
RESEARCH ARTICLE

New regression formula to estimate the

prenatal crown formation time of human

deciduous central incisors derived from a

Roman Imperial sample (Velia, Salerno, Italy,

I-II cent. CE)

Alessia Nava1,2*, Luca Bondioli2, Alfredo Coppa1, Christopher Dean3, Paola

Francesca Rossi2, Clément Zanolli4

1 Dipartimento di Biologia Ambientale, Università di Roma ‘La Sapienza’, Rome, Italy, 2 Museo delle Civiltà.

Museo Nazionale Preistorico Etnografico ‘Luigi Pigorini’, Section of Bioarchaeology, Rome, Italy,

3 Department of Cell and Developmental Biology, University College London, London, United Kingdom,

4 Laboratoire AMIS, UMR 5288, Université Toulouse III, Toulouse, France
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Abstract

The characterization and quantification of human dental enamel microstructure, in both per-

manent and deciduous teeth, allows us to document crucial growth parameters and to iden-

tify stressful events, thus contributing to the reconstruction of the past life history of an

individual. Most studies to date have focused on the more accessible post-natal portion of

the deciduous dental enamel, even though the analysis of prenatal enamel is pivotal in

understanding fetal growth, and reveals information about the mother’s health status during

pregnancy. This contribution reports new data describing the prenatal enamel development

of 18 central deciduous incisors from the Imperial Roman necropolis of Velia (I-II century

CE, Salerno, Italy). Histomorphometrical analysis was performed to collect data on prenatal

crown formation times, daily secretion rates and enamel extension rates. Results for the

Velia sample allowed us to derive a new regression formula, using a robust statistical

approach, that describes the average rates of deciduous enamel formation. This can now

be used as a reference for pre-industrial populations. The same regression formula, even

when daily incremental markings are difficult to visualize, may provide a clue to predicting

the proportion of infants born full term and pre-term in an archaeological series.

Introduction

Human teeth are (paleo)biological archives capable of permanently recording an individual’s

developmental growth history. A number of classic papers have described the incremental

nature of enamel growth and also suggested the likely circadian nature of enamel short period-

markers and the regular longer-period rhythm of incremental markings associated with
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surface enamel perikymata [1–8]. The first use of these enamel incremental structures in clini-

cal dentistry to put a time scale to tooth crown formation was by Schour and Massler [9],

Kajiyama [10], and Takiguchi [11]. However, Schour [12] was the first to fully describe the

neonatal line in deciduous teeth as a marker of birth and Boyde [13] was the first to use enamel

incremental markings to establish an age at death in archaeological material. The history of

these early studies has been fully reviewed by Boyde [14], Dean [15], FitzGerald [16], Smith

[17], and most recently and comprehensively by Hillson [18]. In addition, the evidence for the

daily incremental nature of enamel cross striations has been strengthened with new evidence

that clock-genes operate during amelogenesis [19–22].

Dental enamel does not undergo remodeling and preserves its original structure unchanged

through life [23]. Therefore, the histomorphometrical characterization of preserved mineral-

ized enamel growth increments enables the retrieval of information about the following: the

Crown Formation Time (CFT [24–28]); the Daily enamel Secretion Rate (DSR, the speed at

which the ameloblast–the enamel forming cells–move towards the outer surface of the tooth

[24–30]); the Enamel Extension Rate (EER, that is, according to Shellis [31], the rate of differ-

entiation of secretory ameloblasts, or the speed at which ameloblasts into the secretory front

are recruited along the enamel-dentine junction–EDJ–between the dentine horn in the cusp

towards the enamel cervix [28,31–33]); the health status and, in individuals with still forming

crowns, the age at death [14,29,34–40]. The rhythmical growth of enamel is expressed in

humans at two different levels: a circadian scale that produces the cross-striations and a longer

period scale (near- weekly in humans) that give rise to the regular Retzius lines (rev. in [41]).

Physiological stresses exceeding a certain threshold leave their permanent marks in the corre-

sponding position of the secretory ameloblast front, producing Accentuated Lines (AL or Wil-

son bands [9, 41, 42]) that are superimposed onto the regular physiological growth markings.

The birth event is recorded in the forming enamel of individuals surviving the perinatal stage,

and leaves an Accentuated Line, known as Neonatal Line (NL, rev. in [43, 44]). The NL sepa-

rates the enamel or dentine formed prenatally from that growing after birth and constitutes a

reference point (age zero) with which to calibrate a daily time scale of the forming dental

enamel. In individuals that survived at least 10–15 days after birth [38, 43], but maybe even

less [45], the NL is thus present in all the crowns that started to form in utero, i.e. all the decid-

uous crowns and usually the protoconid of the first permanent mandibular molar.

However, studies that have used enamel incremental growth specifically to analyze decid-

uous crown formation times are fewer than those on permanent teeth. Dean [46] and Mac-

chiarelli [28] described a faster overall trajectory of occlusal enamel growth in deciduous

molars than in permanent modern human molars and Mahoney [26], Birch [47], Birch and

Dean [27, 48] used daily enamel increments in deciduous teeth to estimate crown formation

times.

According to Hillson [18], "Brown striae [Retzius lines] are less prominent in prenatal

enamel matrix then they are in the post-natal matrix, but cross striations can be counted in

places". This general homogeneity can be attributed to the protected and buffered environ-

ment in which the tissue develops [49, 50].

The estimates of DSR and EER on prenatal enamel are mostly available from modern refer-

ence collections of exfoliated/extracted deciduous teeth [25–28, 31, 32, 47, 48]. Studies on

deciduous DSR report a topographical variation of the rates in different part of the tooth

crown: the speed at which the ameloblasts move and secrete enamel matrix is lowest near the

EDJ, but accelerates toward the outer enamel surface and slows down toward the end of

enamel formation at the cervix [48]. Mahoney [26], on a Medieval and contemporary tooth

series, observed that: "the prenatal enamel growth trajectory for deciduous incisors differed

relative to the other tooth types. Incisors combined rapid growth with initiation early on in the
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second trimester [of pregnancy] to produce a greater proportion of their crown before birth

than any other tooth type". According to Mahoney [26], the DSR in the cuspal enamel of max-

illary deciduous central incisor ranges from a mean of 3.59 μm day-1(sd = 0.39) close to the

EDJ, to a mean of 5.15 μm day-1 (sd = 0.19) moving towards the outer enamel.

Linear regression equations were derived by Mahoney [25] for deciduous incisors with

unworn enamel and those where the occlusal enamel is worn but the EDJ remains intact

(unworn incisors: CFT = 122.980 +11.357 x [area of tooth crown section in mm2]; worn inci-

sors: CFT = -236.268+43.751 x [length of EDJ in mm]). Birch and Dean [27] used cumulative

daily cross-striation counts made along defined prism paths recorded at every 100 μm, or final

50 μm of enamel thickness, from the EDJ to the enamel surface to estimate the DSR in a sample

of modern deciduous teeth. Linear regression equations were also generated from these cumu-

lative cross-striation counts by plotting them against linear enamel thickness along a given

prism path. Therefore, the previous contributions provide an expeditious way to predict the

CFT of the deciduous dentition.

The present paper reports new data describing prenatal crown formation times (pCFT),

DSR and EER of central deciduous incisors from the Imperial Roman necropolis of Velia (I-II

century CE, Salerno, Italy) [51, 52]. In this study we concentrate on prenatal enamel formation

in deciduous central incisors because a greater amount of enamel forms prenatally in decid-

uous central incisors than in any other tooth [26]. Since the dental series used by Birch and

Dean [27] was composed of a contemporary clinically extracted sample of deciduous teeth, we

expect there to be differences between this present pre-industrial sample and the modern one.

These differences are likely to add to the inter-population variability we expect to observe

among modern human populations today but they are also likely to reflect the additional

health-related constraints experienced by the mother and fetus during development in this

archaeological population. Indeed, new data from pre-industrial populations are required to

build a more consistent and appropriate reference dataset for the analysis of archaeological

and even of paleoanthropological dental specimens. Moreover, the Velia dataset has been used

to derive a new regression formula to estimate human deciduous central incisors prenatal

crown formation time as reference for pre-industrial populations. Given the large sample

available, it was the specific aim of this paper to contribute towards a better understanding of

the temporal events and processes underlying prenatal and perinatal enamel development in

ancient populations. Potentially, these new data may in the future make an important contri-

bution to studies that aim to estimate the proportion of infants in archaeological populations

born pre-term or full-term [45] and to estimates of age at death of infants when daily incre-

mental markings are difficult to visualize [38, 53].

Materials and methods

Histological analysis was conducted on the deciduous dentition of infants from the large Impe-

rial Roman necropolis at the ancient port of Velia (I-II centuries CE, Campania, Southern

Italy) [54]. The ancient city of Velia was founded as a Greek colony (originally named Elea)

around 540 BCE, on the west coast of Italy, south of Salerno. The city, under Roman control

since the late third century CE, functioned as a trading centre and port. During the Middle

Ages Velia came under episcopal control and, after a period of fast decline, was completely

destroyed between VIII and IX centuries CE. The skeletal collection of Velia is kept at the

Museo delle Civiltà - Museo Nazionale Preistorico Etnografico Luigi Pigorini of Rome to

which three authors (AN, LB, and PFR) are affiliated. No permission is needed for these

analyses.

New regression formula to estimate the human prenatal crown formation time

PLOS ONE | https://doi.org/10.1371/journal.pone.0180104 July 12, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0180104


Eighteen deciduous central incisors (12 upper and 6 lower) from the necropolis of Velia

were histologically sectioned along the central labiolingual plane and prepared as thin sections

with a final thickness of about 100 μm, following the method in [55]. Specimens with absence

of incisal wear and where there was good visibility of cross-striations in the prenatal enamel

were selected for further study. The selected dental sample consists of crowns that were not

fully formed at the moment of death from individuals interred in single graves. The morpho-

logical (skeletal and dental) age at death estimation (reported in S1 Table), together with the

single interment of the bodies, ensures us that all these individuals were born and, following

Scheuer and Black [56], died whether perinatally (around the time of birth) or as neonate (first

4 weeks after birth) or infants (birth to the end of the first year). Therefore, the absence of the

NL means that the individuals didn’t survive enough to form the birth landmark [38, 43, 45].

In those cases, where the NL was absent, the individuals died soon after birth and the last

formed enamel of the crown can be considered as almost coincident with birth and death.

Accordingly, in the absence of the NL all the observable enamel can be considered as prenatal

(see S1 Fig). Moreover, the series more than likely includes pre-term individuals that contrib-

ute to the distribution of age at death and sample structure.

The macroscopic age at death assessments of Velia’s individuals were based on the develop-

mental stages of deciduous and permanent teeth [57, 58] and on the diaphyseal length of long

bones [59, 60].

Micrographs of each histological section were prepared at 200x of magnification, by acquir-

ing a series of overlapping pictures under polarized light using a high resolution camera (Leica

DFC 295) attached to an optical transmitted light microscope (Laborlux S Leica AG). The pho-

tomontages were assembled through the software Microsoft Image Composite Editor (ICE

version 2.0.3.0–64 bit).

The time taken to form each crown prior to birth was calculated following the method

described in [27, 33, 61]. Segments of various length were traced and measured along single

enamel prisms between the EDJ and a biological landmark (AL or physiological line). Starting

from the tip of the dentine horn and avoiding the gnarled central cuspal enamel, the line was

followed back to the EDJ. Starting from this point, the same procedure was repeated as many

times as necessary until reaching the most cervical available point of the crown or the Neonatal

Line. For each segment along the prisms the total formation time was determined by direct

count of the cross-striations. Two observers performed all counts independently (AN and LB),

after a common agreement on the identity of the biological landmarks. The measured prism

lengths do not exceed 200 μm (following Birch and Dean [27]) except in a few cases where the

long period markers were not clearly discernible in the first 200 μm (S2 Table). Indeed, the

correlation of the DSR with the prism length is very low (Pearson’s R = 0.18) and it is not sig-

nificantly different from zero. This low correlation ensures that the different lengths of the

prisms did not affect the consistency of the DSR evaluation.

The final cross-striation counts were obtained as the average of the repeated measurements

(coefficient of reliability R = 0.96 [62]; t test for repeated measurements t = -0.05, df = 74,

p = 0.96). Distances were plotted against cross-striation counts to derive the regression for-

mula for the deciduous central incisors. In order to compensate for the presence of possible

outliers, a robust regression method was adopted [63], with the constraint of the intercept

equal to zero (no prism length equal to no days of enamel matrix production).

The cross-striation counts of each prism’s portion were used to calculate the DSRs. Mea-

surements of the EDJ length between biological markers, and the corresponding number of

days taken to form that length, were used to derive the EER as micrometers per day. Measure-

ments along the EDJ were repeated from the tip of the dentine horn until the NL or the end of

the crown [32].

New regression formula to estimate the human prenatal crown formation time
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In order to better illustrate the changes of the DSR and of the EER along the EDJ of the

developing crown, the EDJ length of all teeth has been divided into three segments of different

proportion of the total length: a. the cuspal-middle portion that covers the 0–70% of the prena-

tal EDJ length; b. the middle-neonatal portion that covers the 70–90% of the prenatal EDJ

length; c. the neonatal portion that covers the remaining 10% of the prenatal EDJ length. The

three segments of unequal length were chosen because the EER in the cuspal region of the cen-

tral deciduous incisors forms very fast. Consequently, any cross-striation count along a rather

short prism length, when close to the tip of the dentine horn, corresponds to a very long frac-

tion of the total EDJ length forming at the same time.

Finally, for one individual (Velia T.237), the topographical distribution of the DSR was cal-

culated by collecting random measurements (N>100) along the prisms and recording the cor-

responding cross-striations counts between the EDJ and the surface enamel. The

corresponding spatial distribution of the DSR was calculated from the raw data using a surface

obtained from a Generalized Additive Model fit [64].

The pCFT variation profiles with reference to the EDJ were calculated with a locally

weighted polynomial regression fit [65] of the lengths on the EDJ against the prenatal CFTs

(data from S2 Table).

All regression analyses and graphs were performed using the R statistical package ver. 3.3.3

[66], together with the robustbase (Basic Robust Statistics package, version 0.92–6 [67]) and

the mgcv packages (mgcv package, version 1.8–17 [64]).

Results

Direct counts of cross-striations were made in all the crowns from the Velia series. Table 1

reports the individual crown formation times of the prenatal portion of the incisors’ crowns

(pCFT). The mean of the pCFT for the upper central incisors is 125 days (sd = 28.6, n = 12)

and 107 days (sd = 19.1, n = 6) for the lower ones. S2 Table reports the individual cross-stria-

tions counts, prism lengths and EDJ measurements. The analysis of covariance (ANCOVA)

run with the prism length as the dependent variable, the pCFT as the covariate and the dental

arch as the factor, shows no significant interaction between the pCFT and the arches

(F = 1.415, df = 1, p = 0.24).

Only five teeth showed the presence of a clear NL (S1 Table), because the corresponding

individuals survived birth for a sufficient amount of time for enamel to be preserved beyond

the NL (S1 Fig). The remaining 13 individuals did not survive long enough to form a NL or

were stillborn. The mean pCFT for the survivors (x = 130.0, sd = 30.0, N = 5) is, as expected,

higher that the mean of the individuals that died perinatally (x = 114.7, sd = 25.3, n = 13) even

if the difference of the means is not statistically significant (Mann Whitney U test with conti-

nuity correction, W = 23, p = 0.37). Moreover, we have to consider that the most cervical and

outer portions of the forming enamel, composed only of recently secreted immature enamel

matrix, has been lost in the post-depositional time. As noted by Boyde [68] cited by [37], “the

amount of tissue likely to be lost from the rotting of immature enamel probably will not

amount to more than a week or two’s worth of growth”. Indeed, [38, 45, 53] have demon-

strated that this is likely to be the case.

S1 Table also reports the estimated pCFT for the Velia individuals as derived from the

regression equations for the central incisors proposed by Birch and Dean [27] and from the

regression of the total EDJ length in reference to the CFT, as proposed by Mahoney [25]. In

Mahoney [25] the formulae estimate total crown formation from the total enamel area or from

the total EDJ length, combining the pre- and post-natal portion of the crown, and are therefore

not fully appropriate for estimating the pCFT. The difference between the direct counts and
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the estimated pCFT from the regression formula in [27] is constantly positive with the mean of

43 days and a standard deviation of 17.06 (range = 9 to 69). The major source of discrepancy is

the presence, in the Birch and Dean [27] formula for the central incisor, of an intercept con-

stant of 6.73 days. In their total crown formation time estimates (the sum of both prenatal and

postnatal enamel formation times) Birch and Dean [27] summed the estimates of prism forma-

tion times made along several prism lengths that together span the whole of enamel formation

from the dentine horn in the cusp along the EDJ to the cervix. The value of each individual

time estimate includes the same intercept constant (6.73) which, therefore, cumulates and

increases the crown formation time by a fixed value for each partial estimate of the total prism

length formed during crown formation. Indeed, with this approach, the more segments that

are measured, the larger is the discrepancy with the direct account. Therefore, a new regression

formula, targeted for the prenatal enamel of the deciduous central incisors, has been derived

Table 1. Individual prenatal enamel growth parameters in the Velia series. The predicted values of pCFT from the new regression formula and the resid-

uals from the direct count are also reported.

ID tooth class and

presence of the NL

prenatal CFT

(days) direct

count

prenatal CFT (days)

estimated by the new

regression

deviation direct

count-new

regression

DSR in μm/

day (sd; n)

Cuspal- Middle

EER in μm/day

EER in μm/

day (sd; n)

T98 upper present 179 145 34 3.81 (0.20;

3)

54.0 30.77 (21.25,

3)

T142 lower absent 105 97 8 4.28 (0.24;

3)

58.0 42.70

(21.64;2)

T155 I upper absent 145 127 18 4.18 (0.60;

4)

37.7 28.33 (8.81;3)

T168 I upper absent 120 120 0 4.75 (0.37;

3)

55.4 35.53 (17.64;

3)

T197 upper present 120 114 6 4.25 (0.41;

3)

51.9 38.37 (12.20;

3)

T221 lower absent 76 67 9 4.20 (0.29;

3)

53.8 37.43

(14.59;3)

T229 upper present 138 134 4 4.57 (0.29;

3)

54.5 33,10 (18.65;

3)

T237 lower absent 102 93 9 4.14 (0.33;

4)

54.3 41,90 (10.92;

3)

TT243 upper present 100 111 -11 5.18 (0,17;

4)

84.3 46.65 (25.77;

4)

T252 upper absent 164 133 31 3.63 (0.53;

8)

59.1 31.34 (14.37;

7)

T301 lower absent 109 104 5 4.37 (0.33;

5)

41.1 51.08 (6.66;

4)

T312 upper absent 133 130 3 4.54 (0.29;

6)

63.3 42.28 (12.21;

6)

T330 upper absent 108 118 -10 5.04 (0.29;

5)

55.2 41,50 (14.77;

4)

T344 upper absent 114 130 -16 5.31 (0.40;

5)

59.3 45.98 (14.17;

4)

T349 lower absent 135 146 -11 5.01 (0.33;

5)

67.4 41.17 (22.82;

3)

T399 lower present 114 121 -7 4.95 (0.56;

4)

39.7 35.68 (5.56;

4)

T422 upper absent 73 82 -9 5.22 (0.49;

3)

59.6 48.35 (15.91;

2)

T438 upper absent 111 123 -12 4.98 (0.63;

5)

65.4 51.63 (11.24;

4)

https://doi.org/10.1371/journal.pone.0180104.t001

New regression formula to estimate the human prenatal crown formation time

PLOS ONE | https://doi.org/10.1371/journal.pone.0180104 July 12, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0180104.t001
https://doi.org/10.1371/journal.pone.0180104


from the Velia sample that takes count of the effects of including an intercept constant. In

order to overcome the effect of the intercept value, the regression has been forced to pass

through the origin (no enamel matrix secretion = no formation time).

Fig 1 illustrates the new regression, compared with the published data in Birch and Dean

[27] and the corresponding regression. The 95% confidence interval for the predicted values is

also shown in the same figure. The robust regression formula for the Velia sample, forced to

have intercept equal to zero, is Y = 0.216 X (X = prism length in μm; Y = cross striations

count), with the lower 95% boundary Y = 0.208 X and the upper 95% one Y = 0.238 X. With

this approach, the inverse of the angular coefficient of the formula represents the estimated

overall DSR and is equal to 4.64 μm day-1, a value higher than the reported mean DSR of

3.43 μm day-1 by Birch and Dean [27], but closer to the Mahoney [26] figures (DSR = 4.25 μm

day-1). The adjusted R2 is 0.986, but the real significance of this parameter is weakened by forc-

ing the intercept to be zero. A polynomial regression fit was attempted using different powers,

but the best fit obtained with the cubic do not better explain the total variability (adjusted R2 =

0.97) and, consequently, the sum of squared residuals tends to increase in reference to the lin-

ear approach.

The fifth column in Table 1 reports the residuals of the new regression formula. The abso-

lute difference between the direct count and the estimated pCFT from the regression has a

mean of 11 days and a standard deviation of 8.74 (range = -34 to 16). The mean error of the

estimate is 9.8% for the upper dentition, 7.9% for the lower, 8.7% for the survivors (showing

the NL), and 9.2% for the non survivors (without the NL). The analysis of the residuals shows

that lower mean individual DSR values correspond to the underestimate of the pCFT, and vice

versa.

Table 1 reports the individual DSR and EER as calculated by moving along the EDJ from

the dentine horn to the cervix for the 18 teeth. The number of measurements along the EDJ in

the crown varies from a minimum of 3 segments to a maximum of 8. The mean DSR for all the

segments measured in the crown is 4.57 μm day-1 (sd = 0.62, n = 76) which differs by 0.7 μm

day-1 from the robust regression estimate. The mean EER for the whole crown is 40.07 μm

day-1 (sd = 14.79, n = 65).

Fig 2 reports the boxplots of the DSR distribution along the different portions of the crown.

As noted by Birch and Dean [27] the DSR does not change substantially moving from the cus-

pal to cervical region along the EDJ (comparison of the DSR among regions: Kruskal-Wallis

test, chi-squared = 0.92863, df = 2, p-value = 0.6286). However, an increase of the variability

moving towards the most cervical forming enamel is noticeable, even if not statistically signifi-

cant (Levene’s test for homogeneity of variance: F = 0.824, df = 2, p-value = 0.434). This sug-

gests that, even for measurements along prism paths that fall beyond the prenatal enamel

formation period, the new regression equation (Y = 0.216 X; X = prism length in μm;

Y = cross striations count) would in addition more accurately predict cumulative enamel for-

mation times for deciduous incisors than the original regression formula presented in Birch

and Dean [27] because the intercept is forced through the origin (see above).

Enamel Extension Rate decelerates sharply through time (i.e. along the EDJ towards the

cervix, the correlation between pCFT and EER is negative and significantly different from

zero, Pearson’s R = -0.781, t = -9.94, df = 63, p-value < 0.001). Fig 3A illustrates the scatter plot

of pCFT against EER. The best estimate of this trend in deceleration is given by a Generalized

Additive Model [65] predicting the EER from the pCFT with a thin plate spline smooth term

for the pCFT. The explained deviance equals 63.2% of the total. Given the non-linear nature of

the relationship between the EER and the growing crown, the DSR is only weakly correlated

with the EER (Pearson’s R = 0.25, t = 2.08, df = 63, p = 0.041).
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Fig 3B reports the boxplots of the EER distribution along the previously defined crown seg-

ments, as in Fig 2. EER changes substantially (Kruskal-Wallis test: chi-squared = 31.591,

df = 2, p-value < 0.001) along the EDJ. Conversely, the variability moving towards the most

cervical forming enamel is stable and not statistically significant (Levene’s Test for Homogene-

ity of Variance: F = 0.368, df = 2, p-value = 0.694).

Fig 4 shows the regression of the pCFT on the EDJ length. The length of the EDJ is posi-

tively correlated with the pCFT (R = 0.87, t = 13.87, df = 63, p<0.01). The robust regression

formula, forced again to have the intercept equal to zero, is Y = 0.0214 X (X = EDJ length

in μm; Y = cross striations count), with the lower 95% boundary Y = 0.02 X and the upper 95%

one Y = 0.029 X. The adjusted R2 is 0.9649.

Because the EER does not vary linearly along the EDJ, a polynomial regression fit was

attempted, but the quadratic terms are not statistically significant and do not better explain the

total variability (adjusted R2 = 0.81).

Fig 5 shows the increase in EDJ length during the time of formation of the crown for all the

18 individuals from Velia. Despite a large inter-individual variability, the general trend shows

the clear deceleration in the recruitment of new secretory ameloblasts along the EDJ.

Fig 6A reports the histological section of the individual T.237 used to illustrates the topo-

graphic distribution of the DSR values on the prenatal portion of the buccal aspect of the lower

central incisor. The map (Fig 6B) confirms the general pattern of an almost stable rate of

Fig 1. Regression of the Velia cross-striations count against the prism length. The Birch and Dean [27]

regression for the central deciduous incisors is also shown.

https://doi.org/10.1371/journal.pone.0180104.g001
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enamel matrix secretion close to the EDJ along the whole of its length with only limited reduc-

tion in secretion rate towards the most cervical portion. Conversely, the DSR accelerates across

a gradient from the EDJ toward the outer surface of the crown, but still with rates increasing

by a micrometer or less per day across the whole thickness of enamel (something that contrasts

markedly with permanent enamel [69]).

Skinner and Dupras [70] investigated the location of the NL in primary teeth showing that

it differs significantly among pre-term, full term and post term births. Similarly, it is possible

to approximate the gestational age of Velia’s individuals from their pCFTs. The current litera-

ture (reviewed in [27]) suggests that the deciduous central incisor crown starts mineralizing

between 13 and 20 gestational weeks (91 and 140 days respectively). Assuming the average

duration of a singleton pregnancy to be equivalent to 39 weeks (273 days), then the initial min-

eralization for the central deciduous incisors (expressed by the pCFT) in full term individuals

would range between 182 and 133 days before birth. Therefore, it is reasonable to consider as

pre-term individuals those that have a pCFT in the central incisors shorter than 133 days. The

histogram of the pCFT in the Velia series is shown in Fig 7. Considering the shape of the sam-

ple distribution, showing a gap between 120 and 130 days, we can cautiously define a more

conservative threshold between pre-term and full term individuals at 120 days of pCFT. There-

fore, all the individuals having a pCFT equal or shorter than 120 days can be diagnosed as

born pre-term. With this assumption in the Velia sample, we judge that 12 individuals were

Fig 2. Boxplot of the DSR variation along the EDJ in the Velia sample. The boxplot shows the median,

the range (lower and upper whisker), the first quartile (lower hinge) and the third quartile (upper hinge).

https://doi.org/10.1371/journal.pone.0180104.g002
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born pre-term and 6 full term. Among those identified as pre-term individuals, two (T.197

and T.243) survived long enough to form the NL.

Discussion

The study of the portion of deciduous crowns that forms prenatally is of primary importance

in understanding the timing and modality of fetal enamel development because it reflects life

history parameters, such as the duration of pregnancy and stage of development at birth. It has

the potential to open up a window on the mother’s health status during the last phases of preg-

nancy and also on any differences in the incidence of fetal stress events [18, 71].

In this context, the Velia sample provides a perfect opportunity to explore this potential fur-

ther, in particular because of the exceptional preservation and visibility of the fine enamel

microstructure. The data retrieved from the deciduous central incisors from Velia, i.e. the pre-

natal DSR, EER, CFT and the resulting regression equation, most likely represent the best ref-

erence so far available for any research aimed at estimating the prenatal CFT in ancient

populations or in fossil specimens when prenatal incremental markings are indistinct. More-

over, for the first time with such resolution (but see [72] for a similar approach), it was possible

to estimate the ratio between pre-term vs full term births in an archaeological population (Fig

7).

So far, studies on the prenatal portion of the tooth crown in deciduous teeth have mainly

focused on reconstructing the ontogenetic trajectories of daily enamel secretion rates, DSR,

and enamel extension rates, EER, with the aim of creating standards that can be applied to the

human and primate fossil record [26, 27, 73]. In other circumstances also, for example, when

poor preservation of the incremental features preclude the visualization of a complete tempo-

ral record of growth in prenatal enamel, thereby preventing a direct estimate of the pCFT, sta-

tistically based models of growth are still required to reconstruct enamel total formation times.

Moreover, even when enamel and dentine microstructure can be imaged non-destructively

Fig 3. Variation of the EER along the EDJ in the Velia series. (A) Scatterplot of the pCFT against EER. (B) Boxplot of the EER variation

along the EDJ. The boxplot shows the median, the range (lower and upper whisker), the first quartile (lower hinge), and the third quartile

(upper hinge).

https://doi.org/10.1371/journal.pone.0180104.g003
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(so-called virtual histology) [74–77] using techniques such as high resolution phase contrast

synchrotron light microtomography or, in certain circumstances, with μMRI (magnetic reso-

nance microimaging), a statistical model to evaluate tooth development is still required, espe-

cially when a fully readable virtual histological record cannot be retrieved.

To address these limitations, analytical approaches based on regression estimates of enamel

growth parameters have been proposed and used to reconstruct tooth crown growth [25, 27,

48, 78].

However, to date, there is a need for more studies to collect additional data for deciduous

enamel growth in past population that aim to assess whether differences exist in prenatal

enamel growth then and now. This study adds to the data already available from archaeological

horizons [24–26], and contributes to the challenge of not having to use modern reference

series when studying archaeological skeletal collections.

The slope of the regression lines in Fig 1 suggests, in fact, that there is some stability across

different populations. The regression slope of the Velia sample is only slightly different from

that of Birch and Dean’s [27] original sample. In fact, the regression lines are sub-parallel and

the main difference lies in the intercept value, suggesting that the DSR estimators are good

proxies for these basic developmental processes in anatomically modern humans.

When applying the new regression formula to the Velia series, we observe a mean absolute

difference between the direct count and the estimation of the pCFT of 11 days (range = -34 /

Fig 4. Scatterplot and regression line of the EDJ lengths against the pCFT in the Velia series. The 95%

interval of the prediction (dotted lines) is shown together with the 95% confidence interval of the regression

(dashed lines).

https://doi.org/10.1371/journal.pone.0180104.g004
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16 days). This level of error is probably acceptable in the context of an overall estimate of

pCFT, because even with direct counts across the whole crown it would be difficult to achieve

greater accuracy. Indeed, a number of factors can affect direct estimates based on counts of

daily incremental markings, such as prism decussation, orientation and obliquity of the thin

section [79], diagenesis and taphonomic history.

A good agreement between the direct counts and the predictions from the regression for-

mula is also achieved when estimating the pre-term vs full term birth ratio, as shown in Fig 8.

The regression predicted values fail to identify as pre-term only three individuals, who are any-

way close to the threshold of 120 days.

The mean DSR for the Velia sample is faster than represented in the figures given in [27,

47]. In Fig 9 the boxplot of the the DSR derived from the single prism measurements (Velia

n = 76, Birch and Dean [27] n = 54) is reported for both sets of data. The median DSR of the

Velia incisors exceeded the values of the Birch [47] modern reference sample by more than a

micrometer/day (Velia median DSR = 4.50, Birch [47] median DSR = 3.33).

Moreover, the DSR range of the Velia sample is greater: 2.7 to 5.8 μm day-1 as opposed to

2.94 to 4.13 μm day-1 reported in [47] for a modern series. The distributions of the DSR are sta-

tistically different when comparing the Velia sample and the modern series of Birch [47] (Wil-

coxon rank sum test with continuity correction W = 3909, p< 0.001; Kolmogorov-Smirnov

test D = 0.834, p< 0.001). The detail of the DSR statistic for all measured segments shows that

Fig 5. Individual pCFT variation with reference to the EDJ length in the Velia series. Each profile was

calculated with a locally weighted polynomial regression fit [65]. See methods section for details.

https://doi.org/10.1371/journal.pone.0180104.g005
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there is a much larger variability in the Velia series (Fig 9). The lower limit of the Velia range

results from the daily measurements along two prisms positioned very close to the cervical

region in the T.258 individual (see S1 Table). Conversely, the higher median and the higher

upper limits of the Velia distribution are harder to explain. It may simply be this discrepancy

results from the extreme difference between the two samples. Alternatively, it may be the fact

that the Velia measures are all confined to the prenatal enamel only (that forms such a large

proportion of deciduous incisor enamel) and where the DSR may be higher and more constant

due to the protected environment during fetal development. Indeed, a sharp deceleration in

DSR has been observed immediately after birth in the deciduous first molar of a modern refer-

ence series [28, 48], followed by an acceleration, or catch-up phase, afterwards. Nonetheless,

the DSR range observed in this study fits better with the range of 3.59 μm day-1 (inner enamel)

to 5.15 μm day-1 (outer enamel) reported in [26] for a Medieval skeletal series in the central

upper deciduous incisors.

Apart from considering the differences in the prenatal enamel formation rates between

these samples, differences between pre- and post-natal enamel formation times need to be con-

sidered. Thus, as noted also by Mahoney [26], this mixing of two such different developmental

periods is likely to influence the overall values of the DSRs reported.

Fig 6. Map of the DSR values across the prenatal portion of the crown of the T.237 individual. (A)

Histological section of the buccal aspect of the T.237 central incisor. (B) Topographic distribution of the DSR

values on the prenatal portion of the buccal aspect of the same tooth.

https://doi.org/10.1371/journal.pone.0180104.g006
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The comparative literature about prenatal EER in human deciduous teeth is scanty. Histo-

logically derived data on deciduous EER have been recently reported by Mahoney [26]. The

mean initial EER value for the deciduous central incisor derived by Mahoney [26] doesn’t dif-

fer significantly from the mean value obtained from the Velia series (Mahoney [26] mean ini-

tial EER = 52.03, N = 13, sd = 6.96; Velia mean EER in the cuspal-middle region = 53.53,

N = 22, sd = 11.25; t test = 0.43, n = 33, p = 0.62). Moreover, Mahoney [26] reports a decelera-

tion in the EER along the EDJ length which is fully comparable with the data of this contribu-

tion. As already noted in [33] for permanent teeth, there is a rather large variability in the

trajectories of EERs, as proxied by the EDJ length (Fig 5), after crown initiation and on into

the later phases of crown formation. What seems clear in all teeth studied is that after the first

50 days of pCFT, there is a substantial deceleration in the differentiation and recruitment of

new ameloblasts along the EDJ.

The regression of the pCFT on the EDJ length derived from for the present paper dataset

(Fig 4 and S2 Table) presents a mean error of the absolute residuals of 27 days (sd 21.38),

higher than the one obtained from the regression of the direct cross-striation counts against

the prism length for the same dataset. Therefore, even though it cannot be considered as such

a good estimator of the pCFT, in conditions where the only measurable feature of the prenatal

crown is the EDJ length, it can certainly be used as a rough indicator of the prenatal crown for-

mation time.

Finally, when large numbers of measurements are possible across the whole enamel crown

of several specimens, the evaluation of the topographical distribution of the DSR across the

whole enamel section (depicted here in Fig 6B as a heat map) represents a promising tool for

Fig 7. Histogram of the pCFT values in the Velia series.

https://doi.org/10.1371/journal.pone.0180104.g007
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understanding the differences in the pattern of enamel secretion among human populations

and fossil hominins. Further data collection will increase the predictive power of this technique

and will help in evaluating the variability of the topographical distribution of the DSR in mod-

ern and fossil humans.

Conclusions

The present contribution makes use of direct counts of enamel microstructural growth incre-

ments in order to estimate the prenatal DSR and EER of human deciduous central incisors in a

pre-industrial population from the 1st century CE Roman population of Velia. Our results on

DSR and EER variation across the tooth crown fit perfectly with the evidence available in liter-

ature: the ameloblasts accelerate while moving from the EDJ toward the outer surface but slow

down in their recruitment towards the most cervical formed enamel. Consequently, a new

(with reference to the equations in [27]) regression formula of the prism length formed against

the crown formation time is proposed for these deciduous central incisors, based on a robust

statistical approach to analyze the data. This linear equation, with a single term that corre-

sponds to the inverse of the generalized DSR, can be used for future studies aimed to quantify,

in a simple way and following the method of Birch and Dean [27], the pCFT and the pre-term

vs the full term birth ratio in studies of ancient populations. In the future, this methodology

will be extended to include the whole deciduous dentition for the series from Velia. The goal is

to establish broader reference standards for studies on the prenatal ontogenetic trajectories of

Fig 8. Scatterplot comparing the individual pCFT from direct counts and from the new regression

formula. The thresholds at 120 days are marked as green lines. Gray dots represent the individuals in which

the diagnosis is discordant.

https://doi.org/10.1371/journal.pone.0180104.g008
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crown formation that can then be compared with other archaeological and paleoanthropologi-

cal specimens. Moreover, the comparison of the developmental trajectories among prenatal

and postnatal enamel will contribute to the understanding of the different growth patterns,

during fetal development and early infancy, both between taxa and among archaeological

populations.
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S1 Table. Individual morphological (skeletal and dental) age at death, presence/absence of

the NL, pCFT (days) from thedirect count, pCFT (days) estimated by the regression of this

paper, pCFT (days) estimated by the regression of Birch and Dean 2014, prenatal EDJ

length (μm) in the buccal aspect, prenatal total EDJ length (μm), pCFT (days) estimated

by the regression of Mahoney 2012.
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S2 Table. Individual cross-striations counts, prism lengths and EDJ measurements.
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S1 Fig. Histological sections along the central labiolingual plan of two deciduous central

incisors from the necropolis of Velia. A: T. 312, perinatal individual without NL; B: T 98, 0–6

months showing the NL and ALs in the cervical portion of the crown.

(PDF)

Fig 9. Boxplot of the DSR variability in the Velia series compared with the Birch and Dean [27] figures.

The boxplot shows the median, the range (lower and upper whisker), the first quartile (lower hinge), and the

third quartile (upper hinge). A single observation, exceeding the lower interquartile range times 1.5, is marked

as an outlier.
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