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Modulation of inflammation by autophagy: Consequences for human disease
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ABSTRACT
Autophagy and inflammation are 2 fundamental biological processes involved in both physiological and
pathological conditions. Through its crucial role in maintaining cellular homeostasis, autophagy is
involved in modulation of cell metabolism, cell survival, and host defense. Defective autophagy is
associated with pathological conditions such as cancer, autoimmune disease, neurodegenerative disease,
and senescence. Inflammation represents a crucial line of defense against microorganisms and other
pathogens, and there is increasing evidence that autophagy has important effects on the induction and
modulation of the inflammatory reaction; understanding the balance between these 2 processes may
point to important possibilities for therapeutic targeting. This review focuses on the crosstalk between
autophagy and inflammation as an emerging field with major implications for understanding the host
defense on the one hand, and for the pathogenesis and treatment of immune-mediated diseases on the
other hand.
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Introduction

Autophagy is the physiological cellular process through which
intracellular components undergo lysosome-mediated self-
digestion and recycling.1 In conditions of cellular stress such as
starvation, hypoxia, or exposure to toxic molecules, the autoph-
agy machinery is activated in order to maintain cell homeosta-
sis. An increasing body of evidence has emerged supporting the
view that autophagy is involved in several physiological pro-
cesses including cell metabolism, cell survival, and host
defense.2 It can be argued that autophagy is a primordial form
of eukaryotic innate immunity against invading microorgan-
isms. Research performed in the past decade has also proposed
that, in mammals, these primordial functions of autophagy
have evolved and now encompass multiple innate and adaptive
immune mechanisms.3 Moreover, defective autophagy is asso-
ciated with several pathological conditions such as cancer,
autoimmune disease, neurodegenerative disease, and senes-
cence.4 These new insights strongly suggest that besides its clas-
sical role as a “housekeeping” mechanism, autophagy can also
be considered as crucial for host defense in general, and regula-
tion of inflammation in particular. In this review we present
the newest concepts that link these 2 fundamental biological
processes, autophagy, and inflammation.

Autophagy and host defense

Several types of autophagy have been recognized, including
macroautophagy, microautophagy, chaperone-mediated
autophagy, and noncanonical autophagy.5 In this review we
will focus on macroautophagy, which will be henceforth

referred to as autophagy. This process is activated in response
to a multitude of stress factors including starvation, hypoxia,
and other toxins that result in accumulation of damaged organ-
elles and protein aggregates. As a consequence, a double-layer
membrane, the phagophore, is formed to engulf the damaged
cytosolic components (Fig. 1). After complete sequestration of
these components, the resulting autophagosome fuses with the
lysosome, which enables the breakdown of the autophagosome
inner membrane and exposes the cargo to the lysosomal hydro-
lases. The resulting breakdown products are subsequently
released in the cytosol and are available to be reused for the
synthesis of required macromolecules.5 Several autophagy-
related (ATG) genes and proteins are involved in the induction
of autophagy (Fig. 1), while a subset of them also have autoph-
agy-independent functions.6

Among the most important functions of autophagy in addi-
tion to maintaining cell homeostasis is its role in host defense.
Autophagy improves host defense mechanisms through several
biological functions: the direct elimination of the invading
pathogens (involving also xenophagy and MAP1LC3/LC3
[microtubule-associated protein 1 light chain 3]-associated
phagocytosis-LAP),7 control of adaptive immunity through
regulation of antigen handling and presentation,8,9 induction of
innate immune memory or trained immunity,10 and modula-
tion of inflammation. Indeed, autophagy has been suggested to
represent an ancient form of innate immune response to an
infection.3 Engagement of various families of pattern-recogni-
tion receptors (PRRs) has been reported to induce autophagy
through pathways that are similar to those activated in response
to nutrient deprivation, and mediated via MTOR (mechanistic
target of rapamycin [serine/threonine kinase]) and adenosine
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monophosphate (AMP)-activated protein kinase (AMPK). In
this respect, engagement of TLR4 (toll-like receptor 4) by lipo-
polysaccharide (LPS) of Gram-negative bacteria results in the
ubiquitination of BECN1/beclin-1 by TRAF6 (TNF receptor-
associated factor 6, E3 ubiquitin protein ligase).11 TRAF6 also
activates the serine/threonine protein kinase ULK1 (unc-51 like
autophagy activating kinase 1), both pathways leading to the
activation of autophagy.12 Interestingly, the LPS-induced
autophagy is dependent on MAPK/p38 and TICAM1/TRIF
(toll-like receptor adaptor molecule 1), but not on MYD88
(myeloid differentiation primary response 88).13 Similarly, the
engagement of several other TLRs also induces autophagy.14

Not only TLRs, but nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) as well have been demonstrated
to induce autophagy: NOD2 induces autophagy in dendritic
cells and directs antigen handling and presentation,15 a process
that involves targeting of ATG16L1 to the plasma membrane at
the site of bacterial entry.16

In addition to PRRs, several proinflammatory cytokines
including TNF (tumor necrosis factor)17 and IL1B (interleukin
1, b)18 induce autophagy and thus improve the control of infec-
tion. Furthermore, both type I (IFNA/IFNa-IFNB1/IFNb-IL6)
and type II (IFNG/IFNg) interferons are major factors in acti-
vating autophagy.19 For instance, activation of macrophages by
IFNG is crucial for intracellular killing ofMycobacterium tuber-
culosis,20,21 and type I IFN for host defense against viruses.22 In
mice, IFNG induces the expression of autophagic p47 immu-
nity-related guanosine-50-triphosphate (GTP)ases (IRG) pro-
teins,21 with IRGM1 (immunity-related GTPase family M
member 1) being an important factor for inducing antimyco-
bacterial autophagy. These findings are corroborated by the
genetic association of IRGM polymorphisms with tuberculosis

in West Africans, and increased Bacillus Calmette-Gu�erin
(BCG) vaccination efficacy through enhanced antigen presenta-
tion.23-25 In contrast to the proinflammatory cytokines, T helper
2 (Th2) type responses and secretion of anti-inflammatory
cytokines such as IL4 and IL13 antagonize autophagy induction
through activation of MTOR.26 Altogether, the T helper 1/T
helper 2 (Th1/Th2) responses seem to be correlated to the acti-
vation of autophagy, with autophagy being induced in Th1 type
responses and inhibited when Th2 responses are elicited.

In addition, it must be underlined that some infectious
agents are able to manipulate and inhibit autophagy, a de facto
mechanism of evasion from the host defense. In line with this,
human immunodeficiency virus (HIV) infection of CD4 lym-
phocytes reduces their content of BECN1 and MAP1LC3B-II, 2
crucial components for the induction of autophagy.27 More-
over,M. tuberculosis is also able to inhibit autophagy and phag-
olysosome biogenesis, a process that greatly contributes to the
escape from the bactericidal mechanisms of the host.28 The fact
that autophagy was targeted by microorganisms during evolu-
tion, with inhibitory effects increasing survival of the patho-
gens, demonstrates its importance for host defense.

In this review we will further focus on the modulatory effects
of autophagy on inflammation, a broad concept with important
consequences for the pathogenesis not only of infections, but of
autoinflammatory diseases and malignancies as well.3

The impact of autophagy on inflammation

Innate immunity represents the first line of defense against
pathogens. It requires adequate pathogen recognition, which
triggers activation of inflammation resulting in recruitment of
immune cells, such as phagocytes, secretion of cytokines and

Figure 1. The process of autophagy in eukaryotic cells and its involvement in cellular homeostasis, metabolism, and the immune system. Autophagy is induced both by
metabolic and immune signals comprising pathogen recognition and stimulation by proinflammatory cytokines. Upon autophagy triggering through any of these path-
ways, the MAP1LC3B (depicted as unconjugated LC3B-I and PE-conjugated LC3B-II) and ATG12 conjugation systems, as well as BECN1 and class III PtdIns3K, are activated
that are critical for autophagosome formation. After engulfment of the autophagic cargo, autophagosomes proceed to lysosomal fusion, leading to degradation of the
sequestered content. In case the autophagic cargo originates from intracellular organelles or protein complexes, the degraded fragments are utilized for metabolic pur-
poses to generate ATP and provide the cell with free amino acids. In contrast, autophagy-mediated degradation of extracellular material, especially microbes, enables
pathogen killing and activation of adaptive immunity by MHC-dependent antigen presentation.
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chemokines, which in turn help recruit other immune cells and
prime dendritic cells (DCs) for activation of adaptive immune
responses. An increasing number of studies have recently
shown that autophagy has important effects on the induction
of the inflammatory reaction. However, when the inflammatory
process is not properly controlled, autophagy can be detrimen-
tal for the host. In atherosclerosis, excessively stimulated
autophagy can lead to endothelial cell death that can contribute
to plaque destabilization, maintaining the inflammatory status
of the plaque.29 In chronic obstructive pulmonary disease
(COPD) cigarette smoking triggers a form of autophagy,
namely mitophagy (autophagy-dependent selective elimination
of mitochondria), through stabilization of the mitophagy regu-
lator PINK1 (PTEN-induced putative kinase 1). This eventually
leads to epithelial cell death, and thus can contribute to persist-
ing inflammatory responses in COPD.30

Autophagy effects on inflammasome activation and
IL1B production

Production of cytokines from the IL1 family, and especially
IL1B, is one of the main mechanisms through which innate
and adaptive immune responses are induced by an infection.
The regulation of the production of this cytokine is thus crucial
for understanding inflammation and host defense. Probably
the best studied aspect of the interaction between autophagy
and inflammation is represented by the effects of autophagy on
inflammasome activation and IL1B release. An overview of the
interplay between autophagy and IL1B-inflammasome activa-
tion is depicted in Figure 2. The inflammasome consists of pro-
tein complexes formed by one or more members of the NLR
family of receptors together with CASP1/caspase-1, leading to
the activation of this cysteine protease, and processing of the
inactive pro-IL1B and pro-IL18 into active cytokines.31 The
first observation regarding the effect of autophagy on inflam-
masome activation was that of Saitoh et al. who reported that
macrophages of Atg16l1 knockout mice respond with increased
production of IL1B after stimulation with LPS. This was due to
an exaggerated activation of CASP1 in the Atg16l1-deficient
mice, mediated by the adapter molecule TICAM.32 Additional
studies support the concept that autophagy regulates inflamma-
some activation.33-36

Several mechanisms have been proposed to mediate these
anti-inflammatory effects of autophagy. During homeostatic
conditions autophagy is responsible for the clearing of the cyto-
plasm of nonfunctional mitochondria and other organelles. If
autophagy is defective this leads to an accumulation of depolar-
ized mitochondria, that release inflammasome activators such
as reactive oxygen species (ROS) or mitochondrial DNA
(mtDNA).33,34,37 Moreover, autophagy may also remove aggre-
gated inflammasome structures, thus contributing to dampen-
ing proinflammatory responses.36 These processes might play
an important role during infections. This is underscored by the
observation that influenza virus triggers RIPK2 (receptor-inter-
acting serine-threonine kinase 2) to activate ULK1, to enhance
mitophagy and control inflammasome activation.38 These stud-
ies in mice point toward a regulatory effect of autophagy on
CASP1 activation through modulation of the NLRP3 (NLR
family, pyrin domain containing 3) inflammasome.

The important role of autophagy for IL1B secretion was
also confirmed in human primary cells, in which inhibition
of autophagy leads to increased production of IL1B.39 Inter-
estingly, the same study in humans demonstrated that TNF
production is decreased by autophagy inhibition, suggesting
divergent effects of autophagy on the production of these
cytokines.39 However, important differences may exist
between mice and humans regarding the effect of autophagy
on IL1B production. In mice, this effect is ascribed to inhi-
bition of inflammasome activation by autophagy, whereas
in humans IL1B mRNA transcription is elevated when
autophagy is inhibited, whereas no effects are observed on
CASP1 activation.39,40 One potential mechanism for this
observation was proposed to be due to targeting pro-IL1B
for degradation,40 while a recent study also reported
autophagy-dependent degradation of the PELI (pellino 3
ubiquitin protein ligase) with subsequent inhibition of IL1B
expression during TLR4 signaling.41 These discrepancies
between mice and humans emphasize that caution should
be exercised when extrapolating studies from mice to
humans. Moreover, it has recently been demonstrated that
a noncanonical secretion pathway controlled by autophagy
plays an important role in the secretion of proteins that
lack a signal sequence, such as IL1B. In contrast to basal
autophagy, which inhibits IL1B secretion,33 induced auto-
phagy augments IL1B secretion via an unconventional secre-
tion mechanism that utilizes the autophagic machinery.35

The effect of autophagy on other inflammatory
pathways

Autophagy does not only have inhibitory effects on
inflammasome activation, but also on inflammatory media-
tors that are independent of CASP1 activation. In line with
this, autophagy suppresses CAPN/calpain-dependent IL1B
activation, and this effect is linked to the release of ROS
as well.42 In addition, autophagy reduces NFKB (nuclear
factor of kappa light polypeptide gene enhancer in B-cells)
activation by selective degradation of BCL10 complexes.43

This process is mediated through NSFL1C (NSFL1 [p97]
cofactor [p47]), a negative regulator of IKBKB/IKK acting
via degradation of the polyubiquitinated NFKB modulator
IKBKG/NEMO.44

In addition to these effects on proinflammatory cytokines,
autophagy also amplifies TLR signaling to improve the delivery
of microbial ligands to cytoplasmic receptors such as TLR7 that
promote the synthesis of type I IFN.45 This could also lead,
however, to inappropriate immune activation, as shown by the
increased trafficking of DNA-containing antigens and
increased IFNA secretion.7,46 However, the effects of autophagy
on the stimulation of type I IFN is complex, with the ATG12–
ATG5 complex inhibiting the signaling induced by RIG-I-heli-
case like receptors (RLRs) by direct binding to the caspase-
recruitment domain of the RLR adaptor molecule MAVS.47

These data suggest therefore that inflammation and auto-
phagy are intertwined processes during host defense, and
derangements in the crosstalk between these 2 processes can
have important consequences for the pathogenesis and treat-
ment of several diseases.
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Autophagy in the pathogenesis and treatment of
immune-mediated disease

Due to the mechanisms described above, autophagy has
emerged as a central player in the pathogenesis of immune-
mediated diseases, including autoinflammatory and autoim-
mune diseases, infections, and cancer.

The impact of autophagy on autoinflammatory and
autoimmune diseases

The first major autoinflammatory disease in which autophagy
has been suggested to play a significant role is Crohn disease
(CD). CD is a chronic inflammatory disorder of the intestine
caused by a combination of multiple factors including defective
host response, altered mucosal barrier function, and exagger-
ated cytokine production. Genetic variants of important
autophagy genes such as ATG16L1, IRGM, and ULK1, have
been reproducibly associated with susceptibility and clinical
outcome of the disease, demonstrating the important role of
autophagy in CD.48-51 Functional studies have revealed that
autophagy and subsequently inflammatory pathways are
heavily influenced by genetic variation in autophagy genes, the
ATG16L1 variant in particular, as has been demonstrated for
defective Paneth cell function,52 impaired bacterial defense,53,54

aberrant antigen presentation,55,56 and increased production of

proinflammatory cytokines including IL1B and IL18.57-59 The
IRGM promoter polymorphism risk allele influences IRGM
expression, at least in part through posttranscriptional regula-
tion by miRNAs.60,61 Furthermore, a well-established genetic
risk factor with the highest predictive value for CD is for the
gene encoding NOD2, a PRR that recognizes peptidoglycans
and activates immune pathways and autophagy.62-65 Another
indication that autophagy is a central process in intestinal
homeostasis is the recent finding of CALCOCO2/NDP52
mutations in CD patients, a gene that codes for an important
factor in phagophore targeting of intracellular bacteria
(Fig. 3).66,67

In addition to CD, important insights have also been pro-
vided by the assessment of autophagy induction and inflamma-
some activation in patients with chronic granulomatous
diseases (CGD). CGD is a primary immunodeficiency charac-
terized by defective ROS production due to mutations in the
proteins forming the NOX (NADPH oxidase) complex.68 In
addition to the defects in host defense, CGD is characterized by
the presence of hyperinflammatory features, such as colitis that
is indistinguishable from CD in 30% of the patients.69 Earlier
studies have demonstrated that IL1B production capacity of
monocytes and macrophages isolated from CGD patients is
increased compared to controls,70,71 bringing into question the
importance of NADPH-dependent ROS production for inflam-
masome activation. Since NADPH-oxidase dependent ROS

Figure 2. The interplay between autophagy and IL1B-inflammasome activation. Production of the pro-inflammatory cytokines IL1B and IL18 is pivotal in antimicrobial
host defense, since this leads to activation of both innate and adaptive immune responses including Th1 and Th17. Autophagy potently regulates these immune
responses by several means. First, autophagy inhibits IL1B and IL18 production through digestion of dysfunctional mitochondria and thereby prevention of mitochondrial
ROS release that is known to activate the inflammasome. Second, autophagy is capable of targeting inflammasome complexes for degradation, which prevents cleavage
of pro-IL1B and pro-IL18 into their biologically active counterparts. Finally, the autophagy machinery engulfs and eradicates pro-IL1B proteins, representing another level
of IL1B regulation. DAMP, danger-associated molecular pattern; PAMP, pathogen-associated molecular pattern; PRR, pattern recognition receptor; ROS, reactive oxygen
species.
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was shown to be important for the induction of LAP,72 this led
to the hypothesis that defective LAP in CGD may lead to
hyperinflammation. Indeed, a recent study showed defective
LAP in both patients with CGD and mice with mutations in
genes encoding the NOX complex, which contribute to the
exaggerated IL1B production.73 More importantly, treatment of
CGD patients having colitis with recombinant IL1RN/IL1RA
(interleukin 1 receptor antagonist) significantly improve the
clinical picture.73,74 IL1RN not only reduces excessive IL1-
driven inflammation, but also restores deficient LAP in NOX-
deficient cells. IL1RN also has intracellular effects, and cellular
uptake of IL1RN has been reported.75 Therefore, IL1RN might
influence LAP through several possible mechanisms: i) direct
inhibition of IL1 bioactivity, ii) intracellular interaction with
the LAP machinery or iii) indirectly via effects on other pro-
cesses such as inflammasome activation which is responsible
for pro-IL1B processing.

Epidemiological studies assessing genetic variants in
autophagy genes demonstrated their association with suscep-
tibility to autoimmune disease as well, such as variants in
ATG5 associated with systemic lupus erythematosus (SLE)76-
78 and systemic sclerosis.79 Furthermore, ATG5 expression is
elevated in both blood and brain-residing T-cells in multiple
sclerosis patients and is associated with the relapsing-remit-
ting disease phenotype.80 These ATG5 genetic variants are
functionally linked to a differential ATG5 expression and
exhibit gene-gene interactions with ATG7 and IRGM,81

thereby likely influencing the degree of activation of the
autophagy process. Interestingly, ATG5 also plays an impor-
tant role in clearing apoptotic cells,82 and a hallmark of SLE
is the deficiency to clear apoptotic cells. Similar to CD,
IRGM has also been implicated in multiple sclerosis based
on the observation that IRGM expression is strongly induced
in affected lesions of multiple sclerosis patients. Consistently,
IRGM1-deficient mice are resistant to the experimental
model of multiple sclerosis, antigen-induced experimental
autoimmune encephalomyelitis (EAE), by promoting blood-
brain barrier integrity and preventing T cell infiltration into
the central nervous system.83,84

SLE is characterized by deregulation of autoantibody-pro-
ducing B cells, infiltration of target organs by inflammatory T
cells and aberrant immune cell activation. The latter is caused
by abnormal activation of myeloid cells triggered by the pres-
ence of immune complexes composed of self-DNA from apo-
ptotic cells and antibodies generated by autoreactive B cells.85,86

While T cells are considered as a major cell type driving initia-
tion and progression of SLE,87,88 innate immune cells are also
implicated in the disease process. In this respect, inappropriate
handling of apoptotic bodies by phagocytes leads to accumula-
tion of autoantigens that could promote loss of tolerance, pre-
disposing the organism to autoimmune responses.89,90

Autophagy is likely involved in these processes, since it influen-
ces T cell development and activation, but also because it exe-
cutes clearance of apoptotic cells and contributes to the
elimination of their immunogenic potential.91

In rheumatoid arthritis (RA), a chronic inflammatory disor-
der affecting the joints, autophagy has a critical role in TNF-
induced joint destruction (in murine experimental arthritis);
TNF activates autophagy by induction of BECN1 and ATG7
and the conversion from MAP1LC3B-I to MAP1LC3B-II in
osteoclasts, providing a mechanism for TNF-associated syno-
vial inflammation and bone resorption.92 These findings sug-
gest that TNF promotes autophagy-dependent osteoclast
differentiation and survival, which is confirmed in human
synovial fibroblasts.93-95

The role of autophagy in infectious diseases

In the fight against pathogenic microorganisms, autophagy
(this form of autophagy is called xenophagy) contributes to
both innate immune defense and to development of adaptive
immune memory, and excellent recent reviews have described
these mechanisms in great detail.96,97 The role of autophagy in
infectious diseases is apparent at the level of microbial handling
by the innate immune system, as well as antigen processing
and presentation of a wide variety of microorganisms ranging
from viruses, to bacteria, fungi, and protozoa.

Figure 3. Interplay between autophagy and inflammation in the pathogenesis of Crohn disease. Multiple facets of inflammatory pathways involved in CD pathogenesis
are influenced by autophagy, ranging on the one hand from defective microbial recognition and phagocytosis in dendritic cells (DCs) through the PRR NOD2, diminished
antigen processing and presentation on MHC class I/II caused by genetic variants in ATG16L1, IRGM, and CALCOCO2, and on the other hand to a loss of inhibition of IL1B
and IL18 production, important pro-inflammatory mediators leading to generation of Th1 and Th17 responses. Furthermore, genetic variation in ATG16L1 impairs the
capacity of Paneth cells to excrete antimicrobial peptides, including DEFA/a- and DEFB/b-defensins. All together, these defects allow for microbial overgrowth and lead
to hyperinflammation. DC, dendritic cell; TCR, T cell receptor.
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Within the context of innate host defense, autophagy pro-
vides the machinery for intracellular killing of microbes by
means of phagophore engulfment and lysosomal fusion. Proper
designation of microorganisms for autophagy processing is
facilitated by protein adaptors such as SQSTM1/p62, NBR1
and CALCOCO2, that are activated downstream of microbial
recognition by pattern-recognition receptors (TLR, NLR, RLR),
providing anchors for phagophore assembly around the
selected cargo.67,98,99 Several intracellular signaling pathways
have been described to induce autophagy by PRRs. Activation
of a TLR4-TICAM1 pathway has been reported to induce
autophagy by Gram-negative bacteria such as Pseudomonas
aeruginosa, and cleavage of TICAM1 by CASP1 inhibits
autophagy.100 In addition, another important factor for TLR-
induced autophagy is activation of the IRF8 transcription fac-
tor, which in turn activates genes involved in autophagosome
formation.101 Induction of autophagy by NLR receptors is
induced by the interaction with the peptidoglycans that activate
a RIPK2/RIP2 (receptor-interacting serine-threonine kinase 2)-
dependent signaling pathway.102,103 Furthermore, a very impor-
tant process during the induction of autophagy is represented
by the interaction with molecular sensors of metabolites. In
this respect, during antimycobacterial responses induction of
autophagy necessitates activation of AMPK that induces
PPARGC1A (peroxisome proliferator-activated receptor
gamma, coactivator 1 a), leading to activation of oxidative
phosphorylation, inhibition of MTOR, and induction of
autophagy.104 A similar dependency on MTOR inhibition and
induction of ROS is required for induction of autophagy by S.
pneumonia.105

Autophagy is also important for the induction of T cell
responses, and recent studies have underlined its crucial role
for lymphocyte survival and memory. During infection with
lymphocytic choriomeningitis virus autophagy is not required
for proliferation and CD8C T-effector function, but is crucial
for long-term cell survival and memory.106 A similar role of
autophagy for CD8C memory was reported during influenza
and MCMV infections.107 During influenza infection, Atg5
knockout mice display a defective lymphocyte survival and pro-
liferation.108 Interestingly, chaperone-mediated autophagy reg-
ulates T cell responses through targeted degradation of
negative regulators of T cell activation.109

At the level of autophagy-inflammation interaction, host
defense mechanisms are directly influenced by the modulation
of proinflammatory cytokines, as described above in detail.
However, the host defense against various classes of microor-
ganisms is not influenced to the same extent. One of the most
important infections for which autophagy makes a major
impact is tuberculosis. Several studies have demonstrated the
crucial role of autophagy for elimination of mycobacteria.20,110

M. tuberculosis induces ubiquitin-mediated targeting in mac-
rophages, resulting in delivery of the pathogen to autolyso-
somes. This response requires the autophagy receptors
SQSTM1, CALCOCO2 and the DNA-responsive kinase TBK1
(TANK-binding kinase 1),110 while inhibition of MTOR
through AMPK activation is a necessary change in metabolic
status of the cell activating autophagy.104 In addition, antimy-
cobacterial peptides are produced in a SQSTM1-dependent
manner.111,112

Autophagy is also important in host defense against other
intracellular pathogens such as Toxoplasma gondii,113,114 Sal-
monella spp.115,116 and Listeria monocytogenes.117 The role of
autophagy for host defense against viruses strongly depends on
the type of infection, and involves several mechanisms, espe-
cially those involved in autophagosome generation and matura-
tion (as detailed in ref. 96), rather than inflammation.
Autophagy is important for removal of herpes simplex virus-
1118 and Rift valley virus,119 and restricts HIV infection by
degrading the HIV1 transactivator Tat in CD4C lympho-
cytes.120 In addition, autophagy not only contributes to the
elimination of the virus, but also controls IL1B induction and
aberrant induction of IL17-dependent lung pathology in respi-
ratory syncytial virus infection.121 Autophagy also proved
important for the host defense against the fungal pathogen
Cryptococcus neoformans, through mechanisms involving the
nonlytic exocytosis of the fungus, but also interfering with pro-
duction of the inflammatory mediators IL6 and CXCL10/IP-10
(chemokine [C-X-C motif] ligand 10).122 In contrast, no effect
of autophagy for host defense against Candida albicans has
been demonstrated,123,124 despite the demonstration of
CLEC7A/dectin-1-dependent accumulation of MAP1LC3B to
phagosomes that increases in vitro killing of the fungus.125

Notably, pathogens have also evolved strategies to evade the
immune response by taking advantage of the autophagy
machinery. For instance, M. tuberculosis latently infects human
immune cells by concealed residence in the autophagosome
and by preventing lysosomal fusion.20 In addition, active myco-
bacterial infection counteracts autophagy through the induc-
tion of MIR30A that inhibits BECN1.126 Salmonella in turn
attempts to inhibit autophagy and increase its survival by acti-
vating PTK2/focal adhesion kinase and MTOR.127 Further-
more, Listeria monocytogenes and Shigella, as well as viral
pathogens such as HIV, have evolved different strategies to
evade the autophagy machinery by inhibition of autophago-
some formation or by modulation of positive (IFNA and IFNB-
IL6 signaling) and negative upstream regulators (MTOR kinase
signaling pathway) of autophagy.128-130

Genetic variants of autophagy genes have been investigated
for their effects on antimicrobial immune responses, which
revealed that the CD-associated ATG16L1 polymorphism
impairs defense mechanisms against Salmonella typhimurium
and increases susceptibility toward Helicobacter pylori infec-
tion.53,131 In addition, genetic variants of both ATG16L1 and
IRGM are associated with sepsis, potentially through modula-
tion of immunoparalysis.132,133 However, in a large cohort no
significant predisposition was observed for polymorphisms in
autophagy genes to developM. tuberculosis infections, although
autophagy profoundly influences the host immune response
against this pathogen.134,135 Similar findings have been reported
for mucosal and systemic infections caused by the fungus Can-
dida spp, indicating the redundant role of autophagy in anti-
candidal host defense.136,137

The impact of autophagy-inflammation interplay on
carcinogenesis

Both autophagy and inflammation are involved in several steps
of carcinogenesis and cancer progression. Autophagy has been
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reported to have both antitumoral effects and tumor-promot-
ing effects in cancer. The generally accepted explanation for
this apparent ambiguous role of autophagy in cancer is that its
role might differ in the different stages of carcinogenesis and in
different tumor types and is related to changes in the tumor
microenvironment and treatment. In addition, the dual role of
autophagy in cancer might reflect the interplay between
autophagy and other fundamental biological processes such as
apoptosis, senescence, cell metabolism, and the immune
system.138,139

In the early stages of cancer development, defects in autoph-
agy machinery or inhibition of autophagy in premalignant cells
might result in impaired degradation and removal of damaged
organelles, unfolded proteins and ROS. These cytosolic compo-
nents, which might accumulate in the cells, produced as a result
of activation of oncogenic pathways result in DNA damage and
maintain the carcinogenic phenotype.140,141 In mice, monoal-
lelic deletion of haplo-insufficient Becn1, results in autophagy
deficiency, leads to spontaneous development of malignant
tumors, and stimulates development of hepatitis-B-induced
premalignant liver lesions.142 Other studies indicate that
BECN1 represents an important tumor suppressor and an
increased BECN1 expression is associated with a favorable
prognosis in several cancers.143-146 Moreover somatic muta-
tions in ATG genes have been described in different malignant
tumors.147,148 In addition, somatic mutations and/or genetic
amplifications in AKT1 and class I phosphoinositide 3-kinase
(PI3K) and somatic or germ-line mutations leading to inactiva-
tion of the tumor suppressor gene PTEN are often found in
malignant tumors.149-153As a result, signaling molecules
upstream of MTOR such as AKT1 and class I PI3K are acti-
vated and exert inhibitory effects on autophagy in malignant
transformed cells. AKT1 can inhibit autophagy either through
activation of MTOR or through MTOR-independent mecha-
nisms such as BECN1 phosphorylation and formation of an
autophagy-inhibitory BECN1-YWHA/14–3–3-VIM/vimentin
intermediate filament complex.154 The class III phosphatidyli-
nositol 3-kinase (PtdIns3K) is an intracellular lipid kinase that
has crucial functions in autophagosome formation, vesicular
trafficking and endocytosis.155 In addition these lipid kinases
represent key signaling molecules that play important roles in
carcinogenesis. Three classes of phosphoinositide and phospha-
tidylinositol 3-kinases have been described according to their
structure and substrate specificity. Of these, the functions of
class I and of class III enzymes are best understood. Class III
PtdIns3k phosphorylates phosphatidylinositol to form phos-
phatidylinositol-3-phosphate. The catalytic subunit of class III
PtdIns3k, PIK3C3/Vps34, binds to other regulatory proteins,
including ATG14, and contributes to the induction of autopha-
gosome formation. In cancer, however, class I PI3Ks are often
activated and therefore their role has been better explored as
potential targets for therapy in malignant processes. In contrast
to class III PtdIns3K, class I PI3K is activated downstream of
receptor tyrosine kinases and G-protein coupled receptors and
upon activation phosphorylates phosphatidylinositol 4,5-
bisphosphate to phosphatidylinositol 3,4,5-trisphosphate.
Through this, PI3K activates AKT and MTOR, which in turn
promotes cell survival and proliferation and suppresses

autophagy. 156-158 Altogether, these studies suggest that auto-
phagy genes can act as tumor suppressor genes in several
tumors, and suppressed or defective autophagy may play an
important role in tumor initiation.

Conversely, in the more advanced stages of tumor develop-
ment and progression, once the carcinogenic phenotype has
been established, the cancer cells rely on autophagy to support
the requirements for energy and provide substrates necessary
for proliferation. This is especially important for surviving in
an unfavorable microenvironment characterized by severe hyp-
oxia and nutrient-deficient conditions. Therefore activation of
autophagy in this context could be regarded as a survival factor,
promoting cell proliferation and tumor progression. This is
particularly relevant in the context of therapeutic response to
cytotoxic agents and ionizing radiation. The strong induction
of autophagy observed as a result of treatment with ionizing
radiation or chemotherapy may contribute to cell survival and
the acquired resistance to therapy in many cancer cells includ-
ing breast cancer, pancreatic cancer, and malignant glioma.159-
162 For this reason, inhibition of autophagy with chloroquine or
hydroxychloroquine in combination with radiotherapy or che-
motherapy has been investigated as a strategy to prevent ther-
apy resistance and sensitize tumors to therapy.163-167 However,
in the context of excessive activation autophagy may lead to
cell death in cells lacking apoptotic machinery, in which the
programmed cell death takes place preferentially through auto-
phagic cell death.168-172 Several mechanisms have been postu-
lated to explain these apparently conflicting roles of autophagy
in tumorigenesis. These include involvement of autophagy in
cell death and cell survival through an intricate interplay with
apoptosis and necrosis by shaping the metabolic and oxidative
stress environment of the cell, its role in quality control for the
homeostasis of proteins and organelles, and its function in the
modulation of tumor-targeted immune responses.138,173 How-
ever the exact regulatory mechanisms of this dynamic process
are not completely understood and due to the length and the
focus of this review this will not be further discussed here. We
will focus instead on the role and the consequences of the inter-
play between autophagy and inflammation in cancer pathogen-
esis and treatment.

The relationship between inflammation and cancer has long
been recognized. Many chronic inflammatory conditions, such
as inflammatory bowel disease, chronic hepatitis, or pancreati-
tis are clearly recognized as precursors of malignancies in the
respective organs.174-177 Moreover, the immune system is the
most important defense mechanism that identifies and elimi-
nates malignant transformed cells and prevents tumor progres-
sion and metastasis. Autophagy has a modulatory role that
shapes the interface between cancer and immune response,
including effects on both tumor cells and immune cells, which
subsequently influence the survival and function of, and inter-
play between, these cells and ultimately results in either tumor-
promoting or tumor-suppressing effects (Fig. 4).

It is well known that tumor cells rely on aerobic glycolysis to
support their energy requirements and to enable increased
protein production (historically known as the Warburg
effect).178,179 This mode of growth, however, requires an
increased influx of glucose, which is often not available in parts
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of the tumor that have no or only limited access to (neo)vascu-
larization. As described above, in conditions of glucose or
amino acid deprivation and hypoxia autophagy is activated as
an important survival mechanism. However, oncogenic events,
such as mutations in the PI3K-AKT-MTOR signaling pathway,
have anti-apoptotic effects and inhibit autophagy simulta-
neously. This impairs the activation of autophagy as a compen-
satory survival mechanism and renders the tumor cells prone
to necrosis.180 In cancer, necrosis is seen as an unfavorable
event because it results in release of highly inflammatory mole-
cules, such as uric acid, ATP/UTP, HMGB1 (high mobility
group box 1), and other damage-associated molecular patterns
(DAMPs).181-183 All together, these inflammatory mediators
and DAMPs promote and maintain malignant features such as
cell survival and proliferation and contribute to recruitment of
macrophages and other specialized antigen-presenting cells
such as DCs.184 These cells in turn stimulate inflammation in
the peritumoral stroma and induce a pro-tumorigenic environ-
ment that promotes angiogenesis, tumor progression, and
metastasis.180

Although not an inflammatory mechanism itself, it is also
important to underline that antigen recognition and presenta-
tion is the cornerstone of the specific immune responses against
malignant cells. Hence, proper functioning of these processes
heavily depends on the integrity of the autophagy machinery. It
has for instance been shown that autophagy facilitates antigen
presentation by tumor cells, such as human embryonic kidney
cells (HEK293T) and melanoma cells, thereby facilitating the
recognition of these cells by immune cells and their subsequent
removal.185

In addition, autophagy induces cellular senescence, a physi-
ological state of sustained cell cycle arrest characterized by a
senescence-associated secretory phenotype. This consists of
increased expression and secretion of several cytokines, chemo-
kines, growth factors, and proteases in the senescent cells,186

which stimulate on the one hand the recruitment and activa-
tion of phagocytes responsible for the removal of these cells,
and on the other hand contribute to maintenance of the senes-
cent phenotype. Subsequently, failure to induce autophagic flux
and immune-mediated senescence increases the susceptibility
to hepatocellular carcinoma in a mouse model.187

The interplay between autophagy and inflammation is
particularly interesting in the context of therapeutic impli-
cations, and the concerted targeting of these 2 processes
can be explored for novel strategies. TNFSF10/TRAIL
(tumor necrosis factor [ligand] superfamily, member 10)
induces cell death in different cancer cells and therefore
contributes to immune cell-mediated cytotoxicity.188-190

However, pharmacological treatment with recombinant
ligands has been hampered by the occurrence of therapy
resistance.191 Nevertheless, blocking autophagy in the FRO
anaplastic thyroid cancer cell line with ATG7 siRNA sensi-
tizes the cells to TNFSF10-induced apoptosis, indicating
that modulation of autophagy holds important therapeutic
potential for anticancer treatment.192

Moreover, autophagy plays an important role in the
response to chemotherapy of some tumors, in particular
through influencing the immune response in the tumor
microenvironment. Treatment with chemotherapy can induce
immunogenic cell death.193 In this process, macrophages and

Figure 4. The role of crosstalk between autophagy and inflammation in cancer. Induction of autophagy is a double-edged sword with both protumorigenic and antitu-
morigenic effects. Processes downstream of autophagy that influence tumor progression and treatment resistance are comprised of cell survival pathways and recruit-
ment of innate immune cells following release of DAMPs by necrotic tumor cells. Conversely, antitumorigenic signaling is evoked by autophagy-mediated immunogenic
cell death and inhibition of tumor-associated inflammation. An outstanding example of the diverse and apparently opposite effects of autophagy on cancer initiation and
progression is the induction of cellular senescence and subsequent removal of senescent cells; depending on the cellular context this is either pro- or anti-tumorigenic.
APC, antigen-presenting cell.
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DCs are attracted and recruited in the peritumoral stroma by
molecules exposed at the cell surface or released in the tumor
microenvironment as a result of apoptosis and necrosis fol-
lowing treatment with chemotherapeutic agents. DCs engulf
the damaged tumor cells (remnants) and activate T-cells
through antigen-presentation. These cells exert an antitumoral
effect on the remaining unaffected cancer cells, thus enhanc-
ing the antitumoral effect of the chemotherapeutic agent.
Michaud et al. have shown in cell lines and mouse models
that autophagy is crucial for ATP release by the chemother-
apy-induced dying tumor cells and for the induction of the
antitumoral immunogenic response.194 In this study, therapy
with methotrexate results in production of significantly lower
amounts of ATP by autophagy-deficient tumors and a lack of
antitumoral immunogenic responses. The immunogenicity of
the autophagy-deficient cells could be restored after treatment
with ARL67156, an inhibitor of ecto-ATPases that increase
the extracellular ATP concentration, and after treatment with
recombinant human IL1B, the production of which depends
on the availability of ATP.194 Building upon these findings,
Ko et al. showed that autophagy-dependent ATP release from
stressed or dying tumors after radiotherapy contributes to
lymphocyte infiltration in the tumor microenvironment and
to the efficacy of radiotherapy in immunocompetent mice.195

Furthermore, Rao et al. report that non-small lung
carcinoma tumors developing in autophagy-deficient KRAS;
atg5fl/fl mice have an accelerated growth compared to tumors
developing in autophagy-competent KRAS; Atg5fl/C animals.
In this model, the autophagy deficient tumors also show
increased infiltration with FOXP3C regulatory T cells and
increased expression of ENTPD1/CD39 ecto-ATPase. These
effects can be reversed by pharmacological inhibition of
ENTPD1, thus supporting the concept that autophagy defi-
ciency contributes to carcinogenesis through inhibition of
anticancer immunosurveillance.196

Therefore, these data indicate that the immunogenic
responses and immunosurveillance against cancer are depen-
dent on the interplay between autophagy and inflammation. In
addition the autophagy status contributes significantly to
tumorigenesis and to the efficacy of chemo- and radiotherapy.

Conclusions and future perspectives

Autophagy influences several key components of the immune
response, and thus plays a critical role in regulating inflamma-
tory responses. It has even been suggested that autophagy
evolved as a primordial host defense mechanism of eukaryotes.3

As evolution progressed, autophagy has intimately integrated
with the other components of host defense, including the
inflammatory reaction.

Despite the increasing knowledge about the role of autoph-
agy in modulation of inflammation, this field is still only in its
beginnings. Little is known about the involvement of the
autophagy-related SQSTM1-like receptors for the modulation
of inflammation, although some initial data have suggested
important effects.197,198 The pathophysiological relevance of
autophagy-inflammation interplay has not been studied yet in

the context of colonization of mucosal membranes, and detec-
tion of tissue invasion. The influence of autophagy for directing
polarization of adaptive immune responses (e.g., Th1 vs.
Th2 vs. Th17) also warrants additional study in the coming
years. In addition, the study of the balance between induction
of autophagy and inhibition of inflammation is only in its
beginning in the setting of understanding the pathophysiology
of different types of cancer, and remains nearly untouched in
autoimmune and autoinflammatory diseases. Understanding
its role in tissue repair and remodeling is also an important
challenge for the future.

Finally and most importantly, modulation of autophagy
activity may represent a promising therapeutic approach for a
wide range of inflammatory conditions. In this respect, a recent
study reported the development of an autophagy-inducing pep-
tide, Tat-BECN1, which decreased the replication of several
human pathogens in vitro, and reduced mortality in mice
infected with chikungunya or West Nile virus.199 However, at
the same time, autophagy is a fundamental evolutionarily con-
served process, and detailed knowledge about autophagy is nec-
essary regarding its role in different diseases, cell types, and
timelines, in order to avoid improper (or even dangerous)
manipulation of a process fundamental for cell integrity. Never-
theless, future investigations are warranted in order to pursue
novel autophagy-directed therapeutic approaches to effectively
treat the ever-growing number of patients suffering from
immune-mediated disorders.
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PAMP pathogen-associated molecular pattern
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PTEN phosphatase and tensin homolog
PINK1 PTEN-induced putative kinase 1
RIPK2 receptor-interacting serine-threonine kinase 2
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RLR RIG-I-like receptor
ROS reactive oxygen species
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Th T helper
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TRAF TNF receptor-associated factor
TNFSF10/TRAIL tumor necrosis factor (ligand) superfamily, member

10
TICAM1/TRIF toll-like receptor adaptor molecule 1
ULK1 unc-51 like autophagy activating kinase 1.
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