
RESEARCH ARTICLE

Balrog: A universal protein model for

prokaryotic gene prediction

Markus J. SommerID
1,2*, Steven L. Salzberg1,2,3

1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of

America, 2 Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, United States

of America, 3 Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore,

Maryland, United States of America

* markusjsommer@gmail.com

Abstract

Low-cost, high-throughput sequencing has led to an enormous increase in the number of

sequenced microbial genomes, with well over 100,000 genomes in public archives today.

Automatic genome annotation tools are integral to understanding these organisms, yet

older gene finding methods must be retrained on each new genome. We have developed a

universal model of prokaryotic genes by fitting a temporal convolutional network to amino-

acid sequences from a large, diverse set of microbial genomes. We incorporated the new

model into a gene finding system, Balrog (Bacterial Annotation by Learned Representation

Of Genes), which does not require genome-specific training and which matches or outper-

forms other state-of-the-art gene finding tools. Balrog is freely available under the MIT

license at https://github.com/salzberg-lab/Balrog.

Author summary

Annotating the protein-coding genes in a newly sequenced prokaryotic genome is a criti-

cal part of describing their biological function. Relative to eukaryotic genomes, prokary-

otic genomes are small and structurally simple, with 90% of their DNA typically devoted

to protein-coding genes. Current computational gene finding tools are therefore able to

achieve close to 99% sensitivity to known genes using species-specific gene models.

Though highly sensitive at finding known genes, all current prokaryotic gene finders also

predict large numbers of additional genes, which are labelled as “hypothetical protein” in

GenBank and other annotation databases. Many hypothetical gene predictions likely rep-

resent true protein-coding sequence, but it is not known how many of them represent

false positives. Additionally, all current gene finding tools must be trained specifically for

each genome as a preliminary step in order to achieve high sensitivity. This requirement

limits their ability to detect genes in fragmented sequences commonly seen in metage-

nomic samples. We took a data-driven approach to prokaryotic gene finding, relying on

the large and diverse collection of already-sequenced genomes. By training a single, uni-

versal model of bacterial genes on protein sequences from many different species, we were

able to match the sensitivity of current gene finders while reducing the overall number of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sommer MJ, Salzberg SL (2021) Balrog:

A universal protein model for prokaryotic gene

prediction. PLoS Comput Biol 17(2): e1008727.

https://doi.org/10.1371/journal.pcbi.1008727

Editor: Christos A. Ouzounis, CPERI, GREECE

Received: September 6, 2020

Accepted: January 19, 2021

Published: February 26, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008727

Copyright: © 2021 Sommer, Salzberg. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All genome files are

available from the NCBI GenBank database

(accession numbers are provided in S1–S3

Appendices)

Funding: This work was supported in part by

grants awarded to SLS: R35–GM130151 and R01-

HG006677 from the National Institutes of Health

https://orcid.org/0000-0003-3414-1875
https://github.com/salzberg-lab/Balrog
https://doi.org/10.1371/journal.pcbi.1008727
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008727&domain=pdf&date_stamp=2021-03-10
https://doi.org/10.1371/journal.pcbi.1008727
https://doi.org/10.1371/journal.pcbi.1008727
http://creativecommons.org/licenses/by/4.0/


gene predictions. Our model does not need to be refit on any new genome. Balrog (Bacte-

rial Annotation by Learned Representation of Genes) represents a fundamentally different

yet effective method for prokaryotic gene finding.

Introduction

One of the most important steps after sequencing and assembling a microbial genome is the

annotation of its protein-coding genes. Methods for finding protein-coding genes within a

prokaryotic genome are highly sensitive, and thus have seen little change over the past decade.

Widely used prokaryotic gene finders include various iterations of Glimmer [1, 2], GeneMark

[3, 4], and Prodigal [5], all of which are based on Markov models and which utilize an array of

biologically-inspired heuristics. Each of these previous methods requires a bootstrapping step

to train its internal gene model on each new genome. This requirement also limits their ability

to detect genes in fragmented sequences commonly seen in metagenomic samples [6].

The lack of recent advances in ab initio bacterial gene finding tool development is partly

due to the perception that bacterial gene finding is a solved problem. Currently available tools

achieve near 99% sensitivity for known genes (i.e., genes with a functional annotation), so

there appears to be little room for improvement. However, all current software tools predict

hundreds or thousands of “extra” genes per genome, i.e., genes that do not match any gene

with a known function and are usually given the name “hypothetical protein.” Many of these

hypothetical genes likely represent genuine protein coding sequences, but many others may be

false positive predictions. It is difficult if not impossible to prove that a predicted open reading

frame is not a gene; thus these hypothetical proteins have remained in genome annotation

databases for many years. However, systematically annotating false positives as genes may cre-

ate problems for downstream analyses of genome function [7].

In line with evaluation metrics used by other gene finders, if a program can find nearly all

true positive genes while predicting fewer genes overall, it is reasonable to assume this is pri-

marily due to a reduction in false positive predictions [2, 5]. Thus, we would prefer a method

that makes fewer overall predictions while retaining very high sensitivity to known genes.

Currently available gene finders were developed in the late 1990’s and 2000’s, when rela-

tively few prokaryotic genomes were available. Today, tens of thousands of diverse bacterial

genomes from across the prokaryotic tree of life have been sequenced and annotated. We

hypothesized that it should therefore be feasible to build a data-driven gene finder by training

a machine learning model on a large, diverse collection of high-quality prokaryotic genomes.

The program could then be applied, without any further re-training or adjustment, to find

genes in any prokaryotic species. Balrog was developed with this strategy in mind. In the

experiments below, we show that Balrog, when trained on all high-quality prokaryotic

genomes available today, matches the sensitivity of current state-of-the-art gene finders while

reducing the total number of hypothetical gene predictions. By integrating protein-coding

gene predictions from Balrog, standard prokaryotic annotation and analysis pipelines such as

NCBI PGAP (Prokaryotic Genome Annotation Pipeline) [8], MGnify [9], or Prokka [10] may

improve their genome annotation quality.

Results

Gene prediction sensitivity

We compared the performance of Balrog, Prodigal, and Glimmer3 by running each tool with

default settings on a test set of 30 bacteria and 5 archaea that were not included in the Balrog

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 2 / 13

https://www.nih.gov/. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008727
https://www.nih.gov/


training set. Following the conventions established in multiple previous studies, we considered

a protein-coding gene to be known if it was annotated with a name not including “hypotheti-

cal” or “putative.” In standard annotation pipelines, proteins are labeled hypothetical if they

have no significant match to known protein sequences and are not otherwise covered by a

standard naming rule [11]. For most bacterial genomes, more than two-thirds of their anno-

tated genes fall into the “known” category, with the rest being hypothetical. The hypothetical

genes include a mixture of true genes and false positive predictions. In our experiments, we

measured the total number of genes predicted in each genome and calculated the sensitivity of

each program to known, non-hypothetical genes. Predictions were considered correct if the

stop codon was correctly predicted, i.e., if the 3’ position of the gene was correct. Results for

this gene finder comparison can be found in Table 1.

All three tools achieved similar sensitivity on the bacterial genomes in the test set. On aver-

age, Balrog found 2 non-hypothetical genes fewer than Prodigal (2,248 vs. 2,250) and 3 genes

more than Glimmer3 (2,248 vs. 2,245). This represents a difference of less than 0.1% in sensi-

tivity. Balrog predicted the fewest genes overall, reducing the number of “extra” gene predic-

tions by 11% vs. Prodigal (664 vs. 747) and 30% vs Glimmer3 (664 vs. 949).

Balrog predicted more genes than Prodigal for only one bacterial genome, E. coli K-12

MG1655 (the standard laboratory strain). On that genome, Balrog predicted 3 more extra

genes than Prodigal, but at the same time it found 43 more true annotated genes. It is worth

noting here that all organisms in the Escherichia and Shigella genuses were excluded from the

Balrog training data set.

On the five genomes in the archaea test set, we observed more pronounced differences in

the number of extra gene predictions. Glimmer3 found the most known genes, averaging

1670, versus 1663 for Prodigal and 1661 for Balrog. However, Balrog predicted the fewest

genes overall, 18% fewer extra genes than Prodigal and 40% fewer than Glimmer3.

Similar results were observed when the gene model was trained on a set excluding organ-

isms sharing a family, rather than a genus, with any organism in the test set. On average, the

gene model achieved sensitivity of 98.12% with family excluded vs. 98.15% with genus

excluded (2247 vs. 2248 genes) in bacteria and 97.50% vs. 97.44% (1662 vs. 1661) in archaea.

The family-excluded model predicted on average 25 more extra genes than the genus-excluded

model in bacteria (689 vs. 664) and 32 more in archaea (597 vs. 565).

Materials and methods

Training and testing data

In selecting genomes on which to train our gene model, we aimed to cover as much microbial

diversity as possible while limiting sequence redundancy. As a whole, currently available pro-

karyotic genomes are biased toward clinically relevant organisms. Many low-abundance envi-

ronmental species may be absent from public databases, whereas organisms important to

human disease may have full genomes for hundreds of closely related strains [12]. We cannot

fully account for the missing diversity within available sequence databases (indeed, millions of

bacterial species probably remain unsequenced), but to limit the impact of highly-overrepre-

sented species, we randomly selected only one genome for each bacterial and archaeal species

within the Genome Taxonomy Database (GTDB, https://gtdb.ecogenomic.org) for the training

set [13]. Only high-quality genomes were selected, defined by GTDB as over 90% complete

with less than 5% contamination. Because high-quality protein annotations were also neces-

sary, we required selected genomes to be available in RefSeq or GenBank with the tag “Com-

plete Genome” and without the tag “Anomalous assembly.”

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 3 / 13

https://gtdb.ecogenomic.org
https://doi.org/10.1371/journal.pcbi.1008727


Table 1. Non-hypothetical gene prediction comparison.

Genome Balrog Prodigal Glimmer3

Bacteria GC genes 30 matches extra 30 matches extra 30 matches extra

% # # % # # % # # % #

T. narugense 30 1570 1559 99.3 271 1557 99.2 302 1559 99.3 367

C. fetus 31 1486 1476 99.3 216 1475 99.3 248 1473 99.1 279

T. wiegelii 33 2359 2265 96.0 505 2255 95.6 557 2267 96.1 715

Nat. thermophilus 34 2419 2397 99.1 479 2401 99.3 554 2403 99.3 648

D. thermolithotrophum 34 1360 1336 98.2 197 1336 98.2 220 1332 97.9 257

D. thermophilum 37 1630 1607 98.6 250 1609 98.7 281 1609 98.7 333

P. UFO1 38 3873 3834 99.0 725 3829 98.9 970 3831 98.9 1134

T. takaii 40 1496 1484 99.2 322 1486 99.3 373 1485 99.3 422

K. pacifica 41 1608 1597 99.3 405 1596 99.3 441 1594 99.1 543

B. bacteriovorus 42 1897 1883 99.3 840 1887 99.5 921 1884 99.3 1027

P. HL-130-GSB 45 1882 1804 95.9 515 1809 96.1 604 1810 96.2 783

C. thermautotrophica 46 2137 2107 98.6 508 2116 99.0 595 2114 98.9 696

A. aeolicus 46 885 884 99.9 784 883 99.8 826 879 99.3 840

M. thermoacetica 49 2299 2227 96.9 679 2233 97.1 808 2238 97.3 1134

Nov. thermophilus 49 2850 2769 97.2 789 2754 96.6 929 2771 97.2 1103

T. oceani 49 1998 1941 97.1 305 1932 96.7 375 1943 97.2 533

D. indicum 50 2178 2152 98.8 461 2154 98.9 492 2134 98.0 679

L. boryana 50 4031 3947 97.9 1588 3956 98.1 1868 3953 98.1 2423

D. multivorans 51 3128 3061 97.9 667 3064 98.0 796 3065 98.0 1585

E. coli K-12 MG1655 52 3529 3451 97.8 914 3408 96.6 911 3368 95.4 1110

D. acetoxidans 52 2322 2273 97.9 554 2268 97.7 698 2268 97.7 1165

C. parvum 54 1780 1753 98.5 301 1752 98.4 348 1746 98.1 489

T. ammonificans 56 1382 1373 99.3 306 1377 99.6 354 1373 99.3 362

A. acidocaldarius 58 2499 2393 95.8 617 2397 95.9 724 2397 95.9 908

R. radiotolerans 60 2196 2155 98.1 563 2166 98.6 608 2160 98.4 742

D. desulfuricans 62 2889 2849 98.6 578 2853 98.8 619 2854 98.8 858

S. thermophilum 63 2612 2564 98.2 652 2567 98.3 730 2562 98.1 847

V. incomptus 65 2498 2451 98.1 1131 2465 98.7 1176 2447 98.0 1540

C. bipolaricaulis 65 1022 997 97.6 237 1008 98.6 260 1000 97.8 286

S. amylolyticus 73 4880 4778 97.9 3631 4821 98.8 3887 4728 96.9 4789

Averages: 49 2289 2248 98.2 664 2250 98.3 747 2245 98.1 949

Archaea

M. ruminantium 36 1710 1678 98.1 455 1682 98.4 517 1687 98.7 570

A. GW2011 AR10 39 621 618 99.5 607 621 100.0 720 621 100.0 778

M. sp. WWM596 46 2757 2567 93.1 840 2545 92.3 1123 2581 93.6 1999

M. labreanum 50 1390 1372 98.7 379 1370 98.6 446 1376 99.0 581

H. lacusprofundi 61 2047 2001 97.8 613 2017 98.5 731 2015 98.4 884

Averages: 46 1705 1661 97.4 565 1663 97.6 691 1670 97.9 949

“genes” refers to all protein-coding genes in the NCBI annotation where the description does not contain “hypothetical” or “putative.” Genes with descriptions

containing “hypoth” or “etical” are also excluded to catch the most common misspellings of hypothetical.

“30 matches” counts the number of genes with stop sites exactly matching between the annotation and prediction on the same strand. “extra” counts the number of

genes predicted by each program that do not share strand and stop site with an annotated non-hypothetical gene. The lowest number of extra genes and the highest

number of 30 matches are bolded for each organism.

https://doi.org/10.1371/journal.pcbi.1008727.t001

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 4 / 13

https://doi.org/10.1371/journal.pcbi.1008727.t001
https://doi.org/10.1371/journal.pcbi.1008727


From this set of high-quality complete genomes with gene annotations, 29 bacterial and

five archaeal species were randomly selected to serve as a test set. Escherichia coli was also put

in the test set because it is often used as a benchmark organism to compare gene finders.

All genomes sharing a GTDB genus with any species in the test set were excluded from the

training set. Full organism names and accession numbers for the testing data are available in

S1 Appendix, while data for all organisms used to train the gene model are available in S2

Appendix. Though many gene sequences likely overlap between training and test data, we

feel this test set should allow a reasonably conservative estimate of generalization error when

predicting genes on a newly sequenced prokaryotic genome, which likely shares many gene

sequences with previously seen genomes. Overall, this genome selection process yielded 3290

genomes in the training set and 36 in the test set. Additionally, a separate training set was

constructed excluding all organisms sharing a family with any organism in the test set. This

yielded 3085 genomes in the training set while the test set remained the same.

From all genomes, we extracted amino-acid sequences from annotated non-hypothetical

genes. All genes with a description containing “hypothetical” or “putative” were removed from

analysis, as many of these are not true genes but instead are the predictions of other gene find-

ing programs. Additionally, genes with descriptions containing “hypoth” or “etical” were

excluded in an effort to catch the most common misspellings of hypothetical. All non-hypo-

thetical gene sequences were translated in all five alternative reading frames, and from these

translations we extracted open reading frames (ORFs) longer than 100 amino acids to use as

training examples of non-protein sequence.

We extracted amino-acid shingles (overlapping subsequences) in the 3’ to 5’ direction of

length 100 and overlapping by 50 from all protein and non-protein sequences. These were

used as positive and negative gene examples, respectively. In total,�27 gigabases (9 billion

amino acids) of translated gene and non-gene sequence was generated to train the gene model.

Training the gene model

A temporal convolutional network (TCN) was trained using the methods and open source

Python framework of Bai et al. [14], slightly modified to enable binary classification of pro-

tein sequence. We use the state of the last node of the linear output layer as representative of

the binary classifier, with a value close to 1 predicting a protein-coding gene sequence and 0

predicting an out-of-frame sequence. During training, binary cross-entropy loss was calcu-

lated on the state of this last node. Backpropagation from this loss minimizes gene predic-

tion error based on the full context of our 100 amino-acid sequence shingles. This works

because we set parameters such that the receptive field size of the network was sufficient to

cover the whole length of a sequence shingle. Fig 1 shows an example TCN with each param-

eter explained.

During inference, we use the output from the pre-trained TCN to predict a single score for

an ORF of any given length. To predict a single probability between 0 and 1, we combine all

output scores from the TCN according to Eq 1, where L is the length of the ORF and pi is the

predicted gene probability by the TCN model at position i. This represents taking a weighted

average predicted gene probability, then applying the logistic sigmoid function to map back

from (−1,1) to (0, 1). This method has the effect of more heavily weighing TCN predictions

that are close to 0 or 1 [15, 16]. We expect certain regions of a gene may contain recognizable

protein sequence motifs, causing the TCN to predict a probability near 1. Other regions of a

gene may contain little recognizable information, causing the TCN to predict near 0.5. By

combining scores using this function, a single prediction near 1, caused by a recognizable pro-

tein motif, can force the combined gene score closer to 1. Simply put, this equation allows us

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 5 / 13

https://doi.org/10.1371/journal.pcbi.1008727


to improve gene scores based on the presence of conserved motifs in true proteins.

Predicted gene probability ¼
1

1þ e� x
; x ¼

1

L

XL

i¼1

ln
pi

1 � pi

� �

ð1Þ

Our gene model TCN used 8 hidden layers, 32 � L hidden units per layer, a dilation factor

of 2, and a convolutional kernel size of 8. Dropout was performed on 5% of nodes during

training to mitigate overfitting. We used adaptive moment estimation with decoupled weight

decay regularization (AdamW) [17] to minimize loss during initial training, while final loss

minimization was performed by stochastic gradient descent with a learning rate of 10-4 and

Nesterov momentum of 0.90 [18, 19]. We performed all training on Google Colab servers with

32GB of RAM and a 16GB NVIDIA Tesla P100 GPU over the course of 48 hours.

Training the translation initiation site model

Though not the main focus of this work, a good start site model provides a boost in accuracy

for a prokaryotic gene finder. In bacteria, the initiation of translation is usually marked by a

ribosome binding site (RBS), which manifests as a conserved 5-6 bp sequence just upstream of

the start codon of a protein-coding gene. Experimentally-validated start sites are not available

for the vast majority of bacterial genes, so we made the assumption (also used in previous

methods [2]) that the annotated start sites of known genes would usually, but not always, be

correct. Thus to create a RBS model, we extracted 16 nucleotides upstream and downstream

from all annotated non-hypothetical gene start sites in the training set genomes. For each start

site, we also found the closest downstream start codon within the gene and extracted the same

sized windows for use as examples of false start sites.

Similar to the gene model, we trained a TCN on the positive and negative examples of gene

start sites. A slightly smaller model was used due to the reduced complexity and length of the

start site sequence data. Our start site model used 5 layers with 25 � L hidden units per layer

Fig 1. Example temporal convolutional network. A temporal convolutional network (TCN) with 2 hidden layers and a convolutional kernel size of 2.

The number of connections exponentially increases as hidden layers are added, enabling a wide receptive field. Notice the output of a TCN is the same

length as the input. Balrog’s TCN used 8 hidden layers, a convolutional kernel size of 8, a dilation factor of 2, and 32 � L hidden units per layer where L
is the length of the amino-acid sequence.

https://doi.org/10.1371/journal.pcbi.1008727.g001

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 6 / 13

https://doi.org/10.1371/journal.pcbi.1008727.g001
https://doi.org/10.1371/journal.pcbi.1008727


and a convolutional kernel size of 6. The model was trained for 12 hours on the same Google

Colab server type as the gene model.

Gene finding

A powerful gene sequence model is necessary for finding genes, but additional features such as

open reading frame (ORF) length can also be taken into account. In particular, longer ORFs

are more likely to be protein-coding genes, by the simple argument that a long stretch of DNA

without stop codons is less likely, in random DNA sequence, than a short stretch. Balrog

begins by identifying and translating all ORFs longer than a user-specified minimum. Its task

is to determine for each of these ORFs whether it represents a protein-coding gene.

We also developed an optional kmer-based filter, using amino-acid sequences of length 10,

which runs before the gene model to positively identify genes. This filtering procedure simply

identifies all amino-acid 10-mers found in annotated non-hypothetical genes from the training

data set and flags any ORF containing at least two of these 10-mers as a true protein. This ini-

tial step finds many common prokaryotic genes with a very high specificity and near-zero false

positive rate.

Next, ORFs are scored by the pre-trained temporal convolutional network in the 3’ to 5’

direction. The region surrounding each potential start site of each ORF is then scored by the

start site model. A directed acyclic graph is constructed for each contig, with nodes represent-

ing all possible ORFs. Edges are added between compatible ORFs overlapping by less than a

user-specified minimum. To avoid creating a graph with O(n2) edges, we only connect a con-

stant number of nodes to each node. Because prokaryotes are gene dense, we do not expect

any large region with a significant number of non-gene ORFs. Therefore, we can keep the

number of edges to O(n � C) where C = 50 was empirically found to be sufficient for all tested

genomes. Edge weights are calculated by a linear combination of the gene model score of the

ORF, the gene start site model of the potential start site, a bonus for ATG vs. GTG vs. TTG

start codon usage, and penalties for overlap depending on the 3’/5’ orientation of the overlap.

The global maximum score of the directed acyclic graph is computed by finding the longest

weighted path through the graph as shown in Fig 2. Because we are searching for the maxi-

mum score and some ORFs can receive negative scores, Dijkstra’s algorithm does not work in

this context [20]. Instead, we take advantage of the fact that our genome is implicitly topologi-

cally sorted to find the longest weighted path in two steps. First, we sweep forward along the

genome, keeping track of the maximum attainable score at each node as well as its predecessor

node. Then, we simply backtrack along the predecessors from the global maximum attainable

score to find the longest weighted path. This is similar to finding the “critical path” in a task

scheduling problem [21]. In practice, ORFs must only be connected locally to a relatively small

set of other ORFs because no real prokaryotic genome should have a very large gap between

genes. This makes the complexity of finding the maximum score scale linearly with the size of

the genome. The highest scoring path through the graph represents the best predicted set of all

compatible genes in the genome and is converted into an annotation file for the user.

To benchmark gene finding performance, Glimmer3 and Prodigal were run with default

settings and allowed to train on each genome in the test set.

Parameter optimization

In the spirit of building a data-driven model, nearly all parameters were optimized with respect

to the data rather than being hand-tuned. Ten genomes were randomly selected from the

training data set to use for optimization of weights used in the scoring function for genome

graph construction.

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 7 / 13

https://doi.org/10.1371/journal.pcbi.1008727


The score for each ORF node was calculated by a linear combination of features including

the gene model score, start site model score, start site codon usage, and the length of the ORF.

Additionally, final scores for edges between nodes are penalized by the length and direction of

overlap, if any, between the connected ORFs. Depending on the type of overlap, per-base pen-

alties are multiplied by the length of the overlap and subtracted from the edge connection

score. Different penalties are learned for divergent overlap (3’ to 3’), convergent overlap (5’ to

5’), and unidirectional overlap (3’ to 5’ or 5’ to 3’).

This scoring system was used to combine features so the linear weights can be learned with

respect to the data to maximize gene finding sensitivity. Optimization of all weights with

respect to gene sensitivity was accomplished using a tree-structured Parzen estimator [22] and

a covariance matrix adaptation evolution strategy [23]. Because ORFs do not need to be re-

scored by the TCN during parameter optimization, only the graph construction and longest

path finding steps must be iterated to maximize gene sensitivity. All optimization was carried

out using the Optuna framework [24] over the course of 9 hours on two 10 core Intel Xeon

E5-2680 v2 processors at 2.8GHz.

Filtering with MMseqs2

Our gene model is tuned to maximize sensitivity to known genes without regard to the total

number of predictions. In order to keep down the number of false positive predictions, users

may optionally run a post-processing step with MMseqs2 [25]. In this step, we run all predic-

tions against non-hypothetical protein coding gene sequence from a set of 177 diverse bacterial

genomes. All reference genomes in this step do not share a genus with any of the test set organ-

isms. Predictions are also run against the SWISS-PROT curated protein sequence database

[26]. Any Balrog prediction that maps to a known gene with an E-value less than 0.001 is

marked as a predicted gene. Finally, any gene below a set cutoff ORF score is discarded unless

it was found by the kmer filter or MMseqs2. This process allows low-scoring predictions to

be discarded as false positives while retaining many low-scoring genes that easily map to

Fig 2. Example ORF connection graph. A directed acyclic graph with nodes representing open reading frames (ORFs) and edges representing possible

connections. Each edge is weighted by the ORF score at the tip of the arrow minus any penalty for overlap. ORFs that overlap by too much are not

connected. In this example, the maximum score is achieved by following the bolded path connecting 0-2-3. ORF 1 is not included because it is mutually

exclusive with ORF 0 and results in a lower score due to overlap with ORF 2.

https://doi.org/10.1371/journal.pcbi.1008727.g002

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 8 / 13

https://doi.org/10.1371/journal.pcbi.1008727.g002
https://doi.org/10.1371/journal.pcbi.1008727


conserved known genes. All genomes used in this step can be found in S3 Appendix. Fig 3

shows a flow chart with a broad overview of all steps performed by Balrog.

Discussion

Balrog demonstrates that a data-driven approach to gene finding with minimal hand-tuned

heuristics can match or outperform current state-of-the-art gene finders. By training a single

gene model on nearly all available high-quality prokaryotic gene data, Balrog matches the sen-

sitivity of widely used gene finders while predicting fewer genes overall. Balrog also requires

no retraining or fine-tuning on any new genome.

Balrog predicted consistently fewer genes than both Prodigal and Glimmer3 on both the

bacterial and archaeal genome test sets. The sensitivity of all three gene finders was nearly

identical and likely well within the range of noise in our sample on average, though Prodigal

appears to achieve higher sensitivity than both Balrog and Glimmer3 on high-GC%

genomes. A stronger bias against short ORFs, similar to Prodigal’s penalty on ORFs shorter

than 250bp, may help Balrog perform better in genomes with particularly high GC content.

However, incorporating a bias against small genes may provide higher specificity at the cost

of sensitivity to small genes. Heuristics used by current gene finders, including default mini-

mum ORF lengths of 90 for Prodigal and 110 for Glimmer3, have led to a blind spot around

functionally important small prokaryotic proteins [27]. Balrog’s default minimum ORF

length is 60 nucleotides. Further work on finding small genes without significantly increas-

ing false positive predictions may help illuminate this underappreciated category of pro-

karyotic genome function.

Our test set deliberately represented a near-worst-case scenario for Balrog, where no organ-

ism from the same genus was used to train the model. On organisms closely related to those in

the large and diverse training set, we expect Balrog may perform better as a result of overfit-

ting. Overfitting of a gene model in this context is a complex issue. Simply memorizing and

aligning to all known genes can be thought of as the ultimate overfit model, yet that strategy

would likely prove effective at finding conserved bacterial genes. Finding prokaryotic genes is

not a standard machine learning task where memorization inevitably leads to higher generali-

zation error. Conserved amino-acid sequences in prokaryotic genes may represent function-

ally important protein motifs and memorization of short amino-acid sequences as indicators

of protein coding sequence may prove useful in finding genes even in novel organisms. Still,

we attempted to be as fair as possible to competing gene finders by removing all organisms

with a shared genus. We felt this should provide a conservative estimate of the true generaliza-

tion error of our model to relatively distant genomes.

An alternative approach to training a universal protein model could use protein clusters to

capture diversity in protein sequences with less redundancy than our whole-genome approach.

However, we wanted our final evaluation metric to be as fair as possible to all gene finders and

reflective of a real-world situation where a newly sequenced prokaryote would likely contain

many proteins from many different clusters.

Balrog in its current form is relatively slow. While tools like Prodigal and GeneMarkS-2

may analyze a genome in a matter of seconds, Balrog may take minutes per genome. This is

due to a wide range of factors including the complexity of the gene model and the optional

gene filtering step with MMseqs2. Optimization of run time represents a possible future

improvement for Balrog.

Balrog was designed primarily to find genes without much regard for identifying the exact

location of their translation initiation site (TIS). TIS identification is a challenging problem

with relatively little available ground-truth data. A reasonably accurate start site predictor

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 9 / 13

https://doi.org/10.1371/journal.pcbi.1008727


Fig 3. Balrog gene finding flow chart. A diagram showing all steps from genomic sequence in to gene predictions out. Green

circles represent input and output data. White squares represent intermediate data. Blue squares represent processes. Yellow

cylinders represent databases and pretrained models.

https://doi.org/10.1371/journal.pcbi.1008727.g003

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 10 / 13

https://doi.org/10.1371/journal.pcbi.1008727.g003
https://doi.org/10.1371/journal.pcbi.1008727


helps to guide a gene finder, so Balrog does include a small TIS model, but accurate start site

prediction was not a primary focus of this work. Further complicating the issue, nearly all

available start site locations are based solely on predictions of previous gene finders. Demon-

strating true improvement in start site prediction would require comparing Balrog to other

gene finders on a large ground-truth data set which is simply not currently available. Incorpo-

rating TIS models used by Prodigal or GeneMark may enable improvement in start site identi-

fication in the future.

Supporting information

S1 Appendix. Gene model testing organism information. Full organism names and acces-

sion numbers of all genomes used in the gene finder comparison in Table 1.

(CSV)

S2 Appendix. Gene model training organism information. Full organism names and acces-

sion numbers of all genomes used to train the gene model.

(CSV)

S3 Appendix. MMseqs2 and kmer filter organism information. Full organism names and

accession numbers of all genomes used in the protein kmer and MMseqs2 filtering steps.

(CSV)

Acknowledgments

We would like to thank Christopher Pockrandt for helping distribute the C++ version of Bal-

rog, Jennifer Lu and Alaina Shumate for helping brainstorm cool program names, everyone

on the Center for Computational Biology Slack channel for voting on said cool names, Martin

Steinegger for helpful conversations and creating MMseqs2, @genexa_ch for providing via

Twitter a small set of diverse GTDB genomes on which the kmer filter and MMseqs2 are run,

and everyone in the S. Salzberg and M. Pertea labs.

Author Contributions

Conceptualization: Markus J. Sommer, Steven L. Salzberg.

Data curation: Markus J. Sommer.

Formal analysis: Markus J. Sommer.

Funding acquisition: Steven L. Salzberg.

Investigation: Markus J. Sommer.

Methodology: Markus J. Sommer, Steven L. Salzberg.

Project administration: Steven L. Salzberg.

Software: Markus J. Sommer.

Supervision: Steven L. Salzberg.

Validation: Markus J. Sommer.

Writing – original draft: Markus J. Sommer.

Writing – review & editing: Markus J. Sommer, Steven L. Salzberg.

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 11 / 13

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008727.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008727.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008727.s003
https://doi.org/10.1371/journal.pcbi.1008727


References
1. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov

models. Nucleic Acids Res. 1998; 26(2):544–548. https://doi.org/10.1093/nar/26.2.544 PMID: 9421513

2. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA

with Glimmer. Bioinformatics. 2007; 23(6):673–679. https://doi.org/10.1093/bioinformatics/btm009

PMID: 17237039

3. Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998;

26(4):1107–1115. https://doi.org/10.1093/nar/26.4.1107 PMID: 9461475

4. Lomsadze A, Gemayel K, Tang S, Borodovsky M. Modeling leaderless transcription and atypical genes

results in more accurate gene prediction in prokaryotes. Genome Res. 2018; 28(7):1079–1089. https://

doi.org/10.1101/gr.230615.117 PMID: 29773659

5. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recogni-

tion and translation initiation site identification. BMC Bioinformatics. 2010; 11:119. https://doi.org/10.

1186/1471-2105-11-119 PMID: 20211023

6. McHardy AC, Kloetgen A. Finding Genes in Genome Sequence. Methods Mol Biol. 2017; 1525:271–

291. https://doi.org/10.1007/978-1-4939-6622-6_11 PMID: 27896725

7. Wang Q, Lei Y, Xu X, Wang G, Chen LL. Theoretical prediction and experimental verification of protein-

coding genes in plant pathogen genome Agrobacterium tumefaciens strain C58. PLoS One. 2012; 7(9):

e43176. https://doi.org/10.1371/journal.pone.0043176 PMID: 22984411

8. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic

genome annotation pipeline. Nucleic acids research. 2016; 44(14):6614–6624. https://doi.org/10.1093/

nar/gkw569 PMID: 27342282

9. Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome

analysis resource in 2020. Nucleic Acids Res. 2020; 48(D1):D570–D578. https://doi.org/10.1093/nar/

gkz1035 PMID: 31696235

10. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068–2069.

https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063

11. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, et al. RefSeq: an update on pro-

karyotic genome annotation and curation. Nucleic Acids Res. 2018; 46(D1):D851–D860. https://doi.org/

10.1093/nar/gkx1068 PMID: 29112715

12. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint

of the human gut microbiota. Nature. 2019; 568(7753):499–504. https://doi.org/10.1038/s41586-019-

0965-1 PMID: 30745586

13. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-

species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-

020-0501-8

14. Bai S, Zico Kolter J, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Net-

works for Sequence Modeling. 2018.

15. Stearns SC. Daniel Bernoulli (1738): evolution and economics under risk. Journal of biosciences. 2000;

25(3):221–228. https://doi.org/10.1007/BF02703928 PMID: 11022222

16. Satopää VA, Baron J, Foster DP, Mellers BA, Tetlock PE, Ungar LH. Combining multiple probability pre-

dictions using a simple logit model. International Journal of Forecasting. 2014; 30(2):344–356. https://

doi.org/10.1016/j.ijforecast.2013.09.009

17. Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. 2017.

18. Kiefer J, Wolfowitz J. Stochastic Estimation of the Maximum of a Regression Function. Ann Math Stat.

1952; 23(3):462–466. https://doi.org/10.1214/aoms/1177729392

19. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep

learning. In: International Conference on Machine Learning. jmlr.org; 2013. p. 1139–1147.

20. Dijkstra EW, Others. A note on two problems in connexion with graphs. Numer Math. 1959; 1(1):269–

271. https://doi.org/10.1007/BF01386390

21. Kelley JE, Walker MR. Critical-path planning and scheduling. In: Papers presented at the December 1-

3, 1959, eastern joint IRE-AIEE-ACM computer conference. IRE-AIEE-ACM’59 (Eastern). New York,

NY, USA: Association for Computing Machinery; 1959. p. 160–173.

22. Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for Hyper-Parameter Optimization. In: Shawe-

Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in Neural Information

Processing Systems 24. Curran Associates, Inc.; 2011. p. 2546–2554.

23. Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evol Com-

put. 2001; 9(2):159–195. https://doi.org/10.1162/106365601750190398 PMID: 11382355

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 12 / 13

https://doi.org/10.1093/nar/26.2.544
http://www.ncbi.nlm.nih.gov/pubmed/9421513
https://doi.org/10.1093/bioinformatics/btm009
http://www.ncbi.nlm.nih.gov/pubmed/17237039
https://doi.org/10.1093/nar/26.4.1107
http://www.ncbi.nlm.nih.gov/pubmed/9461475
https://doi.org/10.1101/gr.230615.117
https://doi.org/10.1101/gr.230615.117
http://www.ncbi.nlm.nih.gov/pubmed/29773659
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
http://www.ncbi.nlm.nih.gov/pubmed/20211023
https://doi.org/10.1007/978-1-4939-6622-6_11
http://www.ncbi.nlm.nih.gov/pubmed/27896725
https://doi.org/10.1371/journal.pone.0043176
http://www.ncbi.nlm.nih.gov/pubmed/22984411
https://doi.org/10.1093/nar/gkw569
https://doi.org/10.1093/nar/gkw569
http://www.ncbi.nlm.nih.gov/pubmed/27342282
https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1093/nar/gkz1035
http://www.ncbi.nlm.nih.gov/pubmed/31696235
https://doi.org/10.1093/bioinformatics/btu153
http://www.ncbi.nlm.nih.gov/pubmed/24642063
https://doi.org/10.1093/nar/gkx1068
https://doi.org/10.1093/nar/gkx1068
http://www.ncbi.nlm.nih.gov/pubmed/29112715
https://doi.org/10.1038/s41586-019-0965-1
https://doi.org/10.1038/s41586-019-0965-1
http://www.ncbi.nlm.nih.gov/pubmed/30745586
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1007/BF02703928
http://www.ncbi.nlm.nih.gov/pubmed/11022222
https://doi.org/10.1016/j.ijforecast.2013.09.009
https://doi.org/10.1016/j.ijforecast.2013.09.009
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1007/BF01386390
https://doi.org/10.1162/106365601750190398
http://www.ncbi.nlm.nih.gov/pubmed/11382355
https://doi.org/10.1371/journal.pcbi.1008727


24. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation Hyperparameter Optimiza-

tion Framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. KDD’19. New York, NY, USA: Association for Computing Machinery; 2019.

p. 2623–2631.

25. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of

massive data sets. Nat Biotechnol. 2017; 35(11):1026–1028. https://doi.org/10.1038/nbt.3988 PMID:

29035372

26. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT

protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research. 2003; 31(1):365–

370. https://doi.org/10.1093/nar/gkg095 PMID: 12520024

27. Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, et al. Large-Scale Analyses of

Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell. 2019. https://doi.org/10.1016/j.

cell.2019.07.016 PMID: 31402174

PLOS COMPUTATIONAL BIOLOGY Balrog finds microbial genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008727 February 26, 2021 13 / 13

https://doi.org/10.1038/nbt.3988
http://www.ncbi.nlm.nih.gov/pubmed/29035372
https://doi.org/10.1093/nar/gkg095
http://www.ncbi.nlm.nih.gov/pubmed/12520024
https://doi.org/10.1016/j.cell.2019.07.016
https://doi.org/10.1016/j.cell.2019.07.016
http://www.ncbi.nlm.nih.gov/pubmed/31402174
https://doi.org/10.1371/journal.pcbi.1008727

