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Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop
after stroke. Patients with PSD show poorer functional and recovery outcomes than
patients with stroke who do not suffer from depression. The risk of suicide is also higher
in patients with PSD. PSD appears to be associated with complex pathophysiological
mechanisms involving both psychological and psychiatric problems that are associated
with functional deficits and neurochemical changes secondary to brain damage.
Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical
excitability via magnetic stimulation of the brain. TMS is currently a valuable tool
that can help us understand the pathophysiology of PSD. Although repetitive TMS
(rTMS) is an effective treatment for patients with PSD, its mechanism of action remains
unknown. Here, we review the known mechanisms underlying rTMS as a tool for better
understanding PSD pathophysiology. It should be helpful when considering using rTMS
as a therapeutic strategy for PSD.

Keywords: noninvasive brain stimulation, transcranial magnetic stimulation, post-stroke depression, mechanism,
BDNF

INTRODUCTION

Stroke is the most common cause of adult disability in developing countries (Kaadan and Larson,
2017) and has both physical and economic repercussions for patients. Post-stroke depression
(PSD) is a severe and fearful complication that occurs in nearly one third of patients who suffer
stroke and can even occur in patients who have suffered only a minor stroke or transient ischemic
attack (TIA; Carnes-Vendrell et al., 2016). PSD can affect functional ability, rehabilitation outcome,
and quality of life, and is related to a higher mortality rate of stroke patients (Miranda et al.,
2018). Additionally, stroke severity is an important risk factor for PSD, as is the mental history
of the patient. Preventing PSD requires participation from family members and society (Shi
et al., 2017). It appears to be associated with complex pathophysiological mechanisms involving
both psychological and psychiatric problems that are associated with functional deficits and
neurochemical changes secondary to brain damage. Although antidepressants are considered
the treatment of choice for PSD, the benefits are not perfect. Indeed, whether pharmacological
treatment is needed to prevent PSD or improve neurological outcomes after stroke is uncertain
(Kim, 2016; Xu et al., 2016). Fortunately, studies suggest that transcranial magnetic stimulation
(TMS) is beneficial for patients with PSD (Gu and Chang, 2017; Shen et al., 2017).

TMS is an important technique for noninvasive brain stimulation (NIBS; Edwards et al.,
2017). NIBS, using electromagnetic waves and direct electrical current, is a new frontier in treating
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neuropsychiatric illnesses or psychiatric maladies (Gupta and
Adnan, 2018). Several types of NIBS have been developed
over the years, including electroconvulsive therapy (ECT),
transcranial alternating current stimulation (tACS), magnetic
seizure therapy (MST), TMS and transcranial direct current
stimulation (tDCS). Among them, ECT is the best at reducing
depression and has unparalleled efficacy even in older
populations. However, the risk of amnesia is a severely limiting
factor. While tACS has several advantages including biphasic
and sinusoidal currents, the ability to entrain large neuronal
populations, and subtle control over somatic effects, its best
practices remain unclear and further study is required (Tavakoli
and Yun, 2017). MST is a proposed form of electrotherapy using
magnetic brain stimulation. It preserves the efficacy of ECT
while reducing the risk of amnesia through the more precise
localization offered by magnetic stimulation (Luber et al., 2013).
However, its clinical effects still need to be studied. The most
commonly used NIBS are TMS and tDCS. tDCS modulates
membrane potential via electrical currents (Rektorová and
Anderková, 2017). It does not directly induce action potentials
in neurons, but instead is believed to influence spontaneous
activity of targeted brain networks. TMS can be directed more
specifically than tDCS. Additionally, it can exert a causal
influence on brain networks and its clinical efficacy has already
been established in the treatment of mental disorders (Hendrikse
et al., 2017). Among all the types of NIBS, TMS—especially
repetitive TMS (rTMS)—is the best at controlling the frequency
and the location of stimulation. This advantage, in addition to
others, has opened up new possibilities for clinical exploration
and treatment of neuropsychiatric conditions. Meta-analysis of
the literature shows that rTMS can combat PSD and that it is
actively used in therapy (Klein et al., 2015). However, its exact
mechanism of action is still unknown. Here, we explore what we
know about the mechanisms underlying rTMS treatment of PSD.

MECHANISMS THROUGH WHICH TMS
IMPROVES PSD

In 2008, rTMS on the left dorsolateral prefrontal cortex
(DLPFC) was approved for the treatment of major depression
in the USA (Saitoh et al., 2012). Since then, rTMS has
been widely used in cases of treatment-resistant depression
(TRD) that do not respond adequately to adequate courses
of at least two antidepressants (Xie et al., 2013; Lucas
et al., 2017). Moreover, application of high frequency rTMS
over the dorsal anterior cingulate cortex (dACC) and medial
prefrontal cortex (mPFC) has been reported to be a useful
intervention for apathy resulting from stroke (Sasaki et al.,
2017). A few related studies have examined the mechanism
through which rTMS lessens depression in PSD. TMS is known
to influence neuronal plasticity in the brain by originating
the long-term potentiation (LTP) and long-term depression
(LTD). Low-intensity TMS primarily stimulates low-threshold
inhibitory neurons, while high-intensity TMS excites projection
neurons. Although detailed mechanisms have not yet been
characterized very well, several theories have been proposed.

Increased Concentration of Brain-Derived
Neurotrophic Factor (BDNF)
Brain-Derived Neurotrophic Factor (BDNF) is an important
neurotrophic factor that is distributed extensively in the central
nervous system. BDNF is crucial for the survival, growth and
maintenance of neurons within brain circuits that control
emotion and cognition (Kowiański et al., 2018). Phillips (2017)
has suggested that neuroplasticity that takes place in major
depressive disorder (MDD) is related to BDNF levels. BDNF
is crucial for exercise learning and systemic rehabilitation after
stroke. BDNF concentration in patients with acute ischemic
stroke has been reported to be lower than that in healthy
controls. Additionally, low levels of BDNF are associated with
increased risk of stroke, worsening of functional outcome, and
increased stroke-related mortality. Recently, single nucleotide
polymorphisms of the BDNF gene were studied in patients with
stroke. Mizui et al. (2017) found that the BDNF pro-peptide can
facilitate hippocampal LTD and that the BDNF polymorphism
Val66Met impacted the biological activity of the BDNF pro-
peptide. Further, Kotlęga et al. (2017) reported that the Met allele
is associated with adverse consequences and prognosis after
stroke. Thus, BDNF and BDNF polymorphisms play important
roles in brain plasticity, especially in changes of function and
morphology.

PSD has been correlated with low BDNF expression levels
(Chen et al., 2015). Low levels of BDNF can lead to mood
dysregulation and loss of hippocampal function. A variety
of biological, environmental and pharmacological factors can
affect mood by modulating BDNF expression (Phillips, 2017).
Additionally, studies have shown that high-frequency rTMS
enhances BDNF expression levels. BDNF is a key factor in
the increased hippocampal cell proliferation and neuronal
differentiation after application of rTMS. Further, reports show
that in several brain areas in rats, including the hippocampal
CA1 and CA3 subfields, high-frequency rTMS (20 Hz) triggers
BDNF expression. Aside from increasing BDNF levels, rTMS
might also activate the BDNF/ERK signaling pathway to
upregulate cell proliferation in the hippocampus (Cui et al.,
2017).

Increased Glucose Metabolism in the
Cortex and in Specific Neural Networks
In a seminal experiment, Siebner et al. (1998) measured the
relative changes in the regional cerebral metabolic rate of glucose
(rCMRglc) during 2 Hz rTMS of the left sensorimotor cortex
and during imitation of rTMS-induced arm movements using
positron emission tomography (PET). Since then, combining
rTMS and PET has been used to visualize rTMS-related net brain
activation and to analyze functional networks (Li et al., 2013; Val-
Laillet et al., 2015; Heiss, 2016).

More recently, Parthoens et al. (2014) combined the
neurostimulation with positron emission tomography
(microPET) in small animals to quantify regional 2-Deoxy-
2-[18F] fluoro-D-glucose 18F-FDG uptake in the rat brain in
response to low- (1 Hz) or high- (50 Hz) frequency paradigms.
This method is now often used to visualize neuronal activation
of the cortex and cortical networks during different types of
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stimulation (Akman et al., 2015; Adriaanse et al., 2016; Malpetti
et al., 2017). rTMS at differing frequencies has been shown
to decrease 18F-FDG-uptake in dorsal cortical regions while
increasing it in ventral regions (Parthoens et al., 2016). Baeken
et al. (2015) examined the clinical effects of high-frequency
rTMS on glucose metabolism in the subgenual anterior
cingulate cortex (sgACC) by stimulating left DLPFC. The results
show that sgACC is a specific region whose treatment with
high frequency rTMS leads to an antidepressant response.
Another study demonstrated that the clinical response to high
frequency-rTMS treatment in patients with TRD might depend
on the metabolic state of the cerebellum. It implied that other
localized brain regions might be warranted for stimulation,
especially the cerebellum when patients do not respond to
DLPFC high-frequency rTMS (Wu and Baeken, 2017). In a
related 18F-FDG-PET study, an increase in glucose metabolism
of the rat cerebellar cortex was observed after high-frequency
rTMS, along with reduced synthesis of neural plasticity-
related proteins such as metabotrophic glutamate receptor
(mGluR), protein kinase C (PKC) and glutamate receptor 2
(GluR2). These findings suggested that rTMS could act on
the rat cerebellar cortex to induce LTD-related neuroplasticity
(Lee et al., 2014). Another study suggests that manipulating
pre-rTMS neural activity in patients with MDD could predict
and augment the antidepressant effects of rTMS treatment,
including increased frontal θ and glucose uptake (Li et al.,
2016). Some scholars have used rTMS with 18F-FDG-PET to
study the neurophysiological and spatial dynamics induced
by repetitive 1-Hz rTMS in the temporal cortex. One study
found that rTMS can cause a reduction in glucose metabolism
of the temporal lobe and an increase in glucose metabolism of
the mPFC and ipsilateral cortex. Further, statistical parametric
mapping of FDG-PET data revealed a focal reduction of glucose
metabolism in the stimulated temporal area and an increase in
the bilateral precentral, ipsilateral superior and middle frontal,
prefrontal, and cingulate gyri. This suggests that 1-Hz rTMS
in the temporal cortex can cause cortico-cortical modulation
and induce extensive functional changes in neural networks
via long-range neuronal connections (Lee et al., 2013). Hayashi
et al. (2004) showed statistically robust changes in FDG uptake
in the macaque brain after the rTMS. Specifically, they found
a reduction in the motor/premotor cortices and an increase in
orbitofrontal cortices and the limbic-associated areas involving
the anterior/posterior cingulate. Impressively, these changes in
uptake continued for at least 8 days after treatment. These results
demonstrate that functional connections allow motor rTMS to
have long-lasting effects on motor-related regions and distant
limbic-related areas.

Glucose metabolism is known to decrease in the ischemic
hemisphere, especially in patients with PSD. Using 18F-FDG
micro-PET imaging, Gao et al. (2010) reported that glucose
uptake in rat cortex and striatum was larger in an rTMS
group than in a control group. Meanwhile, the number of
caspase3-positive cells was significantly lower, and the ratio
of Bcl-2/Bax was higher in the rTMS group. Thus, rTMS
treatment increased glucose metabolism and inhibited apoptosis
in the ischemic brain. Additionally, rTMS has emerged as a

promising therapeutic intervention in the treatment of affective
disorders. Preliminary evidence from PET scans suggests that
high-frequency (20 Hz) stimulation might increase brain glucose
metabolism in a transsynaptic fashion, whereas low-frequency
(1 Hz) stimulation might do the opposite (Post et al., 1999).
Another study has shown that glucose levels decreased after tDCS
(Sampaio et al., 2012). No study has reported a change in glucose
levels after non-repeated TMS. In the future, our team intends to
explore glucose levels in patients with PSD who have diabetes.

Increased Neurogenesis
Neuroplasticity is a natural property of the nervous system that
allows functional changes and reorganization after lesions or
environmental changes. PSD has been shown to be linked to
basal ganglia and frontal lobe lesions, white matter degeneration,
and interruption of brain network connectivity. TMS has been
reported to increase white matter fractional anisotropy (FA)
values and increase left frontal lobe activation (Hallett et al.,
2017). Also, TMS can induce electro-magnetic currents in the
related cortical neurons. Varying frequencies and intensities
of TMS can directly increase or decrease excitability in the
cortical area (Ambriz-Tututi et al., 2012) so as to promote the
functional reconstruction of the damaged neural network and
repair neuronal structure. Thus TMS can contribute to brain-
network research including the study of cortical-cerebellar and
cortical-basal ganglia relationships. Furthermore, it was reported
that rTMS is conductive to the proliferation, differentiation
and migration of neural stem cells (NSCs) and inhibits their
apoptosis (Cui et al., 2017). Different magnitudes and numbers
of pulses can induce different effects on NSCs, meanwhile,
several neurotransmitter systems, such as the γ-aminobutyric
acid (GABA) system, could be activated by rTMS to modulate the
niche of NSCs in the subventricular zone (or other region with
NSCs) to cause an increase in cell proliferation (Lozeron et al.,
2016; Cui et al., 2017). Indeed, when rats with post-traumatic
brain injury received rTMS, they exhibited significantly greater
proliferation in the subventricular zone, significantly higher rates
of neuron survival, and significantly reduced rates of apoptosis
than similarly injured control rats (Lu et al., 2017). These findings
suggest that high-frequency rTMS could promote neurogenesis.

Modulation of Neurobiochemical Effects
Stroke can lead to abnormalities in the expression of biogenic
amine neurotransmitters and cytokines. Additionally, reactive
oxygen species generated during stroke can cause oxidative
stress, lipid peroxidation and protein oxidation in nerve tissue.
PSD could be related to any of these pathophysiological processes
(Nabavi et al., 2015).

Experimental evidence in rodents indicate that rTMS
produces complex neurobiochemical effects such as induction
of immediate early genes, changes in how neurotransmitters
release is modulated, changes in glutamate α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor/N-
methyl-D-aspartate (NMDA) receptor expression (influencing
calcium ion dynamics), actions on the neuroendocrine system,
neuroprotection via reduced oxidative stress and inflammation,
and changes in neurotrophin expression. These molecular effects
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may modify the intrinsic and extrinsic electrophysiological
properties of neurons and reprogram the expression of excitatory
and inhibitory neurotransmitters and their cognate receptors,
which lead to long-lasting synaptic plasticity-related changes
similar to LTP and LTD (Di Lazzaro et al., 2010; Soundara Rajan
et al., 2017).

EI Arfani et al. (2017) found that total striatal
5-hydroxyindolacetic acid (a metabolite of serotonin) levels
were reduced after accelerated high-frequency rTMS, and motor
activity in rats increased as a result. In addition to its clinical
antidepressant effect, serotonin can improve motor function
and assist learning and memory functions. Studies have shown
that serotonin can induce neural plasticity by modulating paired
co-stimuli, which may help explain the mechanism by which
serotonin plays a positive role in learning and as a medical
treatment for depression and stroke (Batsikadze et al., 2013).

In addition, applying rTMS to the motor cortex increases
dopamine in the striatum (Kulishova and Shinkorenko, 2014),
and improved motor performance in PD may be related to an
elevation of serum dopamine concentration after rTMS (Khedr
et al., 2007). Strafella et al. (2003) also measured changes in
extracellular dopamine concentration following rTMS of the
motor cortex and found that it led to focal dopamine release
in the ipsilateral caudate nucleus. Further, rTMS is capable of
inducing lasting alterations in cortical excitability (Liebetanz
et al., 2003). Thus, rTMS can increase cortical excitability via
dopamine release. It is worthy to be studied in future.

Regulation of Emotion Through LTD-Like
and LTP-Like Plasticity
rTMS can regulate emotion through both inhibition and
excitation. A newer form of rTMS protocol, known as theta-
burst stimulation (TBS), has been shown to produce similar if
not greater effects on brain activity than standard rTMS (Chung
et al., 2015). Inhibitory rTMS is thought to act via LTD and
require low-frequency (1 Hz) stimulation and continuous theta
burst stimulation (cTBS). In contrast, excitatory rTMS is thought
to act via LTP, require high-frequency (5–20 Hz) stimulation and
intermittent theta burst stimulation (iTBS). One study suggests
that rTMS may be able to effectively and selectively modulate
psychiatric symptomatology in which the orbitofrontal cortex
(OFC) is implicated (Fettes et al., 2017). Depressed patients have
hypometabolism of the left DLPFC, which is ameliorated by
rTMS. rTMS regulates mood by acting on the cortical-subcortical
network (Shen et al., 2017). Casula et al. (2016) found that
the DLPFC has the potential to generate robust spike-timing
dependent plasticity (STDP). Pellicciari et al. (2017) reported
that bilateral TBS treatment induced a remarkable rearrangement
of bilateral DLPFC oscillatory activity, which parallels clinical
advances. Specifically, left DLPFC iTBS decreased θ- and α-band
oscillations and increased higher frequencies, while right DLPFC
cTBS increased α-oscillatory activity evoked by TMS. These
results highlighted that idea that iTBS is able to modulate cortical
excitability and increase spontaneous neuronal activity in the
higher frequency ranges. Additionally, priming TBS of rTMS is
ineffective in modifying motor cortex (M1) plasticity in older
adults because the neuroplastic potential of primary motor cortex

in older adults is low (Opie et al., 2017). Research on younger
individuals suggests that neuroplastic responses can be enhanced
via rTMS, with larger responses observed following both LTP
and LTD-like protocols. In this sense, the effect of rTMS on
neuroplasticity is related to age. Thus, rTMS can improve
cortical excitation in patients with PSD, which can improve their
emotion.

CONCLUSIONS AND FUTURE
DIRECTIONS

Although the mechanisms underlying the effect of rTMS on
PSD are unknown, its effectiveness cannot be denied. In our
clinical work, we generally use 1000 rTMS pulses (5–10 Hz
at 80%–100% of resting motor threshold [rMT]) over the left
DLPFC and 1000 rTMS pulses (1 Hz at 80%–100% of rMT)
over the right DLPFC for 10 days to treat depression after
stroke. Understanding the how rTMS affects PSD should help
the development of new and more effective treatments, and
the mechanism should be further studied to provide a strong
theoretical basis for clinical application.

Recently, researchers have explored the mechanisms
underlying rTMS therapy using a variety of methods.
Neuroimaging, including PET and functional magnetic
resonance imaging, have been used to learn about the
remote effects of TMS on the brain (Hallett et al.,
2017). Also, TMS-induced electromyographic (EMG) and
electroencephalographic responses to drugs can help us
understand excitability, connectivity and plasticity in brain
(Ziemann et al., 2015). Based on the thinking that motor-evoked
potentials elicited by TMS in a target muscle are variable, and
that the source of variable muscle responses may not be apparent
using conventional bipolar EMG (particularly over areas with
several distinct neighboring muscles), Neva et al. (2017) suggest
that high-density surface EMG (HDsEMG) provides a useful
way to differentiate which wrist extensor muscles are activated
by TMS. In future studies, a record of event-related potentials
combined with machine learning and applied statistics could be
used to build models of neural activity (Holdgraf et al., 2017) that
will reveal more details regarding the underlying mechanisms of
rTMS-related improvement in PSD.
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