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1. Introduction

High-throughput techniques in genomics, proteomics, and
related biological fields generate large amounts of data that
enable researchers to examine biological systems from a
global perspective. Unfortunately, however, the sheer mass
of information available is overwhelming, and data such as
gene expression profiles from DNA microarray analysis can
be difficult to understand fully even for domain experts.
Additionally, performing these experiments in the lab can be
expensive with respect to both time and money.

In recent years, biological literature repositories have
become an alternative data source to examine phenotype.
Many of the online literature sources are manually curated,
so the annotations assigned to articles are subjectively
assigned in an imperfect and error-prone manner. Given
the time required to read and classify an article, automated
methods may help increase the annotation rate as well as
improve existing annotations.

A recently developed tool that may help improve anno-
tation as well as identify functional groups of genes is the
Semantic Gene Organizer (SGO). SGO is a software en-
vironment based upon latent semantic indexing (LSI) that

enables researchers to view groups of genes in a global
context as a hierarchical tree or dendrogram [1]. The low-
rank approximation provided by LSI (for the original term-
to-document associations) exposes latent relationships so
that the resulting hierarchical tree is simply a visualization
of those relationships that are reproducible and easily inter-
preted by biologists. Homayouni et al. [2] have shown that
SGO can identify groups of related genes more accurately
than term co-occurrence methods. LSI, however, is based
upon the singular value decomposition (SVD) [3], and since
the input data for SGO is a nonnegative matrix of weighted
term frequencies, the negative values prevalent in the basis
vectors of the SVD are not easily interpreted.

On the other hand, the decomposition produced by the
recently popular nonnegative matrix factorization (NMF)
can be readily interpreted. Paatero and Tapper [4] were
among the first researchers to investigate this factorization,
and Lee and Seung [5] demonstrated its use for both
text mining and image analysis. NMF is generated by an
iterative algorithm that preserves the nonnegativity of the
original data; the factorization yields a low-rank, parts-
based representation of the data. In effect, common themes
present in the data can be identified simply by inspecting
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the factor matrices. Depending on the interpretation, the
factorization can induce both clustering and classification.
If NMF can accurately model the input data, it can be used
to both classify data and perform pattern recognition tasks
[6]. Within the context of SGO, this means that the groups
of genes presented in the hierarchical trees can be assigned
labels that identify common attributes of protein function.

The interpretability of NMF, however, comes at a price.
Namely, convergence and stability are not guaranteed, and
many variations have been proposed [5], requiring different
parameter choices. The goals of this study are (1) to provide
a qualitative assessment of the NMF and its various parame-
ters, particularly as they apply to the biomedical context, (2)
to provide an automated way to classify biomedical data, and
(3) to provide a method for evaluating labeled data assuming
a static input tree. As a byproduct, a method for generating
“gold standard” trees is proposed.

2. Methods

As outlined in [7], hierarchical trees can be constructed
for a given group of genes. Once those trees are formed,
techniques that label the interior nodes of those trees can be
examined.

2.1. Nonnegative Matrix Factorization

Given an m × n nonnegative matrix A = [ai j], where each
entry ai j denotes the term weight of token i in gene document
j, the rows of A represent term vectors that show how terms
are distributed across the entire collection. Similarly, the
columns of A show which terms are present within a gene
document. Consider the 24 × 9 term-by-document matrix
A in Table 1 derived from the sample document collection
[7] in Table 2. Here, log-entropy term weighting [8] is used
to define the relative importance of term i for document j.
Specifically, ai j = li jgi, where

li j = log2

(
1 + fi j

)
,

gi = 1 +

(∑
j

(
pi j log2pi j

)

log2n

)

,
(1)

fi j is the frequency of token i in document j, and pi j =
fi j /
∑

j fi j is the probability of token i occurring in document
j. By design, tokens that appear less frequently across the
collection but more frequently within a document will be
given higher weight. That is, distinguishing tokens will
tend to have higher weights assigned to them, while more
common tokens will have weights closer to zero.

If NMF is applied to the sample term-document matrix
in Table 1, one possible factorization is given in Tables 3
and 4; the approximation to the term-document matrix
generated by mutliplyingW ×H is given in Table 5. The top-
weighted terms for each feature are presented in Table 6. By
inspection, the sample collection has features that represent
leukemia, alcoholism, anxiety, and autism. If each document
and term is assigned to its most dominant feature, then the
original term-document matrix can be reorganized around

those features. The restructured matrix typically resembles a
block diagonal matrix and is given in Table 7.

NMF of A is based on an iterative technique attempts to
find two nonnegative factor matrices, W and H , such that

A ≈WH , (2)

where W and H are m × k and k × n matrices, respectively.
Typically, k is chosen so that k � min(m,n). The optimal
choice of k is problem-dependant [9]. This factorization
minimizes the squared Euclidean distance objective function
[10]

‖A−WH‖2
F =

∑

i j

(
Aij − (WH)i j

)2
. (3)

Minimizing the objective (or cost) function is convex
in either W or H , but not both variables together. As
such, finding global minima to the problem is unrealistic—
however, finding several local minima is within reason. Also,
for each solution, the matrices W and H are not unique.
This property is evident when examining WDD−1H for any
nonnegative invertible matrix D [11].

The goal of NMF is to approximate the original term-
by-gene document space as accurately as possible with the
factor matrices W and H . As noted in [12], the singular
value decomposition (SVD) produces the optimal rank-k
approximation with respect to the Frobenius norm. Unfortu-
nately, this optimality frequently comes at the cost of negative
elements. The factor matrices of NMF, however, are strictly
nonnegative which may facilitate direct interpretability of the
factorization. Thus, although an NMF approximation may
not be optimal from a mathematical standpoint, it may be
sufficient and yield better insight into the dataset than the
SVD for certain applications.

Upon completion of NMF, the factor matrices W and
H will, in theory, approximate the original matrix A and
yet contain some valuable information about the dataset in
question. As presented in [10], if the approximation is close
to the original data, then the factor matrices can uncover
some underlying structure within the data. To reinforce this,
W is commonly referred to as the feature matrix containing
feature vectors that describe the themes inherent within the
data while H can be called a coefficient matrix since its
columns describe how each document spans each feature and
to what degree.

Currently, many implementations of NMF rely on ran-
dom nonnegative initialization. As NMF is sensitive to
its initial seed, this obviously hinders the reproducibility
of results generated. Boutsidis and Gallopoulos [13] pro-
pose the nonnegative double singular value decomposition
(NNDSVD) scheme as a possible remedy to this concern.
NNDSVD aims to exploit the SVD as the optimal rank-k
approximation of A. The heuristic overcomes the negative
elements of the SVD by enforcing nonnegativity whenever
encountered and by iteratively approximating the outer
product of each pair of singular vectors. As a result, some of
the properties of the data are preserved in the initial starting
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Table 1: Term-document matrix for the sample collection in Table 2.

d1 d2 d3 d4 d5 d6 d7 d8 d9

Alcoholism — 0.4338 — — — 0.2737 — 0.2737 0.4338

Anxiety 0.4745 — — — 0.4745 — — — —

Attack — — — — 0.6931 — — — —

Autism — — — — — — 0.7520 — 0.7520

Airth — — — — — 0.4745 — — 0.4745

Blood — — — 0.3466 0.3466 0.3466 — — —

Bone — — 0.7520 0.7520 — — — — —

Cancer — 0.4745 0.4745 — — — — — —

Cells — — — 0.6931 — — — — —

Children — — — — — — 0.4745 — 0.4745

Cirrhosis — 0.7520 — — — — — 0.7520 —

Damage — — 0.6931 — — — — — —

Defects — — — — — 0.3466 0.3466 — 0.3466

Failure — 0.4745 — — — 0.4745 — — —

Hypertension — — — — — 0.6931 — — —

Kidney — 0.4745 — — — 0.4745 — — —

Leukemia — — 1.0986 — — — — — —

Liver — 0.4745 — — — — — 0.4745 —

Marrow — — 0.7520 0.7520 — — — — —

Pressure — — — — 0.7804 0.4923 — — —

Scarring — — — — — — — 0.6931 —

Speech — — — — — — 0.6931 — —

Stress 0.4923 — — — 0.7804 — — — —

Tuberculosis — — — 0.6931 — — — — —

Table 2: Sample collection with dictionary terms displayed in bold.

Document Text

d1 Work-related stress can be considered a factor contributing to anxiety.

d2 Liver cancer is most commonly associated with alcoholism and cirrhosis. It is well-known that alcoholism can cause cirrhosis
and increase the risk of kidney failure.

d3 Bone marrow transplants are often needed for patients with leukemia and other types of cancer that damage bone marrow.
Exposure to toxic chemicals is a risk factor for leukemia.

d4 Different types of blood cells exist in bone marrow. Bone marrow procedures can detect tuberculosis.

d5 Abnormal stress or pressure can cause an anxiety attack. Continued stress can elevate blood pressure.

d6 Alcoholism can cause high blood pressure (hypertension) and increase the risk of birth defects and kidney failure.

d7 The presence of speech defects in children is a sign of autism. As of yet, there is no consensus on what causes autism.

d8 Alcoholism, often triggered at an early age by factors such as environment and genetic predisposition, can lead to cirrhosis.
Cirrhosis is the scarring of the liver.

d9 Autism affects approximately 0.5% of children in the US. The link between alcoholism and birth defects is well-known;
researchers are currently studying the link between alcoholism and autism.

matrices W and H . Once both matrices are initialized, they
can be updated using the multiplicative rule [10]:

Hcj ←− Hcj

(
WTA

)
c j

(
WTWH

)
c j

,

Wic ←−Wic

(
AHT

)
ic(

WHHT
)
ic

.

(4)

2.2. Labeling Algorithm

Latent semantic indexing (LSI), which is based on the
SVD, can be used to create a global picture of the data
automatically. In this particular context, hierarchical trees
can be constructed from pairwise distances generated from
the low-rank LSI space. Distance-based algorithms such as
FastME can create hierarchies that accurately approximate
distance matrices in O(n2) time [14]. Once a tree is built,
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Table 3: Feature matrix W for the sample collection.

f1 f2 f3 f4

Alcoholism 0.0006 0.3503 — —

Anxiety — — 0.4454 —

Attack — — 0.4913 —

Autism — 0.0030 — 0.8563

Birth — 0.1111 0.0651 0.2730

Blood 0.0917 0.0538 0.3143 —

Bone 0.5220 — 0.0064 —

Cancer 0.1974 0.1906 — —

Cells 0.1962 — 0.0188 —

Children — 0.0019 — 0.5409

Cirrhosis 0.0015 0.5328 — —

Damage 0.2846 — — —

Defects — 0.0662 — 0.4161

Failure 0.0013 0.2988 — —

Hypertension — 0.1454 0.1106 —

Kidney 0.0013 0.2988 — —

Leukemia 0.4513 — — —

Liver 0.0009 0.3366 — —

Marrow 0.5220 — 0.0064 —

Pressure — 0.066 0.6376 —

Scarring — 0.208 — —

Speech — — — 0.4238

Stress — — 0.6655 —

Tuberculosis 0.1962 — 0.0188 —

a labeling algorithm can be applied to identify branches of
the tree. Finally, a “gold standard” tree and a standard per-
formance measure that evaluates the quality of tree labels
must be defined and applied.

Given a hierarchy, few well-established automated label-
ing methods exist. To apply labels to a hierarchy, one can
associate a weighted list of terms with each taxon. Once these
lists have been determined, labeling the hierarchy is simply a
matter of recursively inheriting terms up the tree from each
child node; adding weights of shared terms will ensure that
more frequently used terms are more likely to have a larger
weight at higher levels within the tree. Intuitively, these terms
are often more general descriptors.

This algorithm is robust in that it can be slightly mod-
ified and applied to any tree where a ranked list can be
applied to each taxon. For example, by querying the SVD-
generated vector space for each document, a ranked list of
terms can be created for each document and the tree la-
beled accordingly. As a result, assuming the initial ranking
procedure is accurate, any ontological annotation can be
enhanced with terms from the text it represents.

To create a ranked list of terms from NMF, the dominant
coefficient Hij in H is extracted for document j. The cor-
responding feature Wi is then scaled by Hij and assigned to
the taxon representing document j, and the top 100 terms are
chosen to represent the taxon. This method can be expanded
to incorporate branch length information, thresholds, or
multiple features.

2.3. Recall Measure

Once labelings are produced for a given hierarchical tree,
a measure of “goodness” must be calculated to determine
which labeling is the “best.” When dealing with simple return
lists of documents that can be classified as either relevant
or not relevant to a user’s needs, information retrieval
(IR) methods typically default to using precision and recall
to describe the performance of a given retrieval system.
Precision is the ratio of relevant returned items to total
number of returned items, while recall is the percentage of
relevant returned items with respect to the total number of
relevant items. Once a group of words is chosen to label
an entity, the order of the words carries little meaning, so
precision has limited usefulness in this application. When
comparing a generated labeling to a “correct” one, recall is
an intuitive measure.

Unfortunately in this context, one labelled hierarchy
must be compared to another. Surprisingly, relatively little
work has been done that addresses this problem. Kiritchenko
in [15] proposed the hierarchical precision and recall mea-
sures, denoted as hP and hR, respectively. These measures
take advantage of hierarchical consistency to compare two
labelings with a single number. Unfortunately, condensing all
the information held in a labeled tree into a single number
loses some information. In the case of NMF, the effects
of parameters on labeling accuracy with respect to node
depth is of interest, so a different measure would be more
informative. One such measure finds the average recall of
all the nodes at a certain depth within the tree. To generate
nonzero recall, however, common terms must exist between
the labelings being compared. Unfortunately, many of the
terms present in MeSH headings are not strongly represented
in the text. As a result, the text vocabulary must be mapped
to the MeSH vocabulary to produce significant recall.

2.4. Feature Vector Replacement

When working with gene documents, many cases exist where
the terminology used in MeSH is not found within the gene
documents themselves. Even though a healthy percentage of
the exact MeSH terms may exist in the corpus, the term-
document matrix is so heavily overdetermined (i.e., the
number of terms is significantly larger than the number of
documents) that expecting significant recall values at any
level within the tree becomes unreasonable. This is not to
imply that the terms produced by NMF are without value.
On the contrary, the value in those terms is exactly that they
may reveal what was previously unknown. For the purposes
of validation, however, some method must be developed
that enables a user to discriminate between labelings even
though both have little or no recall with the MeSH-labeled
hierarchy. In effect, the vocabulary used to label the tree must
be controlled for the purposes of validation and evaluation.

To produce a labeling that is mapped into the MeSH
vocabulary, the top r globally-weighted MeSH headings are
chosen for each document; these MeSH headings can be
extracted from the MeSH metacollection [7]. By inspection
of H , the dominant feature associated with each document
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Table 4: Coefficient matrix H for the sample collection.

d1 d2 d3 d4 d5 d6 d7 d8 d9

f1 — 0.0409 1.6477 1.1382 0.0001 0.0007 — — —

f2 — 1.3183 — — 0.0049 0.6955 0.0003 0.9728 0.2219

f3 0.3836 — — 0.0681 1.1933 0.3327 — — —

f4 — — — — — 0.1532 0.9214 — 0.799

Table 5: Approximation to sample term-document matrix given in Table 1.

d1 d2 d3 d4 d5 d6 d7 d8 d9

Alcoholism — 0.4618 0.0010 0.0007 0.0017 0.2436 0.0001 0.3408 0.0777

Anxiety 0.1708 — — 0.0303 0.5315 0.1482 — — —

Attack 0.1884 — — 0.0334 0.5863 0.1635 — — —

Autism — 0.0040 — — — 0.1333 0.7890 0.0029 0.6848

Birth 0.0250 0.1464 — 0.0044 0.0783 0.1407 0.2516 0.1080 0.2428

Blood 0.1206 0.0746 0.1511 0.1258 0.3754 0.1420 — 0.0523 0.0119

Bone 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025 — — —

Cancer — 0.2593 0.3252 0.2247 0.001 0.1327 0.0001 0.1854 0.0423

Cells 0.0072 0.0080 0.3233 0.2246 0.0224 0.0064 — — —

Children — 0.0025 — — — 0.0842 0.4984 0.0019 0.4326

Cirrhosis — 0.7025 0.0024 0.0017 0.0026 0.3705 0.0002 0.5183 0.1183

Damage — 0.0116 0.4689 0.3239 — 0.0002 — — —

Defects — 0.0873 — — 0.0003 0.1098 0.3834 0.0644 0.3472

Failure — 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663

Hypertension 0.0424 0.1916 — 0.0075 0.1327 0.1379 — 0.1414 0.0323

Kidney — 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663

Leukemia — 0.0185 0.7437 0.5137 — 0.0003 — — —

Liver — 0.4437 0.0015 0.0011 0.0017 0.2341 0.0001 0.3274 0.0747

Marrow 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025 — — —

Pressure 0.2445 0.0870 — 0.0434 0.7612 0.2580 — 0.0642 0.0147

Scarring — 0.2742 — — 0.0010 0.1446 0.0001 0.2023 0.0462

Speech — — — — — 0.0649 0.3905 — 0.3386

Stress 0.2553 — — 0.0453 0.7942 0.2214 — — —

Tuberculosis 0.0072 0.0080 0.3233 0.2246 0.0224 0.0064 — — —

Table 6: Top 5 words for each feature from the sample collection.

f1 f2 f3 f4

Bone Cirrhosis Stress Autism

Marrow Alcoholism Pressure Children

Leukemia Liver Attack Speech

Damage Kidney Anxiety Defects

Cancer Failure Blood Birth

is chosen and assigned to that document. The corresponding
top r MeSH headings are then themselves parsed into tokens
and assigned to a new MeSH feature vector appropriately
scaled by the corresponding coefficient in H . The feature
vector replacement algorithm is given in Algorithm 1. Note
thatm′ is distinguished fromm since the dictionary of MeSH

headings will likely differ in size and composition from
the original corpus dictionary. The number of documents,
however, remains constant.

Once full MeSH feature vectors have been constructed,
the tree can be labeled via the procedure outlined in [7]. As a
result of this replacement, better recall can be expected, and
the specific word usage properties inherent in the MeSH (or
any other) ontology can be exploited.

2.5. Alternative Labeling Method

An alternative method to label a tree is to vary the parameter
k from (2) with node depth. In theory, more pertinent and
accurate features will be preserved if the clusters inherent
in the NMF coincide with those in the tree generated via
the SVD space. For smaller clusters and more specific terms,
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Table 7: Rearranged term-document matrix for the sample collection.

d3 d4 d2 d6 d8 d1 d5 d7 d9

Bone 0.7520 0.7520 — — — — — — —

Cancer 0.4745 — 0.4745 — — — — — —

Cells — 0.6931 — — — — — — —

Damage 0.6931 — — — — — — — —

Leukemia 1.0986 — — — — — — — —

Marrow 0.7520 0.7520 — — — — — — —

Tuberculosis — 0.6931 — — — — — — —

Alcoholism — — 0.4338 0.2737 0.2737 — — — 0.4338

Cirrhosis — — 0.7520 — 0.7520 — — — —

Failure — — 0.4745 0.4745 — — — — 0.4745

Hypertension — — — 0.6931 — — — — —

Kidney — — 0.4745 0.4745 — — — — 0.4745

Liver — — 0.4745 — 0.4745 — — — —

Scarring — — — — 0.6931 — — — —

Anxiety — — — — — 0.4745 0.4745 — —

Attack — — — — — — 0.6931 — —

Blood — 0.3466 — 0.3466 — — 0.3466 — —

Pressure — — — 0.4923 — — 0.7804 — —

Stress — — — — — 0.4923 0.7804 — —

Autism — — — — — — — 0.7520 0.7520

Birth — — — 0.4745 — — — — 0.4745

Children — — — — — — — 0.4745 0.4745

Defects — — — 0.3466 — — — 0.3466 0.3466

Speech — — — — — — — 0.6931 —

Input: MeSH Term-by-Document Matrix A′m′×n
Factor Matrices Wm×k and Hk×n of original Term-by-Document Matrix Am×n
Global weight vector g′,
Threshold r number of MeSH headings to represent each document

Output: MeSH feature matrix W ′

for i = 1 : n do
Choose r top globally-weighted MeSH headings from ith column of A′

Determine j = arg max
j<k

Hji

for h = 1 : r do
Parse MeSH heading h into tokens
Add each token t with index p to w′j , the jth column of W ′

i.e., W ′
p j =W ′

p j + g′p ×Hji

end for
end for

Algorithm 1: Feature vector replacement algorithm.

higher k should be necessary; conversely, the ancestor nodes
should require smaller k and more general terms since
they cover a larger set of genes spanning a larger set of
topics. Inheritance of terms can be performed once again by
inheriting common terms—however, an upper threshold of
inheritance can be imposed. For example, for all the nodes in
the subtree induced by a node p, high k can be used. If all the
genes induced by p are clustered together by NMF, then all
the nodes in the subtree induced by p will maintain the same

labels. For the ancestor of p, a different value of k can be used.
Although this method requires some manual curation, it can
potentially produce more accurate labels.

3. Results

The evaluation of the factorization produced by NMF is
nontrivial as there is no set standard for examining the
quality of basis vectors produced. In several studies thus far,
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the results of NMF runs have been evaluated by domain
experts. For example, Chagoyen et al. [16] performed several
NMF runs and then independently asked domain experts
to interpret the resulting feature vectors. This approach,
however, limits the usefulness of NMF, particularly in
discovery-based genomic studies for which domain experts
are not readily available. Here, two different automated
protocols are presented to evaluate NMF results. First, the
mathematical properties of the NMF runs are examined,
then the accuracy of the application of NMF to hierarchical
trees is scrutinized.

3.1. Input Parameters

To test NMF, the 50TG collection presented in [2] was used.
This collection was constructed manually by selecting genes
known to be associated with at least one of the following
categories: (1) development, (2) Alzheimer’s disease, and (3)
cancer biology. Each gene document is simply a concate-
nation of all titles and abstracts of the MEDLINE citations
cross-referenced in the mouse, rat, and human EntrezGene
(formerly LocusLink) entries for each gene.

Two different NMF initialization strategies were used: the
NNDSVD [17] and randomization. Five different random
trials were conducted while four were performed using
the NNDSVD method. Although the NNDSVD produces
a static starting matrix, different methods can be applied
to remove zeros from the initial approximation to prevent
them from getting “locked” throughout the update process.
Initializations that maintained the original zero elements
are denoted NNDSVDz, while NNDSVDa, NNDSVDe, and
NNDSVDme substitute the average of all elements of A,
ε, or εmachine, respectively, for those zero elements; ε was
set to 10−9 and was significantly smaller than the smallest
observed value in either H or W (typically around 10−3),
while εmachine was the machine epsilon (the smallest positive
value the computer could represent) at approximately 10−324.
Both NNDSVDz and NNDSVDa were described previously
in [13], whereas NNDSVDe and NNDSVDme are added in
this study as natural extensions to NNDSVDz that would
not suffer from the restrictions of locking zeros due to the
multiplicative update. The parameter k was assigned the
values of 2, 4, 6, 8, 10, 15, 20, 25, and 30.

Each of the NMF runs iterated until it reached 1,000
iterations or a stationary point in both W and H . That is,
at iteration i, when ‖Wi−1−Wi‖F < τ and ‖Hi−1−Hi‖F < τ,
convergence is assumed. The parameter τ was set to 0.01.
Since convergence is not guaranteed under all constraints,
if the objective function increased between iterations, the
factorization was stopped and assumed not to converge.
Log-entropy term-weighting scheme (see [8]) was used to
generate the original token weights for each collection.

3.2. Relative Error and Convergence

The SVD produces the mathematically optimal low-rank
approximation of any matrix with respect to the Frobenius
norm, and for all other unitarily-invariant matrix norms.
Whereas NMF can never produce a more accurate approx-
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Figure 1: Error measures for the SVD, best NMF run, and average
NMF run for the 50TG collection.

imation than the SVD, its proximity to A relative to the SVD
can be measured. Namely, the relative error, computed as

RE = ‖A−WH‖F −
∥∥A−USVT

∥∥
F∥∥A−USVT

∥∥
F

, (5)

where both factorizations are truncated after k dimensions
(or factors), can show how close the feature vectors produced
by the NMF are to the optimal basis [18].

Intuitively, as k increases, the NMF factorization should
more closely approximate A. As shown in Figure 1, this is
exactly the case. Surprisingly, however, the average of all
converging NMF runs is under 10% relative error compared
to the SVD, with that error tending to rise as k increases. The
proximity of the NMF to the SVD implies that, for this small
dataset, NMF can accurately approximate the data.

Next, several different initialization methods (discussed
in Section 3.1) were examined. To study the effects on con-
vergence, one set of NMF parameters must be chosen as the
baseline against which to compare. By examining the NMF
with no additional constraints, the NNDSVDa initialization
method consistently produces the most accurate approx-
imation when compared to NNDSVDe, NNDSVDme,
NNDSVDz, and random initialization [7]. The relative error
NNDSVDa generates less than 1% for most tested values
of k. Unfortunately, NNDSVDa requires several hundred
iterations to converge.

NNDSVDe performs comparably to NNDSVDa with
regard to relative error, often within a fraction of a percent.
For smaller values of k, NNDSVDe takes significantly
longer time to converge than NNDSVDa although the exact
opposite is true for the larger value of k. NNDSVDz, on
the other hand, converges much faster for smaller values of
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k at the cost of accuracy as the locked zero elements have
an adverse effect on the best solution that can be converged
upon. Not surprisingly, NNDSVDme performed comparably
to NNDSVDz in many cases, however, it was able to achieve
slightly more accurate approximations as the number of
iterations increased. In fact, NNDSVDme was identical
to NNDSVDz in most cases and will not be mentioned
henceforth unless noteworthy behavior is observed. Random
initialization performs comparably to NNDSVDa in terms
of accuracy and favorably in terms of speed for small k,
but as k increases, both speed and accuracy suffer. A graph
illustrating the convergence rates when k = 25 is depicted in
Figure 2.

In terms of actual elapsed time, the improved perfor-
mance of the NNDSVD does not come without a cost. In
the context of SGO, the time spent computing the initial
SVD of A for the first step of the NNDSVD algorithm is
assumed to be zero since the SVD is needed a priori for
querying purposes However, the initialization time required
to complete the NNDSVD when k = 25 is nearly 21
seconds, while the cost for random initialization is relatively
negligible. All runs were performed on a machine running
Debian Linux 3.0 with an Intel Pentium III 1-GHz processor
and 256-MB memory. Since the cost per each NMF iteration
is nearly.015 seconds per k (when k = 25), the cost of per-
forming the NNDSVD is (approximately) equivalent to 55
NMF iterations. Convergence taking into account this cost is
shown in Figure 3.

3.3. Labeling Recall

Measuring recall is a quantitative way to validate “known”
information within a hierarchy. Here, a method was devel-
oped to measure recall at various branch points in a hierar-
chical tree (described in Section 2.3). The gold standard used
for measuring recall included the MeSH headings associated
with gene abstracts. The mean average recall (MAR) denotes
the value attained when the average recall at each level is
averaged across all branches of the tree. Here, a hierarchy
level refers to all nodes that share the same distance (number
of edges) from the root. This section discusses the parameter
settings that provided the best labelings, both in the local
and global sense to the tree generated in [2] with 47 interior
nodes spread across 11 levels.

After applying the labeling algorithm described in
Section 2.2 to the factors produced by NMF, the MAR
generated was very low (under 25%). Since the NMF-
generated vocabulary did not overlap well with the MeSH
dictionary, the NMF features were mapped into MeSH
features via the procedure outlined in Algorithm 1, where
the most dominant feature represented each document only
if the corresponding weight in the H matrix was greater
than 0.5. Also, the top 10 MeSH headings were chosen to
represent each document, and the top 100 corresponding
terms were extracted to formulate each new MeSH feature
vector. Consequently, the resulting MeSH feature vectors
produced labelings with greatly increased MAR.

With regard to the accuracy of the labelings, several
trends exist. As k increases, the achieved MAR increases as
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Figure 2: Convergence graph comparing the NNDSVDa, NND-
SVDe, NNDSVDme, NNDSVDz, and best random NMF runs of
the 50TG collection for (k = 25).

well. This behavior could be predicted since increasing the
number of features also increases the size of the effective
labeling vocabulary, thus enabling a more robust labeling.
When k = 25, the average MAR across all runs is approxi-
mately 68%.

Since the NNDSVDa initialization provided the best con-
vergence properties, it will be used as a baseline against which
to compare. If k is not specified, assume k = 25. In terms
of MAR, NNDSVDa produced below average results, with
both NNDSVDe and NNDSVDz consistently outperforming
NNDSVDa for most values of k; NNDSVDe and NNDSVDz
attained similar MAR values as depicted in Figure 4. The
recall of the baseline case using NNDSVDa and k = 25
depicted by node level is shown in Figure 6.

The 11 node levels of the 50TG hierarchical tree [2]
shown in Figure 5 can be broken into thirds to analyze the
accuracy of a labeling within a depth region of the tree. The
MAR for NNDSVDa for each of the thirds is approximately
58%, 63%, and 54%, respectively. With respect to the
topmost third of the tree, any constraint applied to any
NNDSVD initialization other than smoothing W applied to
NNDSVDa provided an improvement over the 58% MAR.
In all cases, the resulting MAR was at least 75%. NNDSVDa
performed slightly below average over the middle third at
63%. Overall, nearly any constraint improved or matched
recall over the base case over all thirds with the exception that
enforcing sparsity on H underperformed NNDSVDa in the
bottom third of the tree; all other constraints achieved at least
54% MAR for the bottom third.

With respect to different values of k, similar tendencies
exist over all thirds. NNDSVDa is among the worst in terms
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Figure 3: Convergence graph comparing the NNDSVDa,
NNDSVDe, NNDSVDme, NNDSVDz, and best random NMF
runs of the 50TG collection for (k = 25) taking into account
initialization time.

Table 8: Genes comprising each leaf node of the tree shown in
Figure 7.

A B C D E

a2m apoe dab1 atoh1 cdk5

apba1 app lrp8 dll1 cdk5r

apbb1 psen1 reln jag1 cdk5r2

aplp1 psen2 vldlr notch1 fyn

aplp2 — — — mapt

lrp1 — — — —

shc1 — — — —

of MAR with the exception that it does well in the topmost
third when k is either 2 or 4. There was no discernable
advantage when comparing NNDSVD initialization to its
random counterpart. Overall, the best NNDSVD (and hence
reproducible) MAR was achieved using NNDSVDe and k =
30 (also shown in Figure 6).

3.4. Labeling Evaluation

Although relative error and recall are measures that can auto-
matically evaluate a labeling, ultimately the final evaluation
still requires some manual observation and interpretation.
For example, assuming the tree given in Figure 7 with
leaf nodes representing the gene clusters given in Table 8,
one possible labeling using MeSH headings generated from
Algorithm 1 is given in Table 9, and a sample NMF-generated
labeling is given in Table 10.
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Figure 4: MAR as a function of k under the various NNDSVD
initialization schemes with no constraints for the 50TG collection.

As expected, many of the MeSH terms were too general
and were also associated with many of the 5 gene clusters,
for example, genetics, proteins, chemistry, and cell. However,
some MeSH terms were indeed useful in describing the func-
tion of the gene clusters. For example, Cluster A MeSH labels
are suggestive of LDL and alpha macroglobulin receptor
protein family; Cluster B MeSH labels are associated with
Alzheimer’s disease and Amyloid beta metabolism; Cluster
C labels are associated with extracellular matrix and cell
adhesion; Cluster D labels are associated with embryology
and inhibotrs; and Cluster E labels are associated with tau
protein and lymphocytes.

In contrast to MeSH labeling, the text labeling by NMF
was much more specific and functionally descriptive. In
general, the first few terms (highest ranking terms) in each
cluster defined either the gene name or alias. Interestingly,
each cluster also contained terms that were functionally
significant. For example, rap (Cluster A) is known to be a
ligand for a2m and lrp1 receptors. In addition, the 4 genes
in Cluster C are known to be part of a molecular signaling
pathway involving Cajal-retzius cells in the brain that
control neuronal positioning during development. Lastly, the
physiological effects of Notch1 (Cluster D) have been linked
to activation of intracellular transcription factors Hes1 and
Hes5.

Importantly, the specific nature of text labeling by NMF
allows identification of previously unknown functional con-
nections between genes and clusters of genes. For example,
the term PS1 appeared in both Cluster B and Cluster D.
This finding is very interesting in that PS1 encodes a protein
which is part of a protease complex called gamma secretases.
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Table 9: Top 10 MeSH terms for the leaf nodes of the tree shown in Figure 7.

A B C D E

Metabolism Protein Genetics Genetics Metabolism

Genetics Amyloid Molecules Proteins Proteins

Protein Beta Neuronal Metabolism Genetics

Proteins Genetics Adhesion Membrane Tau

Receptor Metabolism Cell Cell Protein

Related Precursor Metabolism Physiology Lymphocyte

ldl Chemistry Proteins Cytology p56

Macroglobulins Apolipoproteins Extracellular Embryology Specific

Alpha Disease Matrix Biosynthesis lck

Chemistry Alzheimer Biosynthesis Inhibitors Tyrosine

Table 10: Top 10 terms for the leaf nodes of the tree shown in Figure 7.

A B C D E

lrp Apoe reelin Notch fyn

Receptor-related ps1 reeler notch1 Tau

Lipoprotein Amyloid dab1 jagged1 cdk5

fe65 Abeta vldlr notch-1 lck

app Presenilin apoer2 hes5 sh3

Alpha Epsilon Positioning Fringe nmda

rap Apolipoprotein Cajal-retzius hes-1 Ethanol

Abeta Alzheimer apoe hes1 Phosphorylation

Beta-amyloid ad Apolipoprotein hash1 Alcohol

Receptor Gamma-secretase Lipoprotein ps1 tcr

In addition to cleaving the Alzheimer protein APP, gamma
secretases have been shown to cleave the developmentally
important Notch protein. Therefore, these results indicate
that NMF labeling provides a useful tool for discovering new
functional associations between genes in a cluster as well as
across multiple gene clusters.

4. Discussion

While comparing NMF runs, several trends can be observed
both with respect to mathematical properties and recall
tendencies. First, and as expected, as k increases, the ap-
proximation achieved by the SVD with respect to A is more
accurate; the NMF can provide a relatively close approx-
imation to A in most cases, but the error also increases
with k. Second, NNDSVDa provides the fastest convergence
in terms of number of iterations to the closest approx-
imations. Third, applying additional constraints such as
smoothing and sparsity [7] has little noticeable effect on
both convergence and recall, and in many cases greatly
decreases the likelihood that a stationary point will be
reached. Finally, to generate relatively “good” approximation
error (within 5%), about 20–40 iterations are recommended
using either NNDSVDa or NNDSVDe initialization with
no additional constraints when k is reasonably large (about
half the number of documents). For smaller k, performing

approximately 25 iterations under random initialization will
usually accomplish 5% relative error, with the number of
iterations required decreasing as k decreases.

While measuring error norms and convergence is useful
to expose mathematical properties and structural tendencies
of the NMF, the ultimate goal of this application is to provide
a useful labeling of a hierarchical tree from the NMF. In many
cases, the “best” labeling may be provided by a suboptimal
run of NMF. Overall, more accurate labelings resulted from
higher values of k because more feature vectors increased
the vocabulary size of the labeling dictionary. Generally
speaking, the NNDSVDe, NNDSVDme, and NNDSVDz
schemes outperformed the NNDSVDa initialization. Overall,
the accuracy of the labelings appeared to be more a function
of k and the initial seed rather than the constraints applied.

Much research is being performed concerning the NMF,
and this work examines three methods based on the multi-
plicate update (see Section 2.1). Many other NMF variations
exist and more are being developed, so their application to
the biological realm should be studied. For example, [19]
proposes a hybrid least squares approach called GD-CLS to
solve NMF and overcomes the problem of “locking” zeroed
elements encountered by MM, [20, 21] propose nonsmooth
NMF as an alternative method to incorporate sparseness, and
[22] proposes an NMF technique that generates three factor
matrices and has shown promising clustering results. NMF
has been applied to microarray data [23], but efforts need to
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Figure 5: Hierarchical tree for a 50 test gene (50TG) collection
described in [2] using updated MEDLINE abstracts.

be made to combine the text information with microarray
data; some variation of tensor factorization could possibly
show how relationships change over time [24].

With respect to labeling methods, MeSH heading labels
were generally useful, but provided little specific details
about the functional relationship between the genes in a
cluster. On the other hand, text labeling provided specific
and detailed information regarding the function of the genes
in a clusters. Importantly, term labels provided some specific
connections between groups of genes that were not readily
apparent. Thus, term labeling offers a distinct advantage for
discovering new relationships between genes and can aid in
interpretation of high throughput data.

Regardless of the techniques employed, one of the issues
that will always be prevalent regarding biological data is
that of quality versus quantity. Inherently related to this
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Figure 6: Recall as a function of node level for the NNDSVD
initialization on the 50TG collection. The achieved MAR for the
baseline case is 58.95%, while the best achieved MAR for the
NNDSVD initialization is 74.56%.
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Figure 7: A hierarchical tree containing a set of genes related to
Alzheimer’s disease (leaf nodes A and B), brain development (leaf
nodes C and D), or both Alzheimer’s disease and brain development
(leaf node E).

problem is the establishment of standards within the field
especially as they pertain to hierarchical data. Efforts such
as gene ontology (GO) are being built and refined [25], but
standard datasets for comparing results and clearly defined
(and accepted) evaluation measures could facilitate more
meaningful comparisons between methods.

In the case of SGO, developing methods to derive
“known” data is a major issue (even GO does not produce
a “gold standard” hierarchy given a set of genes). Access
to more data and to other hierarchies would help test the
robustness of the method, but that remains one of the prob-
lems inherent in the field. In general, approximations that
are more mathematically optimal do not always produce the
“best” labeling. Often, factorizations provided by the NMF
can be deemed “good enough,” and the final evaluation will
remain subjective. In the end, if automated approaches can



12 Computational Intelligence and Neuroscience

approximate that subjectivity, then greater understanding of
more data will result.
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