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'is work was to explore the application value of gastrointestinal tumor markers based on gene feature selection model of
principal component analysis (PCA) algorithm and multicolor quantum dots (QDs) immunobiosensor in the detection of
gastrointestinal tumors. Based on the PCA method, the neighborhood rough set algorithm was introduced to improve it, and the
tumor gene feature selection model (OPCA) was established to analyze its classification accuracy and accuracy. Four kinds of
coupled biosensors were fabricated based on QDs, namely, 525 nm Cd Se/Zn S QDs-carbohydrate antigen 125 (QDs525-CA125
McAb), 605 nm Cd Se/Zn S QDs-cancer antigen 19-9 (QDs605-CA19-9 McAb), 645 nm Cd Se/Zn S QDs-anticancer embryonic
antigen (QDs 645-CEA McAb), and 565 nm Cd Se/Zn S QDs-anti-alpha-fetoprotein (QDs565-AFP McAb). 'e quantum dot-
antibody conjugates were identified and quantified by fluorescence spectroscopy and ultraviolet absorption spectroscopy. 'e
results showed that the classification precision of OPCAmodel in colon tumor and gastric cancer datasets was 99.52% and 99.03%,
respectively, and the classification accuracy was 94.86% and 94.2%, respectively, which were significantly higher than those of
other algorithms. 'e fluorescence values of AFP McAb, CEA McAb, CA19-9 McAb, and CA125 McAb reached the maximum
when the conjugation concentrations were 25 µg/mL, 20 µg/mL, 30 µg/mL, and 30 µg/m, respectively. 'e highest recovery rate of
AFP was 98.51%, and its fluorescence intensity was 35.78± 2.99, which was significantly higher than that of other antigens
(P< 0.001). In summary, the OPCA model based on PCA algorithm can obtain fewer feature gene sets and improve the accuracy
of sample classification. Intelligent immunobiosensors based on machine learning algorithms and QDs have potential application
value in gastrointestinal gene feature selection and tumor marker detection, which provides a new idea for clinical diagnosis of
gastrointestinal tumors.

1. Introduction

Tumors are caused by abnormal tissue growth caused by
genetic mutations and other factors, and malignant tumors
are often referred to as cancers. 'ey invade and destroy
surrounding tissue, can lead to metastasis and abnormal
growth, and, if left untreated, can pose a huge threat to
human health. 'e accurate and reliable classification of
tumors is the key to the successful diagnosis and treatment
of cancer [1]. In recent years, with the successful application
of feature selection in bioinformatics, especially in the face of

many high-dimensional data classification tasks, it has
shown ideal performance [2, 3]. However, due to the
complexity and variability of gene expression profile datasets
and “dimension disaster” and other problems, tumor
characteristic gene selection algorithms generally have
shortcomings such as high computational complexity and
low classification accuracy [4]. Principal component analysis
(PCA) is an optimal orthogonal transformation based on the
statistical properties of the target. It is the best transfor-
mation because it has important good properties. 'e new
components generated after the transformation are
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orthogonal or irrelevant, and some new components rep-
resent the minimum mean square error of the original
vector. After transformation, the vector becomes more
determinate, and the energy is more concentrated, which
makes it very important in feature extraction and data
compression. Some studies have pointed out that PCA
simply reduces the spatial dimension in the process of
feature gene selection without considering the correlation
between features and categories, which is a blind feature
selection method [5] and therefore needs to be further
optimized.

Gastrointestinal tumors mainly include esophageal
cancer, gastric cancer, and colorectal cancer and are one of
the common malignant tumors in humans. 'e global in-
cidence of gastrointestinal tumors accounts for approxi-
mately 20% of all tumors [6], of which 35% of patients with
malignant tumors die because of intestinal tumors, and the
prognosis is poor [7]. In China, the proportion of patients
who died of gastrointestinal tumors ranks among the top five
in malignant tumors [8]. At present, the diagnosis of gas-
trointestinal tumors mainly uses imaging methods such as
endoscopy, air-barium double contrast, computed tomog-
raphy (CT), and magnetic resonance imaging (MRI). 'e
pathological diagnosis result is used as the gold standard, but
there are certain limitations in the diagnosis of early latent
cancer under imaging and pathology [9]. With the con-
tinuous research of molecular biology and tumor molecular
mechanisms in recent years, tumor marker detection has
been used as an effective means of gastrointestinal cancer
diagnosis because of its low cost, noninvasiveness, and
simple operation [10]. Tumor marker detection can effec-
tively identify benign and malignant diseases and tumor
staging and can also detect tumor recurrence and metastasis
[11].

Carcinoembryonic antigen (CEA) is a protein complex
rich in polysaccharides. Current research results have found
that, under normal circumstances, CEA in the body can be
metabolized through the gastrointestinal tract. Once a
gastrointestinal tumor occurs, CEA metabolism in the body
will be abnormal, which will lead to a significant increase in
the CEA content in the body [12]. At present, CEA has been
used as a tumor marker for a variety of cancers, such as
colorectal cancer, gastric cancer, lung cancer, and breast
cancer, and it plays an important role in early tumor
screening. Carbohydrate antigen 125 (CA125) is a group of
high-molecular-weight glycoproteins mainly found in the
epithelial cells of the digestive tract, the endothelium of the
pleural oviduct, and the endocervical lining [13]. At present,
CA125 is mainly used in the diagnosis and screening of
ovarian cancer. In recent years, a large number of research
results have pointed out that the levels of CA125 in cancer
patients, such as those with gastric cancer, colorectal cancer,
and breast cancer, have increased to varying degrees [14].
Cancer antigen 19-9 (CA19-9) is a monosialic acid gan-
glioside. A large number of studies have shown that the
levels of CA19-9 in patients with adenocarcinoma, gastric
cancer, and colorectal cancer are significantly increased [15].
At present, CA19-9 is mainly used clinically in the auxiliary
diagnosis and early screening of pancreatic cancer. Alpha-

fetoprotein (AFP) is a glycoprotein whose content is ex-
tremely low in normal bodies, but its content is significantly
higher in cancerous cells. It is currently mainly used in the
auxiliary diagnosis of liver cancer. Studies have pointed out
that the levels of AFP in the serum of cancer patients, such as
gastric cancer, lung cancer, and colorectal cancer patients,
are also significantly increased [16]. Positive rates of tumor
markers CEA, CA125, CA19-9, and AFP in gastrointestinal
tumors have been reported. Studies have pointed out that the
positive rate of CEA in gastrointestinal cancer serum is
approximately 40% [17], the detection rate of CA125
is approximately 15% [18], the positive rate of CA19-9 is
approximately 40% [19], and the positive rate of AFP is
approximately 10% [20]. 'e detection rates of different
tumor markers are different, and the sensitivity and speci-
ficity of a single tumor marker are not high. 'erefore, the
combined determination of multiple markers should be used
to increase the detection rate of tumors.

At present, the clinical detection methods of tumor
markers mainly include ELISA, chemiluminescence im-
munoassays, biochip methods, and microarray methods
[21]. However, these detection methods are costly, time-
consuming, and labor-intensive. Lateral flow immunoassay
(LFIA) is a biosensor made from materials such as cellulose
or nitrocellulose. Because of its good stability, high detection
sensitivity, and fast detection speed, it is widely used in many
fields, such as food safety, water quality detection, and
medical diagnosis [22, 23]. Quantum dots (Ds) are semi-
conductor nanoparticles with a particle size between 1 and
10 nm [24]. QDs have good biocompatibility and lumi-
nescence properties and are widely used in the detection of
microorganisms, proteins, and nucleic acids [25]. Re-
searchers have used QDs in immunochromatographic
techniques and applied them in drug, environmental, food,
and medical testing, and they found that the sensitivity of
QDs to be tested is significantly improved [26]. Multiple
QDs can be excited at the same time, and the emission
spectra do not easily overlap [27], which lays a theoretical
foundation for the combined determination of multiple
markers.

In summary, PCA algorithm has significant advantages
in the process of data feature extraction, but it still has
limitations in gene feature extraction, which needs to be
further optimized. 'erefore, based on PCA calculation, the
gene feature selection model was established by optimizing
it, and the classification accuracy and accuracy of OPCA
model based on PCA algorithm in gene feature selection
were discussed, so as to provide reference for gene feature
selection method selection. In addition, the combined de-
tection of multiple markers is of great significance for tumor
monitoring, and QDs have the advantage of being harnessed
in immunochromatography. In this study, based on the
needs of tumor detection and the advantages of QDs, a
multicolor QD-labeled biofilm sensor was developed to
realize the quantitative detection of multiple tumor markers
and was applied to the detection of GITMs to explore the
application value of QD-based multicolor biosensing films
in the detection of GITMs and provide a new diagnostic
method for the monitoring of gastrointestinal tumors.
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2. Experimental Details

2.1. Establishment of a Tumor Gene Feature Selection Model
Based on Principal Component Analysis (PCA). A1, A2, . . .,
Ap are set as p-dimensional random variables, and the
covariance matrix is expressed as follows:

􏽘 � σij􏼐 􏼑
pxp

� E (A − E(X))(A − E(X))
T

􏽨 􏽩. (1)

A new variable B can be obtained by orthogonal
transformation of variable A, and its expression is as follows:

Yp � l
T
pA � lp1A1 + lp2A2 + · · · + lppAp. (2)

'e principal component analysis covariance matrix is
expressed as follows:

Cov Yi, Yj􏼐 􏼑 � Cov l
T
i A, l

T
j A􏼐 􏼑 � l

T
i A

l
j, j � 1, 2, · · · , p, (3)

where li represents P constant vectors, i � 1, 2, · · · , p.
'e PCA feature selection method has the disadvantage

of weak gene discrimination ability in the process of feature
gene selection, and its gene microarray contains many re-
dundancies. To overcome the above shortcomings, a
neighborhood rough set algorithm was introduced to op-
timize it, and a tumor gene feature selection model was
established, which was named OPCA.

A neighborhood rough set is an iterative process in
neighborhood calculation with high computational time
complexity [28]. It is assumed that a gene dataset contains Z
samples andm genes, and the reduction time consumption is
P. To reduce the iterative operation, the OPCA model used
principal component analysis dimensionality reduction to
construct the low-dimensional feature space and then used a
multineighborhood rough algorithm to screen out the better
feature gene set. For a given n-dimensional feature space Q,
its output covariance matrix H is expressed as shown in (3),
and M represents the sample size of the input space.

H �
1

M
∙ 􏽘

M

k�1
xkx

T
k . (4)

If D is the N-order matrix and β is a real number, then
there is the following equation:

DX � βX, (5)

where β is called the eigenvalue ofD and X is the eigenvector
of D.

For a given gene dataset G, the radius parameter and the
lower limit parameter of its attribute domain were calcu-
lated. 'e PCA algorithm was used to calculate the con-
tribution rate of the gene dataset, and the gene dataset with a
contribution rate greater than 1% was selected to initialize
the reduced dataset and calculate the attribute domain value.
'e feature set was used to represent the gene attribute
column in the gene dataset whose contribution rate was
more than 1%.'en, the positive domain of the attribute and
its importance degree were calculated, the positive domain
set of the attribute was obtained, and the importance degree
was judged to be greater than the lower limit parameter.

According to the judgment result, the better characteristic
gene set was finally output. 'e characteristic gene selection
process of OPCA based on PCA is shown in Figure 1.

2.2. Validation of the Tumor Gene Feature Selection Model
Based on PCA. Colon tumor (https://featureselection.asu.
edu/datasets.php) and gastric cancer microarray dataset
GSE54129 were selected to verify the OPCA gene feature
selection model. 'ere were 2,000 colon tumor dataset
features. 'e positive and negative sample sizes were 22 and
40, respectively, and the gastric cancer microarray dataset
GSE54129 contained 3894 features and 21 normal and 111
abnormal sample sizes, respectively. 'e experimental en-
vironment was CPU: AMD AthlonTM II X4 645 processor;
memory: 4 G; system: Windows 7; experimental software:
MATLAB-R2010A and Weka-3.9.0. 'e OPCA model
neighborhood parameters ranged from 0 to 2, and the
importance lower limit was 0.01. 'e number of charac-
teristic genes in both the colon tumor and gastric cancer
datasets was 6, and the thresholds were 0.77 and 0.19, re-
spectively. Under the same conditions, the number of
characteristic genes in the OPCA gene feature selection
algorithm established in this study was compared with the
improved genetic algorithm (IGA) [29], PCA [30], and
neighborhood rough set (NRS) [2]. 'e classification pre-
cision and classification accuracy were compared and
analyzed.

2.3. Selection of Multicolor QDs. After chemical modifica-
tion, water-soluble QDs can be covalently combined with
antibodies (Ab) to form stable QD-Ab conjugates. One
microliter of 525 nm, 545 nm, 565 nm, 585 nm, 605 nm,
625 nm, and 645 nm Cd Se/ZnS QDs (Ocean Nanotech,
USA) was dropped onto a nitrocellulose (NC) membrane.
After drying, the emission spectrum was measured at
365 nm using a spectrophotometer (Shimadzu, Japan).

2.4. Preparation of QD-Ab Antibody Conjugate. After 35 μL
of 525 nm, 565 nm, 605 nm, and 645 nm Cd Se/ZnS QDs
with a concentration of 8mol/L was added to different
centrifuge tubes, certain amounts of 1-(3-dimethylamino-
propyl)-3-ethylcarbodiimide hydrochloride 1-(3-(ethyl-
iminomethylideneamino)-N, N-dimethylpropan-1-amine,
hydrochloride, EDC) (American Sigma-Aldrich company)
and N-hydroxysulfosuccinyl Imine (N-Hydrox-
ysulfosuccinimide, NHS) were added to mix well. Phosphate
buffer with a concentration of 0.01mol/L was added to make
the final concentrations of EDC and NHS in solutions of
0.4mg/mL and 0.2mg/mL, respectively, and shaken for
30min at room temperature for activation. AFP McAb was
added to the activated 565 nm Cd Se/ZnS QDs, CEA McAb
was added to the activated 645 nm Cd Se/ZnS QDs, and the
reaction was carried out at room temperature for 2 hours.
After adding 500 μL of 0.5% bull serum albumin (BSA) to
react at room temperature for 1 hour, the mixture was
centrifuged at 12,000 rpm/min for 30 minutes to collect the
precipitate, which was washed with 0.01M phosphate buffer
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3 times. 'e pellet was resuspended in 0.01M phosphate
buffer containing 1% BSA, 0.01% NaN3, and 0.02% Tween-
20 to obtain the QD-Ab antibody conjugate. 'e specific
preparation process of the QD-Ab antibody conjugate is
shown in Figure 2.

2.5. Exploration and Identification of Optimal Preparation
Conditions for QD-Ab Antibody Conjugates. After activa-
tion, 10 μL each of 565 nm and 645 nm Cd Se/ZnS QDs was
added to a certain amount of phosphate buffer to adjust the
pH to 5.0, 5.5, 6.0, 6.5, 7.0, 7.4, 8.0, 8.5, and 9.0. 'en, 20 μL
of AFP McAb and CEA McAb at a concentration of 2mg/
mL was added under different pH systems to react for 2 h at
room temperature. 'e fluorescence intensity of the QD-Ab
antibody conjugate prepared under different pH conditions
was measured by a fluorescence spectrophotometer.
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Figure 1: Flow chart of characteristic gene selection based on OPCA.
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Figure 2: Flow chart of the preparation of the QD-Ab antibody
conjugate.
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After activation, 10 μL of 565 nm and 645 nm Cd Se/ZnS
QDs was taken and added to 0, 5, 10, 15, 20, 25, 30, and 35 g
of AFP McAb and CEA McAb to adjust the pH of the re-
action system to the optimal conditions and then react for 2
hours at room temperature. A fluorescence spectropho-
tometer was adopted to detect the fluorescence spectrum of
each system.

After activation, 565 nm and 645 nm Cd Se/ZnS QDs
were mixed with the optimal amounts of AFP McAb and
CEA McAb, respectively. At the optimal pH, the solution
was allowed to react at room temperature for 30min, 60min,
90min, 120min, 150min, and 180min. 'e reaction
products were collected in a fluorescence spectrophotometer
to detect the fluorescence intensity of the QD-Ab antibody
conjugate under different reaction times.

Fluorescence spectroscopy and UV absorption spec-
troscopy were used to analyze the changes in light ab-
sorption before and after the coupling of Cd Se/ZnS QDs to
identify whether the QD-Ab antibody conjugate was suc-
cessfully prepared.

2.6. Preparation of QDBiosensors. 'e glass fiber membrane
was used as the binding pad, cut into a size of
0.4 cm× 0.7 cm, and immersed in 0.01M phosphate buffer
containing 2% BSA, 1% sucrose, and 0.1% Tween-20 (pH
7.4). After it was dried at 37°C, 10 μL QDs-Ab-AFP McAb
coupling objects, QDs-Ab-CEA McAb coupling objects,
QDs-Ab-CA125 McAb coupling objects, and QDs-Ab-
CA19-9 McAb coupling objects were added dropwise and
dried at 37°C in vacuum. 'e NC membrane was cut into a
size of 0.4 cm× 2.4 cm, and the AFP McAb was diluted with
0.01M phosphate buffer (pH 7.4) containing 1% sucrose to a
final concentration of 1mg/mL. 'e 2 μL/cm was deter-
mined as the T band, and 0.5mg/mL goat anti-mouse IgG
was used as band C and dried at 4°C for use. 'e sample pad,
bonding pad, NC membrane, and absorbent board were
laminated in sequence and pasted onto a polyvinyl chloride
(PVC) base plate. After drying at 4°C, four different
quantum dot biosensors were obtained.

2.7. Quantitative Detection and Verification of the QD
Biosensor. AFP and CEA were diluted with 0.01M phos-
phate buffered saline (PBS) (pH� 7.4) to 0.25, 0.5, 1, 5, 10,
40, 60, 80, 100, and 120 ng/mL, respectively. 'e prepared
QD biosensor was used to detect the fluorescence values of
AFP and CEA and plotted as a curve. At the same time, the
fluorescence of the QD biosensor at different concentrations
was observed under a microscope in the dark.

AFP was diluted with 0.01M PBS (pH� 7.4) to final
concentrations of 70 ng/mL, 30 ng/mL, and 3 ng/mL. After
80 μL of diluted AFP, the prepared QD biosensor was
adopted to detect the fluorescence value, and the recovery
rate of sample detection was calculated according to the
standard curve.

Based on the methods introduced by Shariatifar et al.
[31], cross-reaction experiments were performed with BSA,
CA125, CA-19-9, CEA, and AFP to evaluate whether the test

results between AFP and BSA, CA125, CA-19-9, and CEA
could affect each other.

2.8. QDs Biosensor to Detect CEA, CA125, CA19-9, and AFP.
For simultaneous detection of multiple tumor markers,
QDs-Ab-CEA McAb, QDs-Ab-CA125 McAb, QDs-Ab-
CA19-9McAb, and QDs-Ab-AFPMcAb should be prepared
according to the abovementioned QDs-Ab antibody con-
jugates. 'en, the corresponding antibody was added during
the coating process of the detection tape and the quality
control tape. For other operation steps, refer to the above
steps.

2.9. Statistical Methods. 'e test data were processed using
SPSS 19.0 statistical software, and the data were analyzed by
one-way analysis of variance. 'e measurement data were
expressed as the mean± standard deviation (x ± s), and the
count data were expressed as a percentage (%), using the χ2
test. P< 0.05 indicated that the difference was statistically
significant.

3. Experimental Results and Analysis

3.1. Comparison of Tumor Gene Feature Selection Results with
Different Gene Selection Algorithms. Under the same con-
ditions, the number of feature genes, classification pre-
cision, and classification accuracy of the OPCA gene
feature selection algorithm were compared with those of
the IGA algorithm, PCA algorithm, and neighborhood
rough set (NRS) algorithm. In Figure 3, the number of
selected characteristic genes by the OPCA gene feature
selection algorithm in both the colon tumor and gastric
carcinoma datasets was 6, which was significantly lower
than that of the other algorithms. 'e classification pre-
cision of OPCA in the colon tumor and gastric carcinoma
datasets was 99.52% and 99.03%, and the classification
accuracy was 94.86% and 94.2%, respectively. 'e OPCA
gene feature selection algorithm selected the fewest feature
genes, and its classification precision and accuracy were
higher than those of the current algorithm. 'erefore, the
dataset of the original gene expression profile contained
much redundant information. In the process of feature
gene selection, the OPCA gene feature selection algorithm
effectively removed redundant noise, improved the clas-
sification ability of the feature gene subset, and extracted
fewer feature gene subsets. 'e reason was that PCA re-
duced the dimension of the feature space and the com-
plexity of the neighborhood calculation. Meanwhile, the
multineighborhood rough set algorithm calculated the
neighborhood values of each gene through Euclidean
distance, constructed neighborhood sets to calculate the
approximation, and extracted the subset of feature genes
based on heuristic search. 'e performance of gene feature
extraction was improved by combining the two algo-
rithms. 'e results showed that the OPCA gene feature
selection algorithm was feasible and effective in the process
of tumor gene feature extraction.
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3.2. 
e Fluorescence Spectrum Detection Results of QDs.
Water-soluble QDs have univariate excitation, and multiple
emission characteristics are the basis for the analysis of
multiple markers [32]. 'e selection principle of multicolor
QDs is that the emission spectra of multiple QDs cannot
overlap [33]. Spectral analysis of QDs in the range of
525∼645 nm (Figure 4) showed that there was obvious
spectral overlap between QDs in the adjacent wavelength
range. 'erefore, wavelengths with a wavelength interval of
40 nm were selected for the experiment in this study; that is,
525 nm, 565 nm, 605 nm, and 645 nm QDs were selected as
fluorescent materials for subsequent experiments. After
excitation by 365 nm excitation light, nonoverlapping
525 nm, 565 nm, 605 nm, and 645 nm QDs were obtained,
indicating that four tumor markers can be quantitatively
detected simultaneously, which improved detection effi-
ciency and reduced detection costs.

3.3. Coupling Conditions Analysis of QDs and Antibody.
When QDs are adopted to label antibodies, the optimal
conditions of the reaction systemmust be analyzed to ensure
the effective activity of the antibodies [34]. 'e fluorescence
intensity of QDs and antibody coupling were analyzed under
different pH conditions (Figure 5). As the pH value in-
creased, the fluorescence intensity of QDs coupled with
antibodies first increased and then decreased, and the op-
timal pH values for coupling of different QDs with anti-
bodies had certain differences. 'e optimal coupling pH of
AFP McAb was 7.5, the optimal coupling pH values of CEA
McAb and CA19-9 McAb were both 7.0, and the optimal
coupling pH of CA125 McAb was 6.5.

'e influence of different antibody concentrations on the
fluorescence intensity of the conjugate was analyzed, and the
results are illustrated in Figure 6. As the antibody con-
centration in the reaction system increased, the fluorescence
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intensity of the conjugate first increased and then stabilized.
'e fluorescence values of AFP McAb, CEA McAb, CA19-9
McAb, and CA125 McAb reached maximum values when
the coupling concentrations were 25 μg/mL, 20 μg/mL,
30 μg/mL, and 30 μg/mL, respectively. Even if the antibody
concentration is increased beyond the maximum value, the
fluorescence value of the conjugate will no longer increase.
'e amount of antibody added has a significant impact on
the performance of the conjugate and the entire biosensor
[35]. If the amount of antibody in the reaction system is
insufficient, it will cause a large number of unreacted sites in
the conjugate, and nonspecific binding is likely to occur

during the sample detection process, which will eventually
lead to a false positive test result. If the amount of antibody
in the reaction system is too high, the remaining antibodies
that are not bound by the conjugate will reduce the sensi-
tivity of sample detection when testing the sample [36].

'e fluorescence intensity of the coupling substance was
detected under different reaction times, as shown in Fig-
ure 7. Different antibodies reacted with the coupling sub-
stance, and the fluorescence intensity of the antibody
coupling substance first increased and then stabilized as the
reaction time increased. When the reaction time of AFP
McAb and CEA McAb was 90min, the fluorescence
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intensity reached the maximum, and when the reaction time
of CA19-9 McAb and CA125 McAb was 120min, the
fluorescence intensity reached the maximum.'emaximum
fluorescence intensity indicates that the reaction has reached
saturation at this time. 'e reaction time has a significant
effect on the reaction of the antibody conjugate. If the re-
action time is too short, the reaction between QDs and the
antibody conjugate will be insufficient, resulting in false
positive results [37]; if the reaction time is too long, the
coupling efficiency will decrease.

3.4. Identification of QD-Antibody Conjugates. 'e suc-
cessful combination of QDs and antibody conjugates plays
an important role in the performance of QD biosensing

membranes [38]. 'e fluorescence spectra of different
antibody conjugates were analyzed before and after
coupling with QDs, and the results are given in Figure 8.
'e fluorescence intensities of QDs525-CA125, QDs605-
CA19-9, QDs645-CEA, and QDs565-AFP after binding
antibodies were more enhanced than those of unconju-
gated QDs. It may be that the surface defect of QDs is
modified after the antibody conjugate is combined with
QDs, which increases the prefluorescence intensity of the
QD conjugate. Moreover, there is no fluorescence peak
shift after the QDs at different wavelengths are combined
with the antibody conjugate [39], indicating that the QDs
only bind to the antibody conjugate during the coupling
process, and there is no polymerization reaction between
the QDs.
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Figure 9 shows the UV absorption spectra of different
antibody conjugates before and after coupling with QDs.'e
UV absorption values of QDs525-CA125, QDs605-CA19-9,
QDs645-CEA, and QDs565-AFP after binding to the anti-
body were all higher than those of unconjugated QDs, and
the maximum absorption wavelength did not shift, indi-
cating that the antibody conjugate and QDs were combined
successfully.

3.5. Analysis of AFP Quantitative Detection Results.
Under the optimal reaction conditions, the method
established in this study was used to detect different
concentrations of AFP standards. During the detection of
AFP standards, the fluorescence intensity in the

fluorescence image increased with increasing AFP con-
centration (Figure 10). 'e QD biosensing membrane was
placed in a fluorescence reader to detect the fluorescence
value of the T-band and C-band, and the AFP standard
curve for multicolor QD biosensor detection was analyzed
(Figure 11). With increasing AFP concentration, the T/C
value of the QD biosensing film increased. 'e linear fitting
equation of the T/C value and AFP concentration was
y � 0.448x− 6.1923 (R2 � 0.9335), showing a good linear
relationship.

Biosensors used in clinical applications need to have
repeatable and reliable test results [40]. 'e actual con-
centration of AFP, multicolor QD biosensor detection
concentration, and recovery rate were further analyzed, as
illustrated in Figure 10.'e actual concentration of AFP was
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Figure 8: Fluorescence spectrum of QDs. (a) Fluorescence spectra of QDs525 and antibody conjugate before and after reaction;
(b) fluorescence spectra of QDs565 and antibody conjugate before and after reaction; (c) fluorescence spectra of QDs605-CA19-9 and antibody
conjugate before and after reaction; (d) fluorescence spectra before and after the reaction between QDs645-CEA and antibody conjugate.
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not much different from the concentration of AFP detected
by the multicolor QD biosensor. 'e recovery rate of AFP
was up to 98.51%. 'e closer the sample recovery rate is to
100% and the closer the detection concentration is to the
actual concentration, the higher the reliability of the bio-
sensor is [41], indicating that the multicolor QD biosensor
has higher repeatability and reliability.

To verify the specificity of the immunemethod of the QD
biosensor for AFP detection, the QD biosensor was adopted
to detect and analyze BSA, CA125, CA-19-9, CEA, and AFP
nonspecific antigens (Figure 12(b)). 'e fluorescence in-
tensity of AFP was 35.78± 2.99, which was significantly
higher than those of the other antigens (P< 0.001). Without
labeled AFP, even if the concentration of nonspecific antigen
is high, a strong fluorescence value cannot be detected. 'is
shows that when there is no labeled antigen, nonspecific

antigens will not have an immune response, indicating that
this method has significant specificity for detecting AFP.

3.6. 
e Results of Quantitative Detection of GITM Using the
Multicolor QD Biosensor. Cross-reactivity is the main pa-
rameter for the specific evaluation of immunoassay methods
[42]. For the detection of multiple tumor markers, it is
necessary to analyze whether there is a cross-reaction be-
tweenmultiple tumormarkers and the biosensor in the same
space [33]. In this study, the results of quantitative detection
of GITMs using a multicolor QD biosensor were analyzed,
and the results are shown in Figure 13. Four independent
proteins CA125, CA-19-9, CEA, and AFP were added to the
multicolor QD biosensor, and the multicolor QD biosensor
diluent was used as a blank control. 'en, the detection of

QDs525
QDs525-CA125

0

0.2

0.4

0.6

0.8

1
U

ltr
av

io
le

t a
bs

or
pt

io
n 

va
lu

e

470 490 510 530 550450
Wavelength (nm)

(a)

QDs565
QDs565-AFP

0

0.2

0.4

0.6

0.8

U
ltr

av
io

le
t a

bs
or

pt
io

n 
va

lu
e

500 550450
Wavelength (nm)

(b)

QDs605
QDs605-CA19-9

570 590 610 630 650550
Wavelength (nm)

0

0.2

0.4

0.6

0.8

U
ltr

av
io

le
t a

bs
or

pt
io

n 
va

lu
e

(c)

QDs645
QDs645-CEA

0

0.2

0.4

0.6

0.8

1

U
ltr

av
io

le
t a

bs
or

pt
io

n 
va

lu
e

600 650 700550
Wavelength (nm)

(d)

Figure 9: UV absorption spectrum of QDs. (a) UV absorption spectrum before and after the reaction of QDs525 with antibody conjugate;
(b) UV absorption spectrum before and after reaction of QDs565 with antibody conjugate; (c) UV absorption spectrum before and after
reaction of QDs605-CA19-9 with antibody conjugate; (d) UV absorption spectra before and after the reaction between QDs645-CEA and
the antibody conjugate.
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Figure 10: AFP fluorescence image detected by QDs sensor.
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Figure 11: AFP standard curve based on the multicolor QD biosensor.
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Figure 12: Analysis of AFP standard test results. (a) Recovery test result of AFP standard product; (b) detection specificity of AFP.
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the four tumor markers showed good specificity, and there
was no interference between them.

'e results of single index detection and simultaneous
multi-indicator detection were compared and analyzed, and

the results are shown in Figure 14. Under different methods,
there was no significant difference in the fluorescence in-
tensity of the four GITMs (P> 0.05), indicating that the
specificity of the mixed detection of the four test samples was
better.

'e fluorescence intensity of the multicolor QD bio-
sensor simultaneously detecting the tumor markers CA125,
CA-19-9, CEA, and AFP was analyzed at different con-
centrations (Figure 15). With increasing concentrations of
the tumor markers CA125, CA-19-9, CEA, and AFP, the
fluorescence value of the multicolor QD biosensor also
showed an upward trend. 'is is because as the concen-
tration of tumor markers CA125, CA-19-9, CEA, and AFP
increases, more immune complexes Ds525-CA125, QDs605-
CA19-9, QDs645-CEA, and QDs565-AFP are formed, and
the more multicolor QD biosensor T had a higher fluo-
rescence value.

'e detection curve was drawn with the concentration of
GITMs CA125, CA-19-9, CEA, and AFP as the abscissa and
the corresponding T/C value as the ordinate. 'e linear
equation and the corresponding detection linear region are
shown in Table 1. When the four tumor markers CA125,
CA-19-9, CEA, and AFP were detected by the multiquantum
dot biosensor multi-index synchronous detection method,
the corresponding tumor marker concentration ranges were
2.0–51.5 ng/mL, 4.5–40.0 ng/mL, 2.0–29.5 ng/mL, and
8.5–36.5 ng/mL, respectively. 'e confidence detection
range was wide and could meet the clinical application.
When the concentration was too low (<0.9 ng/mL), the
detection sensitivity could also decrease [43].

4. Conclusion

Based on the PCA method, the neighborhood rough
set algorithm was introduced to improve it, and the tumor
gene feature selection model (OPCA) was established.
Furthermore, an immunobiosensor based on multicolor
QDs was prepared and applied to the quantitative detection
of potential gastrointestinal tumor markers. 'e results
showed that the OPCA model can obtain fewer feature gene
sets and improve the accuracy of sample classification. In-
telligent immunobiosensors based on OPCA model and
multicolor QDs had high specificity in the detection of
gastrointestinal tumor markers. However, there were still
some shortcomings in this study. In this study, only standard
samples were tested, not clinical samples. In the future work,
clinical samples of patients with gastrointestinal cancer will
be further collected, and the intelligent immunobiosensor
prepared in this study will be used to detect them, so as to
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Figure 13: Quantitative detection of GITM-specific analysis using
a multicolor QD biosensor.
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Figure 14: Analysis of the results of single index detection and
multi-indicator simultaneous detection.
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Figure 15: 'e fluorescence spectra of CA125, CA-19-9, CEA, and
AFP simultaneously detected by the multicolor QD biosensor.

Table 1: Linear area table of simultaneous multi-indicator de-
tection using the multiple QD biosensor.

Tumor
markers Standard curve line Linear working

area (ng/mL) R2

CA125 y� 0.2248x− 3.7298 2.0∼51.5 0.9884
CA-19-9 y� 0.1658x+ 2.4854 4.5∼40.0 0.9756
CEA y� 0.1262x− 3.3665 2.0∼29.5 0.9637
AFP y� 0.1135x+ 6.9125 8.5∼36.5 0.9601
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verify the clinical application value of the intelligent
immunobiosensor based on multicolor QDs. In conclusion,
the intelligent immunobiosensor based on machine learning
algorithm and QDs has potential application value in gas-
trointestinal gene feature selection and tumor marker de-
tection, which provides a new idea for clinical diagnosis of
gastrointestinal tumors.
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