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ABSTRACT
Gastric cancer is a frequently occurring cancer with high mortality each year worldwide. Finding new
and effective therapeutic strategy against human gastric cancer is still urgently required. Hence, we
have established a new method to achieve treatment-actuated modifications in a tumor microenviron-
ment by utilizing synergistic activity between two potential anticancer drugs. Dual drug delivery of
gemcitabine (GEM) and Camptothecin-11 (CPT-11) exhibits a great anti-cancer potential, as GEM
enhances the effect of CPT-11 treatment of human gastric cells by providing microenvironment stabil-
ity. However, encapsulation of GEM and CPT-11 obsessed by poly(lactic-co-glycolic acid) (PLGA)-based
nanoparticles (NPs) is incompetent owing to unsuitability between the binary free GEM and CPT-11
moieties and the polymeric system. Now, we display that CPT-11 can be prepared by hydrophobic
covering of the drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered CPT-11 can be
co-encapsulated in PLGA NPs alongside GEM to stimulate excellent anticancer property. The occur-
rence of the CPT-11 suggestively enhanced the encapsulations of GEM into PLGA NPs (GEM-CPT-11
NPs). Formation of the nanocomposite (GEM-CPT-11 NPs) was confirmed by FTIR and X-ray spectro-
scopic techniques. Further, the morphology of GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs and NP
size was examined by transmission electron microscopy (TEM), respectively. Furthermore, GEM-CPT-11
NPs induced significant apoptosis in human gastric NCI-N87 and SGC-791 cancer cells in vitro. The
morphological observation and apoptosis were confirmed by the various biochemical assays (AO-EB,
nuclear staining, and annexin V-FITC). In addition, evaluation of the hemolysis assay with erythrocytes
of human shows excellent biocompatibility of free GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-
CPT-11 NPs. The results suggest that GEM-CPT-11 NPs are one of the promising nursing cares for
human gastric cancer therapeutic candidates worthy of further investigations.
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1. Introduction

Gastric cancer is the fourth most common cancer and the
second most frequent cause of cancer-associated mortality
worldwide. Although many treatment approaches, with
maturing endoscopy therapy, chemotherapy, and surgery are
used to treat gastric cancer, the results for persistent

progressive gastric cancer are reduced (Yang et al., 2012; Lin
et al., 2015; Zheng et al., 2019). The common patients
unavoidably die from tumor recurrence or metastasis.
Regrettably, till date, no active therapeutic approaches occur
to solve this difficult. Hence, the progress of active antitumor
agents to resist gastric cancer is a promising field
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(Wang et al., 2017; Liang & Yang, 2020; Rong et al., 2020).
Also, the drug of selection for the action of gastric cancer,
gemcitabine (GEM), suffers from poor extravasation into
gastric cancer tissues and rapid enzymatic deamination
upon circulation which produces its inactive metabolite,
20,20-difluorodeoxyuridine (dFdU) (Yan et al., 2019;
Konstantinopoulos et al., 2020; Thompson et al., 2020).
Moreover, the presence of a desmoplastic stromal around
the cancer site creates a barrier for the drug. This results in
high dosages of chemotherapy being required to attain an
effect, which increases chances of side effects (Li et al.,
2015). Thus, significant research efforts have been made
toward the design of drug delivery systems targeted at
improving the therapeutic outcomes of chemotherapy with
GEM and Camptothecin-11 (CPT-11) (Meng et al., 2013;
Sobot et al., 2016; Bernards et al., 2018; Jiang et al., 2019).

Combination therapy can be performed via co-administra-
tion of a supplementary cancer drug along with a sensitizer.
The interfaces within potential anticancer drugs rely on the
dose ratios between the two medications and can be poten-
tially incompatible (Sasada et al., 2015; Bang et al., 2017;
Jayanathan et al., 2020). Consequently, the importance of
preserving a beneficial ratio to maintain a synergistic rela-
tionship between two drugs through nanoparticles (NPs) for-
mulations cannot be ignored (Namiki et al., 2011; Wang
et al., 2018; Zhu et al., 2020). The procedure of encapsulating
several anticancer drugs in individual NPs has proved to be
problematic because the drugs have to preserve their
important physicochemical properties. Hence, nanoformula-
tions that are prepared by encapsulating numerous medica-
tions with varied physico-chemical belongings while
preserving controlled ratios are preferred for drug delivery
within the body tissues (Yixuan et al., 2010; Li et al., 2012;
Xin et al., 2013; Broza et al., 2018).

Nanoparticle-based drug delivery systems have been
developed as a valuable system among other important
methods for improved malignancy treatment (Ambrogio
et al., 2013; Ge & Liu, 2013; Kumar et al., 2013; Florek et al.,
2017). Appropriately, structured NPs can isolate the medica-
tions from the circulatory system and evade being eliminated
by the renal system (Zhang et al., 2018; Li et al., 2019; Zhang
et al., 2019, 2020). These NPs have an advanced system to
deliver anticancer medications to targeted locations and
decrease nonspecific harm to the target tissues, brought
about through enhanced permeability and retention (EPR)
effects (Zhou et al., 2014; Shen et al., 2016; Chen et al., 2020;
Kumari et al., 2020; Mart�ınez-L�opez et al., 2020). Moreover,
NP frameworks offer stable watery scattering of medications
by surface adjustment and shield medications from degrad-
ation, resulting in improved anticancer action (Mirza & Karim,
2019; Ding et al., 2020; Zhou et al., 2020).

In this work, we have described a nanoplatform formed
by encapsulation of two potential drugs into poly(lactic-co-
glycolic acid) (PLGA) nanoparticles (GEM-CPT-11 NPs) via a
nanoprecipitation method. Furthermore, in vitro cytotoxicity
of the drug-loaded NPs was examined in human gastric
cancer cells using an MTT assay. Additionally, we examined
morphological changes in the treated cells by dual staining

(AO-EB) and nuclear staining methods. Apoptosis was con-
firmed by the flow cytometry analysis.

2. Materials and methods

2.1. Materials

CPT-11 and GEM were purchased from TCI (Shanghai, China).
Hydrolyzed polyvinyl alcohol (PVA, 85–90%, mol. wt. of
30–50 kDa) was obtained from TCI (Shanghai, China). PLGA
polymers (monomer ratio 50:50; MW 7 kDa) were acquired
from J&K (Shanghai, China).

2.2. Methods

2.2.1. Encapsulation of GEM and CPT-11 in GEM-CPT-11
NPs

An oil/water solvent evaporation technique was adapted to
encapsulation of CPT-11 and GEM in PLGA-NPs. Briefly, dio-
leoylphosphatidic acid (DOPA)-coated CPT-11 (50 mg) cores
and GEM (50 mg) were added to a PLGA-NP solution in CHCl3
(100mg in 350 mL). The emulsified 9% PVA was mixed into
chloroformic solution in 3mL PBS solutions. The emulsions
were stirred for 24 h, and they evaporated the organic sol-
vents. CPT-11- and GEM-loaded PLGA nanoparticles (GEM-
CPT-11 NPs) were kept at �20 �C to be used for
future studies.

A water/oil/water double emulsion solvent evaporation
technique was used to fabricate the PLGA-NPs containing
DOPA-coated CPT-11, GEM. Briefly, TMR-dextran (200 mL) was
blended into a CPT-11 and GEM polymeric solutions in CHCl3
with sonications. These emulsions were consequently
blended in a PVA-PBS solution, left for solvents evaporations
(Gupta et al., 2017; Li et al., 2017; Safari et al., 2018; Guo
et al., 2019). The emulsions were stirred for 24 h, and they
evaporated the organic solvents.

2.3. Examination of in vitro drug release

Assessment of in vitro drug release kinetics was performed
using a dialysis diffusion technique (Chourasiya et al., 2016;
Stein et al., 2018; Hsu et al., 2020). GEM-CPT-11 NPs (3mL),
and CPT-11 and GEM (0.1mg/mL equivalent concentration)
solutions were placed into the end-wrapped dialysis covers.
Next, they were retained into 20mL of discharging medium
comprising 0.2% Tween-80 in PBS pH 7.4. By stirring at
100 rpm on a detour shakers at 37 �C, the drug release
medium was removed and an equivalent size of new
medium was added. The drug-releasing profiles of CPT-11
and GEM were examined using an UV-vis spectrometer.

2.4. In vitro cytotoxicity

NCI-N87 and SGC-791 cells were obtained from the Cell Bank
of Beijing (Beijing, China). The cells were maintained in RPMI
1640 culture and Dulbecco’s modified Eagle’s medium
(DMEM) medium supplemented with 10% fetal bovine serum
(FBS) and 100mL�1 penicillin. Then, NCI-N87 and SGC-791
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cells were incubated in a humid atmosphere with 5% CO2 at
37 �C. In vitro biochemical staining was obtained from Cell
Signaling (Shanghai, China).

2.5. Apoptotic staining

The morphological changes of the NCI-N87 and SGC-791
cells were examined by biochemical staining, including acrid-
ine orange-ethidium bromide (AO-EB) and Hoechst 33344
staining. After incubating for 24 h, the cells were seeded at a
concentration of 1� 104 onto 48-well plates. The cells were
treated with free CPT-11, free GEM, CPT-11 NPs, GEM NPs,
and GEM-CPT-11 NPs at 2.5 mM concentration for 24 h. On
the following day, the staining solution was added. After
incubating the plates with the staining solution, the plates
were washed with PBS three times. Images were obtained
using a fluorescence microscope (Accu Scope EXI-310) at a
magnification of �20 (Mohamed Subarkhan et al., 2016;
Balaji et al., 2020; Deepika et al., 2020).

2.6. Flow cytometry/annexin V-PI staining

The flow cytometry examination was examined by using the
Apoptosis Detection Kit of fluorescein isothiocyanate (FITC)
(Cell Signaling, Shanghai, China) utilized to confirm the apop-
totic ratio of NCI-N87 and SGC-791 cells. The cells were
treated with free CPT-11, free GEM, CPT-11 NPs, GEM NPs,
and GEM-CPT-11 NPs at 2.5 mM concentrations for 24 h. The
cells were washed thrice by using trypsin, and suspended in
1� binding buffer (500 lL) with FITC Annexin V (5 lL) and
of PI (10lL). After 20min incubation, the samples were
analyzed by flow cytometry. The obtained results were
investigated with the BD FACS CantoTM II flow cytometer
(Yixuan et al., 2010; Subarkhan & Ramesh, 2016; Mohamed
Subarkhan et al., 2018).

2.7. Hemocompatibility assay

Human blood samples were obtained from the First
Affiliated Hospital of Guangdong Pharmaceutical University.
Red blood cells (RBCs) were obtained by centrifuging the
samples at 1800 rpm for 5min at 5 �C. The RBCs were
washed with PBS three times and resuspended in 4mL of

PBS. Next, 0.1mL of diluted RBCs was added to the free
GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11
NPs. in 0.5mL PBS suspension at the corresponding concen-
trations and incubated for 4 h. After incubation, the samples
were transferred onto 96-well plates. Hemolytic activity was
determined by measuring at an absorbance of 570 nm. The
control samples of the lyses buffer and 100% lyses buffer
were also analyzed in these experimental procedures (Tramer
et al., 2012; Evans et al., 2013; Liang et al., 2019; Mohamed
Subarkhan et al., 2019). The proportion of hemolysis
was determined as follows: % hemolysis¼(As – An)/
(Ap – An)�100%, where As denotes the absorbance of sam-
ples (free GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-
CPT-11 NPs) at various concentrations (5, 10, 15, 20, and 25),
and An and Ap denote the negative and positive controls,
respectively.

3. Results and discussion

3.1. Structural morphology and characterization

Our achievement in proficiently stacking of CPT-11 (CPT-11)
and GEM (GEM) into PLGA-NPs (designated as GEM-CPT-11
NPs) proposes another chance to co-deliver two medications
for blend treatment. For instance, hydrophobic CPT-11 and
GEM can be built into GEM-CPT-11 NPs simultaneously with
other hydrophobic antitumor medications, such as GEM and
paclitaxel. GEM was preferred for this study and its centers
were embodied into GEM-CPT-11 NPs close to CPT-11,
because of its cooperative energy with CPT-11. The main
procedure of stacking of GEM and CPT-11 inside GEM-CPT-11
NPs is shown in Figure 1. GEM and CPT-11 are incorporated
in the polymer framework of GEM-CPT-11 NPs done by
hydrophobic interaction. Hence, the insertions are restricted
by similarities concerning GEM and CPT-11 and their hydro-
phobic interaction with the co-polymer. Self-assembled nano-
particles (GEM-CPT-11 NPs) were formed spontaneously with
4mg/mL CPT-11 and 8mg/mL GEM by employing intermo-
lecular hydrophobic interactions between the lipophilic moi-
ety of GEM and CPT-11, as depicted in Figure 1.

The effects of the morphological surface of the hydrother-
mally prepared GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs
were investigated through TEM analysis. The results as

Figure 1. A schematic of the self-assembly of GEM and CPT-11 to form GEM-CPT-11 NPs of the treatment of gastric cancer.
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shown in Figure 2(A–C) depicts the creation of GEM-CPT-11
NPs. Additionally, morphological changes the synthesized
polymeric NPs that were analyzed by HR-TEM. The nanocom-
posite was composed of agglomerated clusters of well-
shaped hydroxyapatite nanocomposites (Figure 2(A–C)). The
size of the GEM-CPT-11 NPs was examined by dynamic light
scattering (DLS) analysis. The diameters of GEM NPs, CPT-11
NPs, and GEM-CPT-11 NPs measured from TEM images were
in the range of 63.9 ± 0.3, 68.7 ± 0.5, 81.2 ± 0.9 nm (Figure
2(D–F)) and the polyplexes index was 0.277 ± 0.05,
0.252 ± 0.05, and 0.159 ± 0.02 for GEM NPs, CPT-11 NPs, and
GEM-CPT-11 NPs, respectively, which is in agreement with
the results of light scattering measurements and gives clear
evidence of the size of the NPs compared to those analyses
by TEM (Figure 2(D–F)). The stability of the GEM NPs, CPT-11
NPs, and GEM-CPT-11 NPs in PBS media was examined by
determining the particle size of the GEM NPs, CPT-11 NPs,
and GEM-CPT-11 NPs by DLS. Polyplexes index, specifically
GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs, at an NPs ratio
of 100:1 was organized and incubated for 30min at 37 �C in
order to confirm complete polyplex formation (Figure
2(G,H)). All the experiments were repeated three times.
Additionally, the zeta potential and the stability of GEM NPs,

CPT-11 NPs, and GEM-CPT-11 were determined to be
5.2 ± 0.4, 6.8 ± 0.5, and �6.3 ± 0.3mV (Figure 2(I)) by DLS.

3.2. Controlled release of GEM-CPT-11 NPs

Controlled release of GEM-CPT-11 NPs plays a vital role in
the size, solubility, degradation, and drug loading by the NP
frameworks. It is predictable that results confirm the drug
release profile which shows the CPT-11þGEM-loaded
GEM-CPT-11 NPs reserve an enhanced efficiency to the

Figure 2. Characterization of the nanoparticles. (A–F) Morphology and particle size of GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs under a transmission electron
microscope after negative staining with sodium phosphotungstate solution (2%, w/v). Scale bar: 20 nm. Particle size distribution of GEM NPs, CPT-11 NPs, and
GEM-CPT-11 NPs analyzed by dynamic light scattering via a Zetasizer. (G–I) Stability of the GEM NPs, CPT-11 NPs, and GEM-CPT-11 examined by the dynamic
light scattering.

Figure 3. Drug release profiles (GEM and CPT-11) from the GEM NPs, CPT-11
NPs, and GEM-CPT-11 NPs against PBS containing 0.3% polysorbate 80.
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frameworks. In contrast, if the drugs not deceived, a reckless
and undesired untimely discharge will occur. These methods
provide clues to the production of shell holes that permit
the discharge of drugs. The controlled drug release was

measured via physical and chemical analyses of the GEM-
CPT-11 NPs and the encapsulation properties of the drugs.
These dialysis methods were utilized to examine the out-
comes of controlled release of the drugs encapsulated in the

Figure 4. In vitro cytotoxicity of free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs were evaluated in NCI-N87 and SGC-791 gastric cancer cells.
Cell viability was examined by the MTT assay after 24 h of drug incubation.

Figure 5. Dual AO/EB staining assay for examining free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs-induced cell death in NCI-N87 (A) and SGC-
791 (B) cells. The cells were treated with free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs at 2.5 mM concentration for 24 h. Scale bar 20 mM.
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GEM-CPT-11 NPs and those associated with the free CPT-11
and GEM. The controlled release experiment was conducted
in PBS at a pH of 7.2 at 37 �C. The controlled release profiles
of the combination of CPT-11 and GEM loaded in the GEM-
CPT-11 NPs displayed an initial release in about 5 h moni-
tored via sluggish release for six days (Figure 3). First 10 h,
half of the CPT-11 and GEM was discharged after the GEM-
CPT-11 NPs formations. Subsequently, later 24 h, a gentle
release of 40–50% was observed. These results indicate that
the conjugation of CPT-11 and GEM on the surface of the
PLGA-NPs (GEM-CPT-11 NPs) did not show any adverse effect
on the controlled release by these nanocomposites.

3.3. In vitro cytotoxicity

After successful synthesis of GEM-CPT-11 NPs, we performed
an MTT assay to evaluate the cytotoxic effects of free CPT-
11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs on
gastric cancer cell lines, comprising NCI-N87 and SGC-791
cancer cells. Following treatments with the medications for
24 h, the cell viability was monitored, and minimum-inhibi-
tory concentrations (IC50) were obtained from the dose-
dependent curve (Figure 4). Surprisingly, GEM-CPT-11 NPs

displayed substantial improvement in cytotoxicity of the can-
cer cells. For instance, in NCI-N87 cell lines, IC50 of
10.91 ± 11.12, 10.35 ± 1.22, 9.05 ± 2.11, 9.46 ± 0.98, and
6.62 ± 0.97 was observed for free CPT-11, free GEM, CPT-11
NPs, GEM NPs, and GEM-CPT-11 NPs, respectively. In SGC-791
cell lines, IC50 of 19.27 ± 3.30, 17.70 ± 2.54, 11.20 ± 0.98,
10.22 ± 1.87, and 7.16 ± 2.80 for free CPT-11, free GEM, CPT-
11 NPs, GEM NPs, and GEM-CPT-11 NPs was observed,
respectively. The enhanced cytotoxicity of the GEM-CPT-11
NPs was owing to the entire release of the double potential
anticancer medications into the tumor cells. The hydrophilic
molecules of PLGA dispense the aqueous layer via a lipid
bilayer for cell membrane penetration. Thus, the enhance-
ment of cellular uptake requires the cell membrane nucleo-
sides delivery for the proteins.

3.4. Morphological changes in NCI-N87 and SGC-791
human gastric cancer cells

Dual staining AO-EB is a qualitative technique used to iden-
tify live, early, late apoptotic, and necrotic cancer cells using
fluorescent images to observe morphological changes in the
nucleus of cells (Kasibhatla et al., 2006; Liu et al., 2015;

Figure 6. Nuclear (Hoechst 33258) staining assay for examining free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs-induced cell death in NCI-N87
(A) and SGC-791 (B) cells. The cells were treated with free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs at 2.5 mM concentration for 24 h. Scale
bar 20 mM.
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Tambe et al., 2018). AO permeates the intacts membranes of
usual and early apoptotic cell and binds to DNA, which fluo-
resces uniform green in normal cells and as patches in early
apoptotic cells due to chromatin condensations. In differ-
ence, EB is only penetrable in the incapacitated membrane
of late apoptotics and necrotics cell, where it fluoresces as
bright orange patch through its bindings to DNA fragment
or apoptotic moiety in late apoptotic cells, and as a unchan-
ging orange fluorescence in the necrotic cell, as it has the
nuclear changes in the morphology of viable cell. AO-EB-
stained NCI-N87 and SGC-791 cells were incubated with free
CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11
NPs for 24 h. As presented in Figure 5, the presence of
orange with reddish fluorescence with chromatin fragmenta-
tion after treatment of NCI-N87 and SGC-791 cells treated
with free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-
CPT-11 NPs suggested that the GEM-CPT-11 NPs largely
induced apoptosis in NCI-N87 and SGC-791 cells.

Hoechst 33258 staining was used to observe chromatin
fragmentation, bi- and/or multinucleation, cytoplasmic vacu-
olation, nuclear swelling, cytoplasmic bleating, and late
apoptosis in gastric cancer cells by visualizing dot-like chro-
matin condensation. Hoechst-33258-stained NCI-N87 and
SGC-791 cells were incubated with free CPT-11, free GEM,
CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs for 24 h. As dis-
played in Figure 6, the presence of blue fluorescence with
chromatin condensation after treatment of NCI-N87 and
SGC-791 cells treated with free CPT-11, free GEM, CPT-11
NPs, and GEM NPs suggested that the GEM-CPT-11 NPs
largely induced apoptosis in NCI-N87 and SGC-791 (Figure 6).

3.5. Apoptosis in NCI-N87 and SGC-791 human gastric
cancer cells

Apoptosis may be reckoned as an important obstacle for a
damaged cell to become malignant tumors. Since the

Figure 7. (A, C) Apoptotic analysis of NCI-N87 and SGC-791 cells using flow cytometry. The cells were treated with free CPT-11, free GEM, CPT-11 NPs, GEM NPs,
and GEM-CPT-11 NPs at 2.5 mM concentration for 24 h and then stained with FITC annexin V/PI for flow cytometry analysis. (B, D) Apoptosis ratio of NCI-N87 and
SGC-791 cells.
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complexes promote apoptosis induction in cancer cells, flow
cytometry using annexin V-FITC/propidium iodide (PI) double
staining was carried out for the quantitative discrimination of
apoptotic cells (Rehana et al., 2017; Mohan et al., 2018;
Sathiya Kamatchi et al., 2020). Phosphatidylserine (PS) is a
cell cycle signaling phospholipid located inner side of the
membrane of a healthy cell but is reverted to the outer
membrane for recognition by neighboring cells at the time
of apoptosis. Hence, the translocation of PS is a morpho-
logical hallmark of apoptosis and can be spotted by its bind-
ing with fluorescently labeled annexin V which in turn
detected by flow cytometry. Further, the addition of PI to
annexin V stained cells is used to discriminate and concomi-
tantly quantify the live cells (lower left quadrant-annexin V(–)/
PI(–)), early apoptotic cells (upper left quadrant-annexin V(þ)/
PI(–)) and late apoptotic cells (upper right-quadrant-annexin
V(þ)/PI(þ)) using FACS. As projected in Figure 7, the incuba-
tion of free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and
GEM-CPT-11 NPs with NCI-N87 and SGC-791 cells conspicu-
ously induced apoptosis. It is worth to note that the titled
complexes induce apoptosis even at very low concentrations
which are less than their IC50. In comparison with control, the

cell population was higher (6–9%) in annexin V(þ)/PI(–) (upper
left) quadrant indicating the induction of early apoptosis. This
effect was ascertained to be high for GEM-CPT-11 NPs than
the free CPT-11, free GEM, CPT-11 NPs, GEM NPs analogous
with the results of MTT, and AO-EB staining assays. It is to
note that the test samples displayed comparatively better
apoptotic induction on NCI-N87 and SGC-791 cells.

3.6. Hemolysis assay in NCI-N87 and SGC-791 human
gastric cancer cells

The analysis of the interaction between NPs and human
blood erythrocytes using hemolysis assays is the key in
determining the blood compatibility of NPs (Figure 8). Free
GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11
NPs were found to display excellent biocompatibility with
human RBCs, as shown in Figure 8. The role of the toxic sub-
stances appeared to be nano-specific. According to the IOS/
Technical Report 7406, the hemolytic rate of NPs or materials
is limited to 5%. The release of erythrocytes by Free GEM,
free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs was

Figure 8. Biocompatibility of free CPT-11, free GEM, CPT-11 NPs, GEM NPs, and GEM-CPT-11 NPs with human blood.
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insignificant, indicating that the NPs had a negligible level of
toxicity, and thus, they were safe to cells.

4. Conclusions

We developed GEM-CPT-11 NPs by encapsulating GEM and
CPT-11 moieties to change the tumor microenvironment for
improved drug accretion and additional anticancer activities.
At first, CPT-11 was incorporated into GEM-CPT-11 NPs with
effectual loading and encapsulation by direct self-assembly
method. In this study, we showed that CPT-11 could be
made hydrophobic by using an oil/water solvent evaporation
method for drug delivery. These DOPA-covered CPT-11 cen-
ters were compatible with PLGA and could be co-encapsu-
lated in GEM-CPT-11 NPs. The closeness of the CPT-11
centers fundamentally developed the epitome of GEM into
PLGA-NPs. The formation of the nanocomposite was con-
firmed by FTIR and X-ray spectroscopic techniques. Further,
TEM electroscopic techniques displayed the crystallized struc-
ture of the nanocomposite. GEM-CPT-11 NPs comprising dou-
ble CPT-11 and GEM led to remarkable apoptosis in human
gastric NCI-N87 and SGC-791 cancer cells. Further, morpho-
logical changes in the cells were monitored using dual stain-
ing and nuclear staining methods. AO-EB fluorescent staining
and flow cytometry analysis reveal that all the complexes
induce cancer cell death by apoptosis mechanism.
Additionally, evaluation of the hemolysis assay with erythro-
cytes of human shows excellent biocompatibility of free
GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11
NPs. The preliminary results of the work established further
investigation of the nursing cares in vivo examinations
in future.
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