are 
not well understood. However, if the epicardium is reactivated 
through an extra-cardiac paracrine milieu, perhaps modifying 
the paracrine microenvironment can dictate a more regenerative 
pathway.

Acellular scaffolds rich in cytokines and growth factors may 
hold the key to epicardial-driven cardiac regeneration. Using 
a surgically implanted epicardial patch enriched with human 
follistatin-like1 protein in preclinical animal models of ischemic 
injury, Wei and colleagues were able to document evidence 
of significant cardiogenesis, vasculogenesis and functional 
recovery in the post-MI hearts (20). Similarly, Wang et al. used 
a mesenchymal stem cell-loaded epicardial patch implanted one 
week post-MI and showed preliminary evidence of epicardial-
derived progenitor cell activation and differentiation into smooth 
muscle cells, endothelial cells and cardiomyocytes. Here, the 
synthetic patch preserved MSC survival and enhanced their of 
expression of key cardioprotective proteins that activated the 
epicardium toward regeneration (21).

In addition to simple-ECM materials, more complex ECM 
materials derived from decellularized tissues may be leveraged 
towards enhanced epicardial activation. As previously discussed, 
the ECM serves as a natural reservoir of various growth factors 
and matricellular proteins that can promote tissue regeneration 
processes (23, 29, 49). In a preclinical porcine model of ischemia-
reperfusion injury, our group has shown that the surgical 
implantation of an intestinal ECM scaffold on the epicardial surface 
of ischemic tissue resulted in increased epicardial activation (29). 
These findings were confirmed in a separate study where ECM 
scaffold therapy resulted in enhanced beta-catenin nuclear 
localization in the infarct area indicative of epicardial progenitor 
cell mobilization (34). Interestingly, both models showed evidence 

figURe 3 |  Representative image of surgical implantation of a bioactive 
scaffold at the time of revascularization surgery. Patients were selected for 
bioactive scaffold therapy in adjunct with CABG and followed by serial cardiac 
MRI up to six months following surgery. Black arrow indicates acellular 
bioactive scaffold. Blue arrow indicates bypass graft.
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of enhanced vascularity in the infarct region. Since the epicardium 
is a known source vascular smooth muscle cells and vasculogenic 
paracrine factors, it is conceivable that epicardial activation 
following bioactive scaffold implantation can result in new blood 
vessel formation.

The epicardium serves as an important and necessary structure 
for endogenous tissue regeneration processes. Most contemporary 
tissue engineering strategies deliver via an intramyocardial 
approach and may be incapable of epicardial activation. Conversely, 
surgically implanted acellular scaffolds can target the epicardium 
directly and have been shown to enhance cardiac repair and 
regeneration by way of bioactive constituents that bolster epicardial 
activation.

targeting Cardiac fibroblasts as 
Mediators of the Cardiac 
Microenvironment
Cardiac fibroblasts represent approximately 20% of the non-myocyte 
cell population in the heart and are directly involved in maintaining 
cardiac structure and remodeling (50, 51). Cardiac fibroblasts regulate 
the extracellular matrix microenvironment, which in turn influences 
surrounding cell behavior and tissue processes (52). Under normal 
physiological conditions, the cardiac fibroblasts are responsible for 
regulating ECM biology by maintaining a highly coordinated rate 
of turn over via specialized matrix degrading enzymes and their 
endogenous inhibitors  (53). Due to their close association with 
the ECM, cardiac fibroblasts are often regarded as sentinel cells 
that respond to environmental stimuli and modify their behavior 
accordingly (54).

Under pathophysiological conditions following acute ischemic 
injury, cardiac fibroblasts have an important role in preserving 
the heart’s mechanical function through the deposition of scar 
tissue  (50, 55). Following the initial inflammatory event that 
clears the ischemic area of necrotic myocytes, cardiac fibroblasts 
are chemically recruited to the site of granulation tissue formation 
and differentiate into a more contractile and secretory phenotype 
known as myofibroblasts (56, 57). Through a process known as 
reparative fibrosis, myofibroblasts contribute to wound healing 
by replacing lost cardiac tissue with a collagenous scar that is able 
to sustain ventricular load and prevent mechanical rupture (58). 
Although scar deposition is a necessary and adaptive reparative 
process, it is the continued activation of cardiac fibroblasts in the 
injured heart that yield more deleterious consequences to global 
cardiac structure and function. Understandably, therapies that 
mitigate scarring in the post-MI heart have been the subject of 
therapeutic interest.

Although activated fibroblasts have traditionally been considered 
a terminally differentiated cell type, there is an emerging body 
of evidence that suggests they are more plastic than previously 
appreciated. Indeed, Nobel prize winning work has shown mature 
dermal fibroblasts can be reprogrammed into pluripotent stem 
cells through invasive genetic manipulation (59). However, can 
cellular reprogramming or redirection of fibroblast behaviour be 
also achieved by changing the host-substrate environment, such as 
using bioactive ECM scaffolds? In a landmark study, Plikus et al. 
demonstrated that the fate of dermal myofibroblasts can be changed 

towards a regenerative adipocyte lineage by exposing cells to a new 
signaling microenvironment. Interestingly, these findings were 
replicated in myofibroblasts isolated from patients with keloids, 
which are characterized as pathologic scars formed by persistent 
myofibroblast activity (60).

figURe 4 |  Human cardiac fibroblasts isolated from right atrial appendage 
were seeded onto either bioactive ECM scaffolds (intact graft) or biologically 
inactivated scaffolds (inactive graft). Analysis of the conditioned media 
revealed that cardiac fibroblasts demonstrate a robust pro-vasculogenic 
response specific to the bioactive ECM scaffolds (34).
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Similar to keloids, the cardiac myofibroblasts in the injured 
heart remain continuously activated, resulting in infarct scar 
expansion, thinning and stiffening of the remote myocardium   
(53, 61–63). Here, sustained myofibroblast activity is the product of 
the physiologically distinct microenvironment of a healing wound 
characterized by complex chemical and mechanical stimuli (64, 65). 
Surgically implanted bioactive scaffolds may therefore target cardiac 
myofibroblasts directly by way of instructive paracrine and structural 
mediators, changing their phenotype to restore tissue homeostasis 
and regeneration.

Our group has recently explored this idea using cardiac 
myofibroblasts derived from human atria. We have shown 
that human cardiac myofibroblasts increase expression of key 
vasculogenic proteins when seeded on acellular ECM scaffolds rich 
with bioactive constituents (Figure 4) (34). In a rodent infarct model, 
we documented neovascularization with elevated concentrations of 
pro-vasculogenic factors in the infarcted myocardium as late as 14 
weeks following ECM scaffold implantation. In a separate study, we 
show that ECM scaffold therapy attenuates infarct scar expansion and 
restores ECM homeostasis (28). Since cardiac myofibroblasts are the 
most abundant cell type in the infarct area (66), our collective results 
suggest the bioactive scaffolds may be driving the cells towards a pro-
vasculogenic phenotype that create a paracrine microenvironment 
favoring new blood vessel formation and mitigating excessive scar 
deposition.

Although fibroblasts are a distinctly heterogeneous cell type, 
one thing that remains constant regardless of cell origin is their 
ability to change their behaviour and phenotype in response 
to different biochemical and biomechanical cues (67). Further 
studies characterizing the plasticity of cardiac fibroblasts to new 
signalling microenvironments introduced by biomaterials are 
warranted.

ChAnging lAndSCApe of tiSSUe 
engineeRing

The future of tissue engineering will require synergy among 
conventional approaches that have been classically studied in a 
mutually exclusive manner. Combining bioactive scaffolds with 
other established tissue engineering strategies may hold the key to 
catalyzing endogenous cardiac repair mechanisms and promoting 
true cardiovascular tissue regeneration (68).

The strengths of bioactive scaffolds are realized not only 
as an effective standalone therapy, but also as a platform to 
deliver therapeutic agents directly to the heart. Our group 
has demonstrated that bioactive scaffolds can be loaded with 
exogenous growth factors beyond what is naturally present in 
the scaffolds alone (28, 33). Targeting the epicardial space may 
improve myocardial uptake while limiting systemic recirculation 
as compared to the traditional intramyocardial approach. This 
can mean more targeted delivery of pharmacologic therapeutics 
specific to cardiovascular processes.

Additionally, bioactive scaffolds may be used in conjunction with 
cell therapy and resolve cell engraftment and survival issues associated 

with intracoronary or intramuscular delivery  (69). Preliminary 
studies have shown improved stem cell survival when tethered to 
ECM-based patches as well as enhanced tolerance for the hostile 
post-MI microenvironment (21, 70–73). The preserved biochemical 
and biomechanical signature of acellular bioactive scaffolds has been 
shown to drive cardiogenesis from seeded stem cells and augment 
pro-regenerative signalling (72, 74, 75). Evidence from early clinical 
trials support the feasibility and safety of the cell-scaffold approach  
(76, 77). Results from the ongoing ESCORT trial ( ClinicalTrials. gov 
ID: NCT02057900) will provide valuable insight into the therapeutic 
efficacy of epicardially implanted bioactive scaffolds seeded with 
cardiac-committed stem cells.

Regardless of the approach, bioactive scaffolds represent a tunable 
platform that can be further engineered towards the specific clinical 
characteristics of the recipient patient. In this way, the use of acellular 
bioactive scaffolds complements the changing clinical landscape 
that is becoming increasingly focused on personalized and precise 
therapies.

ConClUSion

Standard therapy for ischemic heart disease patients fails to 
restore functional cardiac tissue. The heart contains a number of 
intrinsic repair processes and cell types that may be manipulated 
or bolstered to promote adaptive repair and regeneration. 
The use of acellular bioactive scaffolds for cardiac repair and 
regeneration is rationalized by two key points. First, bioactive 
scaffolds represent a unique signalling microenvironment that 
can target niche anatomic structures, like the epicardium, to 
activate endogenous repair mechanisms. Additionally, they may 
redirect the activity of native cardiac fibroblasts, whose fate and 
function is closely associated with their microenvironment, 
towards a more regenerative phenotype. Second, bioactive 
scaffolds can be leveraged as a platform for exogenous growth 
factors and stem cells, further maximizing their therapeutic 
efficacy by eliminating the common hurdles of associated with 
delivery. Collectively, acellular bioactive scaffolds represent a 
unique frontier in cardiovascular tissue engineering that may 
yield promising clinical outcomes.
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