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Improved Parallel Magnertic 
Resonance Imaging reconstruction 
with Complex Proximal Support 
Vector Regression
Lin Xu1, Qian Zheng2 & Tao Jiang1

Generalized Auto-calibrating Partially Parallel Acquisitions (GRAPPA) has been widely used to reduce 
imaging time in Magnetic Resonance Imaging. GRAPPA synthesizes missing data by using a linear 
interpolation of neighboring measured data over all coils, thus accuracy of the interpolation weights 
fitting to the auto-calibrating signal data is crucial for the GRAPPA reconstruction. Conventional 
GRAPPA algorithms fitting the interpolation weights with a least squares solution are sensitive to 
interpolation window size. MKGRAPPA that estimates the interpolation weights with support vector 
machine reduces the sensitivity of the k-space reconstruction to interpolation window size, whereas 
it is computationally expensive. In this study, a robust GRAPPA reconstruction method is proposed 
that applies an extended proximal support vector regression (PSVR) to fit the interpolation weights 
with wavelet kernel mapping. Experimental results on in vivo MRI data show that the proposed PSVR-
GRAPPA method visually improves overall quality compared to conventional GRAPPA methods, while it 
has faster reconstruction speed compared to MKGRAPPA.

Parallel imaging technology using multi-channel phased array coils is widely used to speed up Magnetic 
Resonance Imaging (MRI) scanning by acquiring only a fraction of k-space data. Alias-free image can be 
reconstructed from incomplete k-space data with various reconstruction algorithms, e.g., sensitivity encoding 
(SENSE), simultaneous acquisition of spatial harmonics (SMASH), generalized auto-calibrating partially parallel 
acquisition (GRAPPA) and their derivatives1–7. These reconstruction methods can be generally classified into 
image domain methods and k-space methods. The image domain methods1,7 unfold aliased signals in image with 
accurate coil sensitivity information. The k-space methods linearly join adjacent acquired data over all coils to 
interpolate the value of missing data where interpolation weights are estimated by fitting to a small number of 
additional acquired auto-calibration signals (ACS). The k-space methods are superior in cases where determi-
nation of the coil sensitivity is difficult, whereas conventional k-space methods suffer from low signal-noise-rate 
(SNR) of reconstructed image. This pitfall was resolved by GRAPPA that reconstructs individual coil image sep-
arately and then combines all coil images in a sum-of-squares (SOS) fashion8.

GRAPPA reconstruction accuracy strongly depends on the selection of interpolation window. Inadequate 
interpolation windows could cause either under-fitting or over-fitting of interpolation weights, which can lead to 
serious noise and artifacts in the reconstructed image. Methods in9–11 defined various kinds of error metrics to 
evaluate all potential interpolation windows and chose the interpolation window with minimal error to recon-
struct image, whereas such methods just focus on the reconstruction error in calibration region. Nana et al.12 uti-
lized the shift-invariance of interpolation weights in k-space to approximate the predication error by calculating 
the difference between acquired signals and their estimates obtained based on the interpolation of the missing 
data. Although this method can determine the optimal interpolation window, time-exhausted reconstruction of 
all acquired k-space data for each possible interpolation window limits its application on large number of coils 
data.

Although the optimal interpolation window can be determined with aforementioned methods under low 
reduce factors, the conventional GRAPPA reconstructions using linear interpolation perform poorly at high 
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acceleration situations aroused by under-fitting of interpolation weights. Chang et al. proposed a nonlinear 
GRAPPA (NLGRAPPA) reconstruction13, which uses a truncated polynomial kernel to map the k-space data 
onto a higher dimension feature space. Despite providing a more accurate fitting on the spatial correlation of 
coils compared with linear GRAPPA, the nonlinear transformation makes NLGRAPPA reconstruction more 
sensitive to interpolation windows. KerNL14 introduced kernel tricks to represent the general nonlinear relation-
ship between acquired and missing k-space data that improves both image quality and computation efficiency at 
high reduction factors. More recently, MKGRAPPA15 reformulated estimating the optimal interpolation weights 
as a multi-kernel learning problem that can reduce the sensitivity of the k-space reconstruction to interpolation 
windows. Nevertheless, the MKGRAPPA is computationally expensive due to the involved semi-infinite linear 
programming.

In this study, we theoretically analyze errors in GRAPPA reconstruction from the perspective of structure risk 
minimization (SRM) principle16 that can achieve favorable compromise between fitting error and complexity 
of fitting function for regression problem. We thereby develop a robust GRAPPA reconstruction method that 
estimates the interpolation weights by proximal support vector machine (PSVR)17. PSVR is a advantaged version 
of support vector machine (SVM)16 developed from the SRM principle. PSVR has looser constraints than does 
SVM, with comparable performance and much lower computational cost. Experimental results of in vivo brain 
imaging are provided to demonstrate the performance of the proposed method named “PSVR-GRAPPA” com-
pared with the GRAPPA and MKGRAPPA methods.

The rest of this paper is organized as follow: Section 2 reviews the theory of GRAPPA algorithm and SRM, 
then describes the details of proposed method which applies an extended PSVR to fit the interpolation weights 
with wavelet kernel mapping; Section 3 applies the proposed method in vivo experiments; Section 4 gives the 
conclusions and future work to be done.

Methods
Review of GRAPPA. GRAPPA estimates the missing k-space data in each coil by a linear combination of its 
nearby acquired data over all coils, which can be mathematically represented as
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where s represents the k-space signal and w denotes the interpolation weights, (kx, ky) are k-space coordinates 
along the phase encoding (PE) and frequency encoding (FE) directions, respectively. Δkx and Δky are sampling 
intervals along the PE and FE directions, respectively. In Eq. (1), j and l represent coil indexes, L is the number of 
coils in the array, m is the offset from the acquired data, N1 and N2 define the lower and upper bounds of the inter-
polation window along the PE direction, H1 and H2 define the left and right bounds of the interpolation window 
along the FE direction, respectively.

As shown in Fig. 1, the central region of k-space is fully sampled to calibrate the interpolation weights w. A 
linear system with knowing input and output is constructed as follows,

ε= +y Aw (2)

where y is a vector constituted of all target data, and A is an *M matrix composed of the interpolation source data 
supposing that there are M interpolation source data points in the interpolation window and  target data points 
to be interpolated.

Figure 1. Schematic description of GRAPPA.
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SRM model of GRAPPA. In general, conventional GRAPPA reconstruction methods utilize the least 
squares method to estimate the interpolation coefficients w, which minimizes the following empirical error,
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Equation (3) indicates that Remp(w) decreases with the increasing of interpolation window size, and Remp(w) 
gets close to zero when M equals to l. Nonetheless, total error would not be minimal as interpolation window is 
oversized. Previous studies11,12 indicate that the GRAPPA reconstruction error would increase as the interpola-
tion window size increases if the latter reaches a threshold. Therefore, both interpolation weights w and interpo-
lation window size M need to be optimally determined to obtain a perfect reconstruction.

GRAPPA reconstruction can be viewed as a supervised learning problem. According to the capacity concept 
of Vapnik-Chervonenkis (VC) theory16, the total error of supervised learning problem can be described as expec-
tation error R(w), which can be represented as follows,

w w hR( ) R ( ) ( / ) (4)emp≤ + Φ

where Remp(w) is the empirical error decreased as h increases, and h( / )Φ  is confidence error. h is VC dimension 
indicating the complexity of interpolation weights. The dimension of interpolation weights w is a good estimation 
of VC dimension for linear interpolation weights, thus a larger interpolation window indicates a higher VC 
dimension. Equation (4) shows that increasing the interpolation window size can reduce the empirical error while 
increase the confidence error. As shown in Fig. 2, the expectation error is an “U”-shape function of VC dimen-
sion. Consequently, the total expectation error will increase when the interpolation window size increases after a 
certain value.

Actually, the least squares solution only minimizes Remp(w) but not R(w), which is the optimal solution in the 
sense that  → + ∞, i.e., (h/ ) 0Φ → . Without considering the confidence error, the interpolation weights fitted 
with the least squares method have poor generalization ability that the fitted model adapts properly to new data.

Proposed PSVR-GRAPPA. It is well-known that superior generalization performance can be obtained 
from SVM and more importantly, the performance does not depend on the dimensionality of the input data16. 
Therefore, the SVM could effectively address the aforementioned problem in the GRAPPA reconstruction. 
Unfortunately, the original SVM that solves the constrained quadratic programming (QP) problem with linear 
constraints has a time complexity O(N3)18. PSVR is an alternate formulation of SVM regression that dramatically 
reduces the computation. Consequently, a complex PSVR for GRAPPA is proposed to reduce the sensitivity of 
interpolation window size in GRAPPA reconstruction.

Complex PSVR for GRAPPA. GRAPPA employs an unbiased interpolation weights to approximate the 
relation of interpolation source and target data, whereas recent work13 indicated that the bias drastically increases 
as the noise increases at high accelerations. For this reason, we added a bias variable “b” into the cost function to 
improve fitting accuracy. Hence, interpolation weights can be solved with the following optimization problem:
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Figure 2. The expectation error is the sum of the empirical error and the confidence error. The empirical error 
is decreased with the VC dimension, while the confidence error is increased.
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where w and b are coefficients of interpolation weights, C is a punishment factor to balance the training error rate 
and the complexity of the model. ηκ is a slack variable for residual term. The superscript H denotes the operation 
of Hermitian Transpose. ϕ(xκ) is a vector containing the source data to interpolate target data yκ. In Eq. (5), the 
wHw is an estimate of VC dimension of interpolation weights and ηκ

Hηκ represents individual empirical error, 
thereby minimizing the sum of such two terms can obtain an optimal solution with minimal expectation error. 
Theoretically, the minimal expectation error can give the best reconstruction quality given the training samples 
and interpolation window size. However, it is worth to note that inappropriate determination parameter would 
discount the performance of minimal expectation error. A detailed parameters optimization will be given in the 
below subsection.

Considering that the k-space data are complex value while the original PSVR was proposed at real space, we 
define the operation

ε ε ε= +L L L( ) ( { }) ( { }) (6)n n nR I

where R{} and I{} denote the operations of taking the real part and imaginary part of complex data, respectively. 
Consequently, problem Eq. (5) can be stated as:
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where slack variables ξ, ζ are introduced for both real and imaginary residual terms. The dual problem of Eq. (7) 
is obtained by introducing Lagrange multipliers α and β:
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From the Karush-Kuhn-Tucker (KKT) conditions for optimality, we find:
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After elimination of the variables w, ξ and ζ, one can derive the following linear system:
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where I is an identity matrix,→ = ...1 [1; ; 1]T, Ωr and Ωi are Gramm matrices wherein K x x k l( , ), 1, ,kl k lΩ = = ... , 
and K(xk, xl) is a kernel function that will be described in the below subsection.

Lagrange multipliers α and β can be solved in Eq. (10) with ACS data, then other missing data can be pre-
dicted as follows,
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where vector x consists of interpolation source data in ACS, and m′ denotes the surrounding acquired data of 
missing data m, j is the square root of −1. The bias term b can be computed as follows,

b j( )
k

l

k k
1

∑ α β= − + ⋅
=

Experments and Results
Data acquisition. The proposed method was evaluated on two sets of in vivo human brain data (axial 
and sagittal) acquired using an SE pulse sequence (TE/TR = 14/400 ms, 33.3 kHz bandwidth, 256 × 256 pixels, 
FOV = 240*240 mm2) on a 1.5 T scanner (Siemens Healthcare, Erlangen, Germany) with an 8-channel head 
coils. The data were fully sampled and later decimated in the PE direction by various factors to mimic parallel 
imaging acquisition procedure. All in vivo data were collected from healthy adult human volunteers with written 
informed consent from the participants in accordance with policies of the Institutional Review Board(IRB). All 
experimental protocols were approved by the IRB of University of Electronic Science and Technology of China 
(Chengdu, China).

Parameters optimization. The punishment factor C needs to be optimally tuned in the proposed method. 
Although global or local optimization techniques such as genetic or gradient algorithms can obtain an approximately 
optimal parameter, such time-consuming methods may not be proper in the applications of real-time requirement. 
In this work, a heuristics selection algorithm19 is utilized for the determining of punishment factor C:

C y ymax( 3 , 3 ) (12)σ σ= | + | | − |

where y and σ are mean and standard deviation of interpolation target k-space data in ACS region, respectively. 
Consequently, the parameter C was adaptively computed for each reconstruction task.

The kernel mapping is the basic characteristic for SVM. One can flexibly choose appropriate kernels for var-
ious applications. Nonetheless, it is intractable to choose the best kernel in practical application. Therefore, the 
performances of common used kernels were investigated with a set of sagittal data in this study. GRAPPA and 
PSVR-GRAPPA with different kernels were compared under the same sampling condition: R is 5 and 40 ACS 
lines were used to calibrate the interpolation weights. These kernels include:

Figure 3. Plots of PSNR of brain data vs. interpolation window size along the FE direction for different 
sampling conditions: (a) R = 2, ACS lines = 12; (b) R = 3, ACS lines = 24; and (c) R = 4, ACS lines = 40.
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Polynomial: θ= ⋅ +K x y x y( , ) ( )d, where θ and d are positive integers to define the constant term and order, 
respectively.

RBF: K x y x y( , ) exp( / )2 2γ= − − , where γ is a parameter to turn the width of RBF kernel.
Wavelet kernel: ( )K x y h( , ) i

N x y

q1
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2

2
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The polynomial kernel with 2-order and θ = 1, the width of RBF kernel γ was chosen followed the work18: 
γ = d

l2
max , where dmax is the maximum distances between all training data. Based upon a number of empirical 

comparisons, we found that the following equation works well for estimating a desirable scale factor for wavelet 
kernel:

=q d llog (13)max

Image reconstruction. Reconstructions were performed on a desktop personal computer using MATLAB 
(The Mathworks, Natick, MA, USA). A quantitative assessment of reconstruction performance was performed by 
computing the NMSE and PSNR of reconstructed image:
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where Ii j
ref
,  is the result of non-accelerated scenario, i and j are the indices of image pixel along PE and FE direc-

tions, respectively.
The effect of interpolation window size on reconstruction quality was investigated with the sagittal data. As 

reduce factor R increased from 2 to 4, the images were reconstructed by GRAPPA and PSVR-GRAPPA with vary-
ing interpolation windows, respectively. The interpolation window size along the PE direction was fixed to 2, and 

Figure 4. Axial brain images reconstructed by GRAPPA(left) and PSVR-GRAPPA (right) under sampling 
parameters: R = 3 with 24 ACS lines. Both methods were reconstructed in the entire k-space with interpolation 
windows: 4*3(a), 2*7 (b) and 4*15 (c). Nonaccelerated image is used as reference (top). To the right of each 
reconstructed image its absolute error with the nonaccelerated image is shown.
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that along the FE direction was varied from 1 to 15. ACS lines were adopted with 12, 24 and 40 for R of 2, 3 and 4, 
respectively. To qualitatively analysis the effect of interpolation window size on reconstruction quality, the axial 
brain dataset was reconstructed by GRAPPA and PSVR-GRAPPA with three kinds of interpolation windows: 4*3, 
2*7, 4*15. The sampling parameters: R = 3, ACS lines = 24.

The reconstruction quality of PSVR-GRAPPA with wavelet kernel mapping was compared against those of 
GRAPPA and MKGRAPPA with the sagittal brain dataset. All methods reconstructed in the entire k-space with 
an interpolation window size of 2*9. The sampling parameters: R = 4, ACS lines = 40. The full k-space data were 
reconstructed by 2-D Inverse Fast Fourier Transform (IFFT) for each coil, and then combined all coil images in 
the SOS method to give the reference image.

Results. Figure 3 presents plots of variation of PSNR as increasing of interpolation window size in GRAPPA, 
MKGRAPPA and PSVR-GRAPPA at R of 2 (Fig. 3a), 3 (Fig. 3b) and 4 (Fig. 3c). Black lines represent the results 
of GRAPPA, red lines represent the results of GRAPPA, and blue lines indicate the results of PSVR-GRAPPA. 
Totally PSVR-GRAPPA reconstructed images have highest PSNRs among the three methods. All methods have 
low PSNRs when the interpolation window size is small regardless to the R. This phenomenon can be interpreted 
with the under-fitting of interpolation weights aroused by the small size of interpolation window. Therefore, 
the PSNR can be increased by increasing the interpolation window size. In Fig. 3a,b, the increasing of the inter-
polation window will decrease PSNR once the interpolation window size reaches a certain threshold, which is 
caused by the over-fitting of interpolation weights. At high accelerations (Fig. 3c), the linear model cannot catch 
sufficiently the complexity of spatial information of coils in k-space since the interpolation target data are far away 
from the interpolation source data, which results an under-fitting of interpolation weights. As a result, the fitting 
error that decreases as VC dimension h increases grows to be the dominating error. Hence, the PSNRs of all three 
methods increased with the increasing of the interpolation window size in Fig. 3c. Nonetheless, the PSNRs of 
MKGRAPPA and the proposed method increase faster than that of GRAPPA because that the nonlinear kernel 
has a higher h than linear model does. Although Fig. 3 shows that the reconstruction performance of all methods 
can be affected with interpolation window size along FE, MKGRAPPA and PSVR-GRAPPA based on the struc-
tural risk minimization theory are less sensitive to the changes of interpolation window than GRAPPA.

Figure 4 shows axial brain images reconstructed by GRAPPA and PSVR-GRAPPA with interpolation windows: 
4*3(Fig. 4a), 2*7(Fig. 4b) and 4*15(Fig. 4c). The absolute error image is show on the right of the reconstruction 
result, respectively. Serious aliasing artifacts and amplified noise can be seen in the image reconstructed by GRAPPA 

Figure 5. Sagittal brain images reconstructed by GRAPPA(left), MKGRAPPA(middle), and PSVR-GRAPPA 
(right) under sampling parameters: R = 4 with 40 ACS lines. All methods were reconstructed in the entire k-
space with an interpolation window of 2*9. Nonaccelerated image is used as reference (top). To the bottom of 
each reconstructed image its absolute error with the nonaccelerated image is shown.
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with the interpolation window of 4*3, which results from the under-fitting of interpolation weights. Aliasing arti-
facts and amplified noise are significantly alleviated in the image reconstructed by GRAPPA with the interpolation 
window of 2*7. The image given by GRAPPA with the interpolation window of 4*15 has less noise at the cost of 
increased artifacts arising from the over-fitting of interpolation weights due to the over-sized interpolation window. 
Images reconstructed by PSVR-GRAPPA has no obvious aliasing artifacts and noise. Furthermore, less difference 
can be found among images reconstructed by PSVR-GRAPPA with such three kinds of interpolation windows. 
Quantitatively, PSVR-GRAPPA consistently yields smaller NMSEs than GRAPPA.

Figure 5 compares GRAPPA, MKGRAPPA, and PSVR- GRAPPA with an R of 4 using the sagittal brain data-
set. The images reconstructed by GRAPPA and MKGRAPPA contain noticeable aliasing artifacts, which are 
significantly alleviated by PSVR-GRAPPA. Quantitatively, the NMSE of the PSVR-GRAPPA reconstruction is 
5.32%, which is lower than those of GRAPPA (7.18%) and MKGRAPPA (6.44%) reconstructions.

Table 1 lists the time consumption of three methods in vivo studies. MKGRAPPA has the largest time con-
sumption owing to the semi-infinite linear programming. Nevertheless, the proposed PSVR-GRAPPA is slightly 
slower than GRAPPA.

Figure 6 shows images reconstructed by different kernels. Figure 6a is the reference image reconstructed with 
full k-space data, other result images are reconstructed by GRAPPA method (Fig. 6b), and PSVR-GRAPPA with 
linear kernel (Fig. 6c), polynomial kernel (Fig. 6d), RBF kernel (Fig. 6e), wavelet kernel (Fig. 6f), respectively. 
The image reconstructed by linear kernel has similar noise level as GRAPPA reconstructed image, the noise is 
significantly reduced in the image resulted by polynomial kernel at the cost of blurs and artifacts, and the artifacts 
is severe in the image of RBF kernel reconstructed image. The noise is suppressed in the image reconstructed by 
wavelet kernel without visible artifacts, which looks closer to the reference image (Fig. 6a). In theory, wavelet 
kernel can approximate arbitrary functions that can give better outcomes than other kernels20.

R = 3 
ACS = 24

R = 4 
ACS = 40

R = 5 
ACS = 60

GRAPPA 11 41 245

NLGRAPPA 17 103 348

MKGRAPPA 14 50 279

Table 1. Comparison of time consumption between GRAPPA, MKGRAPPA and PSVR-GRAPPA(sec).

Figure 6. Sagittal brain images reconstructed by IFFT with full k-space data (a), GRAPPA method (b), and 
PSVR-GRAPPA with linear kernel (c), Polynomial kernel (d), RBF(e), wavelet kernel (f).
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Conclusions
This study introduces a novel GRAPPA reconstruction method based on proximal support vector regression. The 
proposed PSVR-GRAPPA method has the advantage of adaptively balancing under- fitting and over-fitting of 
interpolation weights without significant increase in computational load. The in vivo experiments have demon-
strated the proposed approach can significantly reduce the noise and aliasing artifacts in GRAPPA reconstruction 
and the reconstruction performance is insensitive to the interpolation window configuration. Compared with 
MKGRAPPA, although PSVR-GRAPPA gives implicit improvement on image quality, the latter has less compu-
tational load than the former.
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