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A methylation‐based mRNA signature 
predicts survival in patients with gastric cancer
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Abstract 

Background:  Evidence suggests that altered DNA methylation plays a causative role in the occurrence, progression 
and prognosis of gastric cancer (GC). Thus, methylated-differentially expressed genes (MDEGs) could potentially serve 
as biomarkers and therapeutic targets in GC.

Methods:  Four genomics profiling datasets were used to identify MDEGs. Gene Ontology enrichment and Kyoto 
Encyclopaedia of Genes and Genomes pathway enrichment analysis were used to explore the biological roles of 
MDEGs in GC. Univariate Cox and LASSO analysis were used to identify survival-related MDEGs and to construct a 
MDEGs-based signature. The prognostic performance was evaluated in two independent cohorts.

Results:  We identified a total of 255 MDEGs, including 192 hypermethylation-low expression and 63 Hypometh-
ylation-high expression genes. The univariate Cox regression analysis showed that 83 MDEGs were associated with 
overall survival. Further we constructed an eight-MDEGs signature that was independent predictive of prognosis in 
the training cohort. By applying the eight-MDEGs signature, patients in the training cohort could be categorized into 
high-risk or low-risk subgroup with significantly different overall survival (HR = 2.62, 95% CI 1.71–4.02, P < 0.0001). The 
prognostic value of the eight-MDEGs signature was confirmed in another independent GEO cohort (HR = 1.35, 95% 
CI 1.03–1.78, P = 0.0302) and TCGA-GC cohort (HR = 1.85, 95% CI 1.16–2.94, P = 0.0084). Multivariate cox regression 
analysis proved the eight-MDEGs signature was an independent prognostic factor for GC.

Conclusion:  We have thus established an innovative eight-MDEGs signature that is predictive of overall survival and 
could be a potentially useful guide for personalized treatment of GC patients.
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Background
Gastric cancer (GC) is the fourth most common cancer 
and the second leading cause of cancer-related mor-
tality in the world [1, 2]. Surgery is the only curative 
treatment strategy in early GC, and conventional chemo-
therapy has displayed limited efficacy. Since a majority of 
patients are diagnosed with GC in locally advanced stage. 
Advanced disease carries a poor prognosis, with 5-year 

OS of 5–20% [3, 4]. Thus despite decreasing incidence, 
the mortality rate associated with GC remains relatively 
high. Therefore, new valid and reliable prognostic and 
predictive biomarkers for GC are needed to improve risk 
prediction and offer better information for guiding per-
sonalized therapy.

An increasing number of recent studies suggest that, 
in addition to genetic alterations, epigenetic alterations, 
including post-translational modifications of histones, 
noncoding RNAs, microRNAs, nucleosome positioning 
and DNA methylation of CpG islands are also involved 
in the initiation and progression of GC [5, 6]. By regu-
lating and controlling the expression of cancer‐related 
genes, abnormal DNA methylation can seriously affect 
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the occurrence and development of cancer [7, 8]. Stud-
ies have shown that DNA methylation which could pro-
vide biological markers for early diagnosis of cancer 
usually occurs in early cancer. Recently, a number of 
hyper-methylated tumor-suppressor genes and hypo-
methylated tumor-promoting genes have also been found 
in GC, which were associated with oncogene positive 
transcriptional regulation in a multiple cellular processes. 
But to the best of our knowledge, there are no prior stud-
ies examining methylated-differentially expressed genes 
(MDEGs) on a genome-wide scale and focusing on pre-
dicting prognosis in GC. In the present study, we com-
prehensively analyzed Multi-Omics cohorts from the 
Gene Expression Omnibus (GEO) and TCGA to build a 
novel MDEGs-based signature that is predictive of prog-
nosis and could potentially guide personalized therapy 
for GC patients.

Material and method
Data processing
All datasets and clinical information, as described in 
Table  1 and Additional file  1: Table  S1, were down-
loaded from the GEO (https​://www.ncbi.nlm.nih.gov/
geo/) and TCGA (https​://cance​rgeno​me.nih.gov/). Gene 
expression profiling of the GSE13911 [9] and GSE79973 
[10] datasets was conducted using the GPL570 platform 
(Affymetrix Human Genome U133 plus 2.0 Array). The 
GSE13911 series included 38 GC and 31 normal gastric 
samples. And the GSE79973 series consisted of 10 paired 
GC and non-tumor samples. Gene methylation profiling 
of the GSE30601 [11] and GSE25869 [12] datasets was 
conducted using the GPL8490 platform (Illumina Human 
Methylation27 BeadChip), which included 27,578 highly 
informative CpG sites and more than 14,476 genes. The 
GSE30601 series consisted of 203 GC and 94 non-tumor 
samples. And the GSE25869 series consisted of 32 paired 
GC and non-tumor samples. The GSE15459 [13] series, 
including 192 GC samples with gene expression and 
clinical information, was used to extract a MDEGs-based 
prognostic signature. Two independent datasets col-
lected from TCGA and GEO were used to test the prog-
nostic ability of the MDEGs-based signature. For TCGA 
data, the normalised count values of level 3 gene expres-
sion data derived from Illumina HiSeqV2 were extracted 

as gene expression measurements. For data generated by 
the Affymetrix platforms, the Robust Multi-array Aver-
age algorithm [14] was used for preprocessing the raw 
data. For a data set generated by the Illumina microar-
ray platform, the originally processed data were used. All 
gene expression measurements were log2 transformed. 
The Entrez IDs were used to map genes across microar-
ray platforms.

Identification of MDEGs and functional enrichment 
analysis
We respectively used GEO2R and T test to screen for dif-
ferentially methylated genes (DMGs) and differentially 
expressed genes (DEGs) between tumor and non-tumor 
samples. The P-values were adjusted using the Benja-
mini–Hochberg procedure for multiple testing to control 
the false discovery rate (FDR). Values of FDR < 0.05 were 
considered significant. The concordance score was cal-
culated by binomial test. Further we correlated the level 
of RNA expression with the degree of DNA methylation 
to identify MDEGs. Hypomethylation-high expression 
genes were detected by overlapping hypo-methylated 
and up-regulated genes. Similarly, hypermethylation-low 
expression genes were detected by overlapping hyper-
methylated and down-regulated genes.

Functional annotations in MDEGs were preformed 
using The Database for Annotation, Visualization and 
Integrated Discovery (DAVID, https​://david​.ncifc​rf.gov/), 
which enriched gene oncology and pathways. Gene 
oncology involved three categories: biological processes, 
molecular function and cellular components. Pathway 
enrichment was carried out using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG, https​://www.kegg.
jp/), and it contains information about genomes, chemi-
cal substances, biological pathways and diseases. The cri-
terion for significant enrichment was P = 0.05.

Establishment of MDEGs‑based prognostic signature
The univariate Cox regression analysis was firstly per-
formed based on MDEGs to calculate the association 
between the expression level of each gene and patient’s 
overall survival (OS) in training cohort. Those genes 
with P-values less than 0.05 were identified as prognosis-
related MDEGs. Then, the prognosis-related MDEGs 

Table 1  Datasets analyzed in this study

Methylation dataset Expression dataset Training dataset Validation dataset

GSE30601 GSE25869 GSE13911 GSE79973 GSE15459 TCGA-GC GSE84437

Normal 94 32 31 10 – – –

Tumor 203 32 38 10 192 368 433

Platform Illumina HM27 Affymetrix U133 Plus 2 Affymetrix U133 Plus 2 Illumina HiSeqV2 Illumina HT-12 V3

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://david.ncifcrf.gov/
https://www.kegg.jp/
https://www.kegg.jp/
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were further screened and confirmed by the Lasso 
regression. The basic idea of Lasso is to select the vari-
ables of the sample data under the constraint that the 
sum of the absolute values of the regression coefficients 
is less than a constant, so as to minimize the sum of the 
squares of the residuals and make some regression coef-
ficients strictly equal to 0. To achieve the purpose of fea-
ture selection and obtain an optimal model subsequently, 
the variable with coefficient equal to 0 is regarded as a 
non-significant variable and is directly discarded. Using 
the combination of weighted MDEGs expression values, 
a risk scoring model was established and the risk scores 
were calculated as shown in the following equation: Risk 
score = expression of Gene 1 * β1 + expression of Gene 2 
* β2 +···expression of Gene n * βn. βi is the regression 
coefficient of Gene i, which represents the contribution of 
Gene i to the prognostic risk score. Using the median risk 
score as the cutoff point, patients in each dataset were 
divided into low-risk or high-risk group correspondingly.

Statistical analysis
The multivariate Cox proportional-hazards regression 
model was used to evaluate independent associations 
between prognostic signature and patient survival after 
adjusting for stage, age and gender. Hazard ratios (HRs) 
and 95% confidence intervals (CIs) were computed based 
on the Cox regression analysis. Survival curves were 
estimated using the Kaplan–Meier method and were 
compared using the log-rank test. The significance was 
defined as a P value of < 0.05. All statistical analyses were 
performed using the R2.15.3.

Results
Identification and enrichment analysis of MDEGs in GC
The flowchart for this study is shown in Fig. 1. With cut-
off criteria of FDR < 0.05, 10,400 and 3238 DEGs were 
identified from GSE13911 and GSE79973 respectively. A 
total of 2669 DEGs, including 1376 up-regulated genes 
and 1293 down-regulated genes were concordance. The 
concordance score was 99.8% (binomial test, P < 0.0001). 
Similarly, we identified 11,235 and 4414 DMGs from 
GSE30601 and GSE25869 respectively. A total of 3741 
DMGs, including 2327 hyper-methylated genes and 1414 
hypo-methylated genes were concordance. The concord-
ance score was 97.7% (binomial test, P < 0.0001). By cor-
relating the level of RNA expression with the degree of 
DNA methylation, we totally identified 255 MDEGs 
consisted of 192 hypermethylation-low expression genes 
and 63 hypomethylation-high expression genes (Fig.  2a, 
Additional file  1: Table  S2). To confirm that the FDR 
value is logical using a different test, a representative vol-
cano plot was constructed for GSE13911 and GSE79973, 
respectively (Fig. 2b).

Enrichment analysis with the Database for DAVID was 
used to elucidate biological function of the MDEGs. The 
top significant terms emerging from the gene oncology 
(GO) enrichment analysis are shown in Fig. 2c. MDEGs 
were enriched in “biological processes of positive regu-
lation of cell proliferation,” “positive regulation MAPK 
cascade,” “positive regulation ERK1 and ERK2 cascade,” 
“positive regulation MAP kinase activity,” and “activation 
of adenylate cyclase acivity.” Regarding molecular func-
tion, MDEGs showed enrichment in “cytokine binding” 
and “protein binding.” Enrichment of cell components 
was mostly “integral component of plasma membrane,” 
which suggests MDEGs may play an important role in 
transcription in GC. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis suggested that MDEGs were 
significantly enriched in pathways in “cAMP signaling 
pathway,” “histidine metabolism,” and “chemical carcino-
genesis” (Fig. 2d).

Construction of the eight‑MDEGs prognostic signature 
for GC
Using the univariate Cox regression analysis, we identi-
fied MDEGs with potential prognostic value in train-
ing cohort. Details of the clinical characteristics are 
presented in Additional file  1: Table  S1. A total of 83 
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MDEGs including 35 hypomethylation‐high expres-
sion genes and 48 hypermethylation‐low expression 
genes were associated with the overall survival. Based on 
those prognostic MDEGs, we used the R package “glm-
net” to perform Lasso regression analysis. The degree 
of Lasso regression complexity is controlled by the 
parameter λ (0 < λ <1). We obtained the optimal value 
of the parameter λ with the number of variables equal 
to eight through multiple cross-validation. Therefore, 
combining the regression coefficients under the optimal 
λ value, we constructed an eight-MDEGs signature to 

guide the prognosis of GC patients. The risk-score for-
mula was created as follows: Risk score = (0.185 * expres-
sion level of TREM2) + (0.045 * expression 
level of RAI14) + (0.078 * expression level of 
NRP1) + (0.043 * expression level of YAP1) + (0.012 * expres-
sion level of MATN3) + (0.063 * expression 
level of PCSK5) + (0.210 * expression level of 
INHBA) + (0.154 * expression level of MICAL2). We then 
calculated the risk score for each patient and ranked them 
based on increasing score, after which patients were clas-
sified into a high-risk (n = 96) or a low-risk (n = 96) group 
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based on the median risk score. We observed the overall 
survival between two risk groups with significantly dif-
ferent survival rate (log-rank P < 0.0001; Fig. 3a). Patients 
with high risk score had significantly shorter OS than 
patients with low risk score. OS rates among patients 
were 34.4% in the high-risk group, as compared to 66.7% 
in the low-risk group (Fig.  3b). The risk score distribu-
tion, survival status, and expression profile of the eight 
prognostic MDEGs are shown in Fig.  3c. Taking into 
the patients’ clinical features, including age, gender and 
stage, the Multivariate Cox regression analysis showed 
that the eight-MDEGs signature risk score also had 

statistical significance as an independent prognostic fac-
tor in the training cohorts (HR = 2.28, 95% CI 1.47–3.53, 
P = 2.22E−04) (Table 2).

Prognostic validation of the eight‑MDEGs signature
We validated the prognosis performance of the eight-
MDEGs signature in two validation datasets, TCGA-GC 
and GSE84437 with 368 and 433 patients respectively. 
Similar to the training cohort findings, patients in high 
risk group had a shorter survival time than low risk 
group either in TCGA-GC (HR = 1.85, 95% CI 1.16–2.94, 
P = 0.0084) or GSE84437 datasets (HR = 1.35, 95% CI 
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1.03–1.78, P = 0.0302) (Fig.  4a, b). The risk score distri-
bution, survival status, and expression profile of the four 
prognostic MDEGs are shown in Fig.  4c, d. As missing 
stage information of partial patients in TCGA, twenty-
three patients were excluded when performed multi-
variate Cox regression analysis. In accordance with the 
result of the training set, the multivariate Cox regression 
analysis showed that the eight-MDEGs signature risk 
score also had statistical significance as an independent 
variable in the TCGA-GC (HR = 1.84, 95% CI 1.13–2.99, 
P = 0.015) and GSE84437 (HR = 1.43, 95% CI 1.09–1.88, 
P = 0.011) respectively (Table 2).

Discussion
The rapid development of methylation research has 
provided a novel idea for us to understand the patho-
genesis of cancer. Compared to genomic aberrations, 
DNA‐methylation aberrations are more common in the 
cancer genome. DNA methylation is the first epigenetic 
mark shown to be critically involved in the tumorigenesis 
[15], which provides a stable gene silencing mechanism 
that plays an important role in regulating gene expression 
and chromatin architecture. Hypomethylation generally 
arises early and has been linked to chromosomal insta-
bility and loss of imprinting, whereas hypermethylation 
is associated with promoters and can arise secondary to 
gene (oncogene suppressor) silencing. The DNA meth-
ylation patterns may be potential prognostic indicators 
of cancer patients and used as a biomarker [16]. Global 
DNA hypomethylation is mostly seen in GC, even at the 
early steps of carcinogenesis [17–20]. Li et  al. [21] used 
online bioinformatics resources to explore gastric cancer-
specific MDEGs and investigate their potential pathways. 
Although this study has identified MDEGs in GC, their 
predictive value for GC patients has not been systemati-
cally investigated until now. To our knowledge, this is the 
first study to develop a MDEG-based risk score that is 
predictive of prognosis in GC.

In the present study, using methylation and expres-
sion microarrays within GEO database, we identified 63 
hypomethylation‐high expression genes and 192 hyper-
methylation‐low expression genes. Enrichment analy-
sis of the MDEGs suggested they were involved in key 
biological processes, One of key biological processes is 
sodium ion transmembrane transport, indicating that 
the channel activity might be affected in GC carcino-
genesis [22]. This finding is consistent with the knowl-
edge that ion transport in cancer cells is substantially 
different from that in normal cells [23]. Another key 
biological process is G-protein coupled receptor sign-
aling pathway. The roles of G-protein coupled recep-
tor (GPCRs) had been extensively reported related to 
tumor invasion and metastasis [24–27]. Our finding 
showed that the abnormal methylation and expres-
sion of genes within G-protein coupled receptor sign-
aling pathway played a key role in tumor progression 
and prognosis. Besides, the defective functioning of 
the regulation of cell proliferation and MAPK sign-
aling pathway suggest that it really is an important 
reason for tumor development [28–31]. KEGG enrich-
ment analysis suggested that MDEGs were significantly 
enrichened in cancer-associated pathways. For exam-
ple, Wang et al. [32] Found that CREB1 as a member of 
cAMP signaling pathway was highly expressed and cor-
related with lymph node metastasis, distant metastasis 
and tumor stage and poor outcome in gastric cancer. 
Together, these results suggested that MDEGs played a 
critical role in gastric cancer development.

Based on LASSO regression analysis, eight MDEGs 
including TREM2,RAI14, NRP1, YAP1, MATN3, 
PCSK5, INHBA and MICAL2, were selected for fur-
ther analysis. Previous studies had reported that 
almost MDEGs could promote the cell proliferation 
and contribute to carcinogenesis. Triggering receptor 
expressed on monocytes 2 (TREM2) is a member of 
the immunoglobulin superfamily and combines with 
TYRO protein tyrosine kinase-binding protein to form 

Table 2  Multivariate analysis of prognostic factors by Cox proportional hazard model

Variables GSE15459 TCGA-GC GSE84437

HR (95%CI) P value HR (95% CI) P value HR (95% CI) P value

Age 1.09 (0.71–1.68) 0.709 1.96 (1.09–3.51) 0.025 1.83 (1.38–2.43) < 0.001

Eight-MDEGs signature

 High-risk vs. low-risk 2.28 (1.47–3.53) < 0.001 1.84 (1.13–2.99) 0.015 1.43 (1.09–1.88) 0.011

Gender

 Male vs. female 1.07 (0.68–1.68) 0.779 1.25 (0.71–2.22) 0.449 1.31 (0.96–1.77) 0.085

TNM stage

 III + IV vs. I + II 5.99 (3.27–10.99) < 0.001 2.24 (1.29–3.91) 0.004 – –
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of each patient and Expression heatmap of the eight MDEGs corresponding to each sample above in TCGA-GC dataset (c) and GSE84437 dataset (d)
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a complex at the cell Surface. Zhang et  al. [33] found 
that TREM2 expressions were significantly higher in 
GC compared with normal gastric tissues and were 
inversely correlated with patient prognosis. Nonethe-
less, the oncogenic roles and potential molecular mech-
anisms of TREM2 in gastric cancer remain unknown 
and need in-depth research. Retinoic acid induced 14 
(RAI14), also known as NORPEG, is an actin-binding 
protein initially observed to be a regulatory protein at 
the ectoplasmic specialization. Recent studies highlight 
that RAI14 was up-regulated in gastric cancer associ-
ated with the patient’s prognosis and RAI14 knock-
down by siRNA interference reduced proliferation and 
migration, promoted apoptosis through inhibiting the 
activation of Akt signaling pathway in gastric cancer 
[34, 35]. Wang et al. [36] proved that NRP1 was a hypo-
methylated-upregulated gene in GC patients, which 
was significantly correlated with tumor malignant phe-
notypes. The expression level of NRP1 was significantly 
associated with the overall survival of GC patients. 
Zhang et  al. [37] further demonstrated that NRP1 
could act as a mediator for iRGD to strengthen the 
chemotherapy efficacy of 5-FU on gastric cancer cell. 
Yes-associated protein 1 (YAP1) is a transcriptional 
effector of the Hippo pathway that regulates intrin-
sic organ sizes by regulating apoptosis and cell prolif-
eration. Recent studies reported that YAP1 expression 
was associated with gastric cancer carcinogenesis and 
malignancy, which suggested that YAP1 could possibly 
be a potential treatment target for GC [38–40]. Martri-
lin-3 (MATN3), as a member of von Willebrand factor 
A domain containing protein family, is thought to be 
involved in the formation of filamentous networks in 
the extracellular matrices of various tissues [41]. Zhang 
et  al. [42] found that MATN3 was aberrantly methyl-
ated and differentially expressed in gastric cancer and 
significantly associated with prognosis. As a member 
of the superfamily of transforming growth factor-β 
(TGF-β), inhibin βA (INHBA) forms a disulfide-linked 
homodimer, namely activin A, which strongly induces 
differentiation of embryonic stem cells. The role that 
INHBA played in cancers was found to be associated 
with activin A levels in colorectal cancer [43], prostate 
cancer [44], and ovarian cancer [45]. It was also dis-
covered that INHBA is involved in cell proliferation in 
patients with high expressions, and correlated with the 
tumor-node-metastasis (TNM) stage and venous inva-
sion, making it an independent factor of prognosis after 
radical gastrectomy for GC [46, 47]. Molecule inter-
acting with CasL (MICAL2), a microtubule associated 
monooxygenase, is involved in cell growth, axon guid-
ance, vesicle trafficking and apoptosis. Recent studies 
have demonstrated that MICAL2 is highly expressed 

in tumor and accelerates tumor progression and it is 
deemed to be a novel tumor-promoting factor [48, 49]. 
PCSK5 belongs to the subtilisin-like proprotein con-
vertase family. Reports of the involvement of PCSK5 
in cancer are rare. In triple-negative breast cancer 
(TNBC), a lack of PCSK5 could lead to the bioactivity 
of growth differentiation factor (GDF11) as a tumor-
suppressor [50]. However, the function of PCSK5 in GC 
is largely unknown. PCSK5 gene presents a high fre-
quency of genomic alterations in GC patients according 
to cBioportal. The present study indicated the abnor-
mal expression of PSCK5 might play an important role 
in gastric cancer carcinogenesis and prognosis, which 
could be a meaningful direction worthy of further 
exploration.

Conclusion
Our study identified an independent prognostic signa-
ture by combining methylation and expression informa-
tion, which could successfully classify GC patients into 
high-risk and low-risk groups with significant differences 
in OS. The eight-MDEGs signature was promising to be 
applied for clinical prognostic evaluation of GC patients. 
These MDEGs may have clinical implications as prognos-
tic markers in GC, which provide information helpful for 
selection of therapeutic strategies.
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