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Abstract

Compelling evidence that many biological soft tissues display both strain- and time-depen-

dent behavior has led to the development of fully non-linear viscoelastic modeling tech-

niques to represent the tissue’s mechanical response under dynamic conditions. Since the

current stress state of a viscoelastic material is dependent on all previous loading events,

numerical analyses are complicated by the requirement of computing and storing the stress

at each step throughout the load history. This requirement quickly becomes computationally

expensive, and in some cases intractable, for finite element models. Therefore, we have

developed a strain-dependent numerical integration approach for capturing non-linear vis-

coelasticity that enables calculation of the current stress from a strain-dependent history

state variable stored from the preceding time step only, which improves both fitting efficiency

and computational tractability. This methodology was validated based on its ability to

recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain lev-

els) and dynamic cyclic (three frequencies) experimental stress-strain data. The model suc-

cessfully fit each data set with average errors in recovered coefficients of 0.3% for stress-

relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology

to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experi-

mental data of biological soft tissues.

Introduction

Viscoelastic theory describes the time-dependent relationship between stress and strain and is

commonly used to describe the mechanical behavior of biological tissues. For viscoelastic

materials, the current stress state is dependent upon all previous loading events. This history-

dependent behavior complicates numerical analyses of viscoelastic materials because the stress

at each step throughout the entire loading history must be computed and stored in order to

obtain the current stress. For three-dimensional finite element models, computing and storing

the stress tensor at each integration point and time step quickly becomes computationally
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intractable. To simplify numerical analyses for linear and quasi-linear viscoelastic materials, a

discrete series of exponentials (such as a Prony series) is often used to approximate the contin-

uous time-dependent relaxation spectrum.

As demonstrated by Puso and Weiss [1] for quasi-linear viscoelasticity (QLV), the unique

properties of a discrete relaxation spectrum may allow for the current stress to be computed

using only the stress from the previous time step, thereby greatly reducing computational

expense. Fung’s theory of QLV [2,3] is a popular choice for researchers working with soft tis-

sues due to its relatively straight-forward incorporation of hyperelastic formulations to

describe elastic non-linearity. For example, it is widely used to described the behavior of con-

nective (e.g., tendon [1,4] and ligament [1,5–7]) and spinal (e.g., spinal cord [8,9], brain [10],

and dura mater [11]) tissues subjected to static and dynamic loading regimes. However,

increasing evidence has demonstrated that these tissue types display fully non-linear viscoelas-

ticity [12–17], wherein the non-linear elastic response cannot be separated from the non-linear

time-dependent response.

The comprehensive viscoelastic characterization (CVC) method previously developed by

our research group has been shown to accurately predict the non-linear viscoelastic cyclic

response of both connective and spinal tissues based on fits of stress-relaxation data [13,18,19].

However, this technique is limited in three important ways: (1) it is restricted to fitting only

stress-relaxation data, (2) it requires fits of individual stress-relaxation curves at each strain

magnitude tested, and (3) it determines the strain-dependent behavior of the tissue post-hoc
(from a subsequent fit of the strain-dependent behavior of the individual curve fits). To

increase modeling flexibility and address each limitation above, the present study develops a

novel numerical integration technique (called the direct fit method) for fully non-linear visco-

elastic modeling. This novel methodology leverages the unique properties of the Prony series

to allow the current stress to be computed from a deformation-dependent state variable stored

from the preceding time step only. Similar to the formulation developed for QLV theory [1],

the following non-linear viscoelastic formulation greatly improves computational tractability

by avoiding the need to store the stress at each time step of the analysis. The following sections

will present the derivation of our numerical integration technique, demonstrate its implemen-

tation using computational methods, and verify its ability to fit non-linear viscoelastic data by

recovering a set of known non-linear viscoelastic coefficients. The significant advantage of a

fully non-linear viscoelastic formulation over a linear viscoelastic formulation is also explicitly

demonstrated through direct comparison of the fitting results.

Materials and methods

Model development

This section outlines the direct fit approach for non-linear viscoelastic modeling which calcu-

lates the current stress from a state variable stored from the preceding time step only (as

opposed to every previous time step). A linear viscoelastic (i.e., strain-independent relaxation

behavior) formulation follows the same derivation except where noted.

Uniaxial non-linear viscoelastic material behavior may be represented by the hereditary (or

convolution) integral:

s½εðtÞ; t� ¼
Z t

0

E½εðtÞ; t � t�
dεðtÞ

dt
dt; ð1Þ

where σ is stress, ε is strain, t is time, τ is a time variable of integration representing the history

effect, and E(t,ε) is the material relaxation modulus that describes the non-linear time-depen-

dent relationship between stress and strain. The form of the relaxation modulus must be
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continuous and monotonically decreasing in order to satisfy thermodynamic restrictions [20].

When modeling biological tissues, it is common to approximate the continuous relaxation

spectrum E(t,ε) by a discrete Prony series. For the case of non-linear viscoelasticity, the follow-

ing strain-dependent Prony series has been shown to successfully capture the strain- and time-

dependent behavior of several types of biological tissues [13,18,19,21]:

E½εðtÞ; t� ¼ E1ðεÞ þ
XN

i¼1

EiðεÞe
� t=ti ; ð2Þ

where Ei(ε) is the strain-dependent Prony weight corresponding to time constant τi, E1(ε)

represents the long-term strain-dependent modulus, and N defines the finite number of expo-

nential Prony terms. For linear viscoelasticity, the Prony weights and long-term modulus are

replaced with constant (strain independent) coefficients:

EðtÞ ¼ E1 þ
XN

i¼1

Eie
� t=ti : ð3Þ

In order to satisfy the monotonically decreasing restriction on the relaxation modulus, the

non-linear strain-dependent Prony weight functions must be positive and monotonically

increasing (or a positive constant for linear viscoelasticity) and the time constants must be pos-

itive. Combining Eq (1) and Eq (2) yields the following definition for stress at the current time

t, assuming ε(0) = 0:

s½εðtÞ; t� ¼
Z t

0

E1ðεÞ þ
XN

i¼1

EiðεÞe
� ðt � tÞ=

ti

( )
dεðtÞ

dt
dt

¼

Z t

0

E1ðεÞ
dεðtÞ

dt
dtþ

Z t

0

XN

i¼1

EiðεÞe
� ðt � tÞ=

ti

( )
dεðtÞ

dt
dt

¼ E1ðεÞ½εðtÞ � εð0Þ� þ
Z t

0

XN

i¼1

EiðεÞe
� ðt � tÞ=

ti

( )
dεðtÞ

dt
dt

¼ E1ðεÞεðtÞ þ
Z t

0

XN

i¼1

EiðεÞe
� ðt � tÞ=

ti

( )
dεðtÞ

dt
dt

ð4Þ

A strain-dependent history state variable is defined to recursively update the stress at each

incremental time step:

hi½εðtÞ; t� ¼
Z t

0

(

EiðεÞe
� ðt� tÞ=ti

)
dεðtÞ

dt
dt; ð5Þ

such that Eq (4) can be recast as:

s½εðtÞ; t� ¼ E1ðεÞεðtÞ þ
XN

i¼1

hi½εðtÞ; t�: ð6Þ

The stress at the next time step, t + Δt, is given as:

s½εðt þ DtÞ; t þ Dt� ¼ E1ðεÞεðt þ DtÞ þ
XN

i¼1

hi½εðt þ DtÞ; t þ Dt�; ð7Þ
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where the updated history variable is:

hi½εðt þ DtÞ; t þ Dt� ¼
Z tþDt

0

(

EiðεÞe
� ðtþDt� tÞ=ti

)
dεðtÞ

dt
dt: ð8Þ

Eq (8) can be expanded by use of the summation rule for definite integrals:

hi½εðt þ DtÞ; t þ Dt�

¼

Z t

0

EiðεÞe
� ðt þ Dt � tÞ=

ti

� �
dεðtÞ

dt
dt

þ

Z tþDt

t
EiðεÞe

� ðt þ Dt � tÞ=
ti

� �
dεðtÞ

dt
dt:

ð9Þ

Inputting Eq (9) into Eq (7) yields the following expression for the stress at the next time step:

s½εðt þ DtÞ; t þ Dt�

¼
XN

i¼1

Z t

0

EiðεÞe
� ðt þ Dt � tÞ=

ti

� �
dεðtÞ

dt
dt

þ
XN

i¼1

Z tþDt

t
EiðεÞe

� ðt þ Dt � tÞ=
ti

� �
dεðtÞ

dt
dt

þ E1ðεÞεðt þ DtÞ;

ð10Þ

where the first term represents the history effect (integrated over all previous loading events),

the second term represents the effect of the current loading event, and the final term represents

the effect of the equilibrium response.

Using the product law of exponentials, the history state variable, hi[ε(t),t], could be factored

out of the first term of Eq (9):

Z t

0

EiðεÞe
� ðt þ Dt � tÞ=

ti

� �
dεðtÞ

dt
dt ¼ hi½εðtÞ; t�

Z t

0

EiðεÞe
� ðt þ Dt � tÞ=

ti

� �
dεðtÞ

dt
dt

Z t

0

EiðεÞe
� ðt � tÞ=

ti

� �
dεðtÞ

dt
dt

8
>><

>>:

9
>>=

>>;

¼ hi½εðtÞ; t�
e
� t=tie

� Dt
�
ti

Z t

0

e
t=ti

� �
dεðtÞ

dt
dt

� t=
ti

Z t

0

e
t=

ti

� �
dεðtÞ

dt
dt

8
>><

>>:

9
>>=

>>;

¼ hi½εðtÞ; t�e
� Dt
�

ti :

ð11Þ

The second mean-value theorem of integrals states that for continuous functions f(x) and g(x)

� 0 over x 2 [a,b], there exists c 2 (a,b) such that
R b

a f ðxÞgðxÞdx ¼ f ðcÞ
R b

a gðxÞdx. This theo-

rem is imposed on the second term of Eq (9) such that:

Z tþDt

t

(

EiðεÞe
� ðtþDt� tÞ=ti

)
dεðtÞ

dt
dt ¼

dεðkÞ
dt

Z tþDt

t

(

EiðεÞe
� ðtþDt� tÞ=ti

)

dt; ð12Þ

with k 2 (t,t + Δt). The time steps are assumed to be small enough that the error associated

with linear interpolation between sequential strain values is negligible. Accordingly, by the

central difference rule:

dεðkÞ
dt
¼
εðt þ DtÞ � εðtÞ

t þ Dt � t
¼

Dε
Dt
: ð13Þ

e

A numerical integration method for non-linear viscoelastic modeling
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Using Eq (13), the second term of Eq (9) may be evaluated as:

Dε
Dt

Z tþDt

t
EiðεÞe

� ðt þ Dt � tÞ=
ti

� �

dt ¼
EiðεÞDε

Dt
tie
� ðt þ Dt � tÞ=

ti

�
�
�
�

t2½t;tþDt�

( )

¼
EiðεÞtiDε

Dt
ð1 � e

� Dt
�

ti Þ:

ð14Þ

Therefore, Eq (9) may be simplified as:

hi½εðt þ DtÞ; t þ Dt� ¼ hi½εðtÞ; t�e
� Dt=

ti þ
EiðεÞtiDε

Dt
1 � e

� Dt=
ti

� �

: ð15Þ

and Eq (7) can be recast as:

s½εðt þ DtÞ; t þ Dt�

¼ E1ðεÞεðt þ DtÞ þ
XN

i¼1

hi½εðtÞ; t�e
� Dt
�

ti þ

EiðεÞ 1 � e
� Dt
�

ti

� �

Dt
�

ti

� � Dε

8
>><

>>:

9
>>=

>>;

:
ð16Þ

Using the incremental notation fn+1 = fn + Δfn, where f is an incremental variable, fn is the vari-

able value at the preceding increment, and Δfn is the current variable increment, the following

incremental formulation for non-linear viscoelasticity is obtained:

sðεnþ1Þnþ1
¼ E1ðεÞεnþ1 þ

XN

i¼1

hi½εðtÞ; t�e
� Dtn=ti þ

EiðεÞ 1 � e � Dtn=ti
� �

Dtn =
ti

� � Dεnþ1

8
<

:

9
=

;
: ð17Þ

Following similar mathematical development, the analogous equation for linear viscoelasticity

is:

snþ1 ¼ E1εnþ1 þ
XN

i¼1

hiðtÞe
� Dtn=ti þ

Ei 1 � e� Dtn=ti
� �

Dtn=
ti

� � Dεnþ1

8
<

:

9
=

;
: ð18Þ

It should be noted that evaluating Eq (17) or Eq (18) at the current time step requires only

the history state variable from the previous time step (hi[ε(t),t] for non-linear viscoelasticity

and hi(t) for linear viscoelasticity). Unlike the CVC method previously developed by our group

[13,19], the presented formation may be fit to an arbitrary strain history and may be used in a

data fitting algorithm to directly determine the non-linear strain-dependence of each Prony

weight.

Model validation

The numerical integration technique for our direct fit method, and its associated non-linear

viscoelastic model, were validated based on its ability to recover coefficients used to create ide-

alized experimental data. These stress-strain data were created by specifying the mathematical

formulae and coefficients of the non-linear relaxation modulus (E[ε(τ),t]), the associated time

constants, and the strain magnitude. Values were chosen based on the experimental data pro-

vided in Troyer et al. for ovine Achilles tendon [19]. In this previous work, the non-linear vis-

coelastic relaxation modulus was approximated by a 4-term Prony series, where each strain-

A numerical integration method for non-linear viscoelastic modeling
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dependent Prony weight was described with a two-term polynomial function:

EiðεÞ ¼ Cti
1 εþ Cti

2 ε
2; ð19Þ

E1ðεÞ ¼ C1
1
εþ C1

2
ε2: ð20Þ

The time constants were fixed at decadal values (τ1 = 0.1 s, τ2 = 1 s, τ3 = 10 s, τ4 = 100 s) in

order to adequately capture both the short-term and long-term response of the tissue. The C1

and C2 coefficients obtained via the CVC method (Table 1, [19]) were input into Eq (17) to

create idealized experimental data for two types of viscoelastic experiments: static stress-relaxa-

tion and dynamic cyclic tests. The idealized experimental data of each type were then simulta-

neously fit, in their entirety, to both the presented non-linear and linear viscoelastic models

using MATLAB’s (R2014b, Mathworks, Natick, MA) fmincon constrained non-linear optimi-

zation function. For the non-linear viscoelastic fits, each Prony weight was constrained to be

positive and monotonically increasing in order to satisfy thermodynamic restrictions. For the

linear viscoelastic fits, the Prony constants were constrained to be positive. Since multiple

curves were fit simultaneously, the root mean squared errors (RMSEs) for individual curves in

the fit were summed and used to define the objective function minimized by the MATLAB

algorithm.

The accuracy of model fits were assessed by computing the RMSE between each idealized

experimental stress-strain curve and that predicted by each viscoelastic model. For the non-

linear viscoelastic model, the recovery of input C1 and C2 coefficients was assessed by the per-

cent error for each of the 10 coefficients.

Results

Stress-relaxation

Six idealized stress-relaxation experimental curves were created to match the experimental

work by Troyer et al. [19]. Specifically, stress-relaxation experiments at 1%, 2%, 3%, 4%, 5%,

and 6% engineering strain at a ramping strain-rate of 0.1/sec with a dwell time of 100 seconds

were created using the coefficients in Table 1. An initial guess value of 100 was used for all ten

Table 1. Input and recovery error of non-linear viscoelastic coefficients.

Input Coefficients [19] (MPa) Stress-Relaxation (n = 6) Coefficient Recovery Error Dynamic Cyclic (n = 3) Coefficient Recovery Error

Cτ¼0:1

1
901.1 0.01% 0.003%

Cτ¼0:1

2
8437 0.05% 0.01%

Cτ¼1

1
343.5 0.16% 0.01%

Cτ¼1

2
-684.1 2.18% 0.12%

Cτ¼10

1
331.2 0.03% 0.01%

Cτ¼10

2
-1201.2 0.24% 0.08%

Cτ¼100

1
476.5 0.002% 0.02%

Cτ¼100

2
-363.4 0.07% 0.90%

C1
1

4403.1 0.0001% 0.001%

C1
2

-9959.3 0.001% 0.01%

Average 0.28% 0.12%

The proposed numerical integration direct fit method for non-linear viscoelastic characterization was able to recover input non-linear viscoelastic coefficients

using both stress-relaxation and dynamic cyclic stress-strain data with average errors well below 1%.

https://doi.org/10.1371/journal.pone.0190137.t001
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fitted coefficients in the simultaneous fits of the six experimental curves. As shown in Fig 1,

the non-linear viscoelastic model fit the idealized experimental curves very well, including the

non-linear stress-strain behavior during the ramping phase, with RMSE values ranging from

1.4 to 12.5 Pa (average RMSE = 5.25 Pa). These RMSE values are approximately six orders of

magnitude less than the peak stress, representing less than 0.003% of the peak stress. On aver-

age, there was less than a 0.28% difference between the fitted coefficients and the coefficients

used to create the experimental curves (range 0.0001% to 2.18%, Table 1).

Contrary to the non-linear viscoelastic model, the linear viscoelastic model was unable to

describe the strain-dependent stress-relaxation data. As shown in Fig 2, the linear model could

not capture the non-linear stress-strain behavior during the ramping phase nor the non-linear

Fig 1. Non-linear stress-relaxation fits. The proposed numerical integration direct fit method for non-linear

viscoelastic characterization was able to accurately fit the idealized stress-relaxation experimental data,

including the non-linear stress-strain behavior during the ramping phase and the strain-dependent relaxation

indicative of non-linear viscoelastic behavior.

https://doi.org/10.1371/journal.pone.0190137.g001

A numerical integration method for non-linear viscoelastic modeling
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strain-dependent relaxation response. The RMSE values for the linear model fit were up to six

orders of magnitude larger than the values obtained for the non-linear model fit. The RMSE

values for the linear model fit ranged from 0.20 to 2.27 MPa representing an average 80% of

the peak stress.

Dynamic cyclic

The ability of the direct fit method to recover input coefficients from dynamic cyclic data was

also examined. Similar to the stress-relaxation methodology, idealized experimental data were

created using the same time constants and relaxation modulus coefficients obtained in Troyer

et al. [19] (Table 1). Three idealized experimental dynamic cyclic data curves consisting of 10

Fig 2. Linear stress-relaxation fits. The linear viscoelastic formulation was not able to capture the idealized

strain-dependent stress-relaxation data, resulting in large RMSE values compared to those of the non-linear

viscoelastic formulation.

https://doi.org/10.1371/journal.pone.0190137.g002
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cycles to the maximum strain level of interest (6%) at 0.01Hz, 0.1Hz, and 1Hz were created for

fitting. As with the stress-relaxation fits, an initial guess of 100 was used for all ten coefficients

in the simultaneous fits of the three curves.

The non-linear viscoelastic model also fit the cyclic data very well, with RMSE values (2.75,

2.24, and 1.66 Pa) almost seven orders of magnitude less than the peak stress (Fig 3). The cyclic

fits also exhibited strong coefficient recovery with an average 0.12% difference between the fit-

ted coefficients and the coefficients used to create the idealized experimental curves (range

0.001% to 0.9%, Table 1).

Fig 4 shows the results of fitting the linear viscoelastic model to the same three dynamic

cyclic curves. As with the stress-relaxation data, the linear viscoelastic model was unable to

capture the strain-dependent viscoelastic response with RMSE values six orders of magnitude

larger than those obtained for the non-linear model fit. The linear model resulted in RMSE val-

ues of 1.44, 1.47, and 1.65 MPa, which represents approximately 10% of the peak stresses.

Discussion

With increasing experimental evidence that the mechanical behavior of many biological tissues

is not adequately captured by linear and quasi-linear viscoelastic formulations, there is a signif-

icant need for computationally tractable fully non-linear viscoelastic modeling methods. The

novel direct fit method presented herein provides a number of advantages over other non-lin-

ear techniques, including that of the CVC method [13,18,19]. Specifically, through the use of a

strain-dependent Prony series representation of the relaxation modulus and the product law

of exponentials, the direct fit method does not require storage of the stress at each time step of

the loading history. Instead, the new method recursively updates a strain-dependent history

state variable. The new method also permits simultaneous fits of all experimental data from

each sample, which is believed to result in a better approximation of the sample’s behavior

than averaging the results of individual curve fits. In addition, by fitting the data curves in

their entirety, the non-linearity is directly determined from the fits themselves instead of post
hoc analyses (as with the CVC method). Finally, the direct fit method also allows for more

experimental flexibility since it may be fit to an arbitrary strain history (e.g., stress-relaxation

and cyclical experiments or combinations thereof). While the CVC method is both efficient in

its fits and accurate in its predictions [13,19], it is limited to fitting the stress-relaxation

response only. Since non-linear viscoelastic characterization based on stress-relaxation data

require multiple tests at varying strain magnitudes, this experimental procedure can require

significant experimental testing time. For tissues whose mechanical properties demonstrate a

relatively quickly post-mortem degradation profile, such as neural tissues [22–24], the ability

to fit fewer cyclic experiments for the same predictive accuracy is a very important advantage.

Strong recovery of all ten input coefficients from both stress-relaxation and cyclic experi-

mental data validates the use of the direct fit method for non-linear viscoelastic characteriza-

tion. It is important to note that, on average, the cyclic fits were better at recovering the input

coefficients than the stress-relaxation fits. As the strain history is continuously changing over

the course of the test, the strain-dependent Prony weights are more sensitive when fitting

cyclic data compared to strain-stagnant relaxation data.

While the non-linear viscoelastic model fit the idealized experimental data very well, the

linear viscoelastic model performed much worse with RMSE values of up to 200% of the peak

stress. The inability of the simplified linear viscoelastic model to fit the idealized experimental

data demonstrates the need for fully non-linear viscoelastic models to characterize the

mechanical behavior of many biological tissues. As seen in Figs 2 and 4, the linear formulation

of the presented model was unable to capture non-linear elastic or non-linear viscous
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Fig 3. Non-linear dynamic cyclic fits. The proposed direct fit method accurately fit the idealized dynamic cyclic response at three

frequencies. These curves were fit simultaneously but are plotted separately to improve visualization of the higher frequency fits. Images in

the right column show the first cycle of the fit for each frequency.

https://doi.org/10.1371/journal.pone.0190137.g003
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Fig 4. Linear dynamic cyclic fits. The linear viscoelastic formulation was unable to fit the idealized dynamic cyclic response, resulting in

very large RMSE values compared to those of the non-linear viscoelastic formulation. These curves were fit simultaneously but are plotted

separately to improve visualization of the higher frequency fits. Images in the right column show the first cycle of the fit for each frequency.

https://doi.org/10.1371/journal.pone.0190137.g004
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behavior, both of which are commonly seen in the mechanical response of connective and

neural tissues [12–17].

Limitations of the direct fit method developed herein include the restriction to uniaxial ten-

sion and the use of a simple polynomial model to capture the strain-dependent Prony weights.

While uniaxial tension tests are popular experimental methods for characterizing both connec-

tive and neural tissues, we plan to extend the method to include descriptions of anisotropic

behavior by investigating strain energy based formulations to describe the strain-dependence

of the Prony weights. In future work, we will use the numerical integration direct fit technique

to characterize the viscoelastic behavior of spinal cord and meningeal tissues in order to

improve the time-dependent mechanical behavior predictions of spinal cord injury finite ele-

ment models.
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