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Objective: Small intracranial aneurysms are increasingly being detected;

however, a prediction model for their rupture is rare. Random forest modeling

was used to predict the rupture status of small middle cerebral artery (MCA)

aneurysms with morphological features.

Methods: From January 2009 to June 2020, we retrospectively reviewed

patients with small MCA aneurysms (<7mm). The aneurysms were randomly

split into training (70%) and internal validation (30%) cohorts. Additional

independent datasets were used for the external validation of 78 small

MCA aneurysms from another four hospitals. Aneurysm morphology was

determined using computed tomography angiography (CTA). Prediction

models were developed using the random forest and multivariate

logistic regression.

Results: A total of 426 consecutive patients with 454 small MCA aneurysms

(<7mm) were included. A multivariate logistic regression analysis showed that

size ratio (SR), aspect ratio (AR), and daughter dome were associated with

aneurysm rupture, whereas aneurysm angle and multiplicity were inversely

associated with aneurysm rupture. The areas under the receiver operating

characteristic (ROC) curves (AUCs) of random forest models using the five

independent risk factors in the training, internal validation, and external

validation cohorts were 0.922, 0.889, and 0.92, respectively. The random forest

model outperformed the logistic regression model (p = 0.048). A nomogram

was developed to assess the rupture of small MCA aneurysms.

Conclusion: Random forest modeling is a good tool for evaluating the rupture

status of small MCA aneurysms and may be considered for the management

of small aneurysms.
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Introduction

Unruptured aneurysms have been increasingly detected

with the development of computed tomography angiography

(CTA) and magnetic resonance angiography (1–3). The

majority of incidentally detected aneurysms are small (<7mm)

(4, 5). Unruptured small aneurysms are often considered

stable and are recommended for conservative treatment with

imaging surveillance (6–8). However, recent reports have

found that the proportion of small aneurysms in patients

with subarachnoid hemorrhage (SAH) was considerable; 75%

of ruptured aneurysms were <7mm (9). To avoid the

consequences of SAH, an increasing number of novel preventive

treatments have been applied for small unruptured aneurysms

(10, 11). All these contradictions make the treatment of patients

with unruptured small aneurysms controversial. Therefore,

a novel methodology is necessary to construct a rupture

prediction model for small aneurysms to facilitate clinical

decisions. Recently, machine learning (ML) has been used to

classify aneurysm rupture (12–14). It could not only detect

important relationships of the risk factors for aneurysm rupture

but could also be simply and rapidly applied to make predictions

(12–14). Random forest, an important ML tool for prediction

and risk analysis, has been widely used because of its good

performance and relatively high accuracy (14–16). Xia et al.

(17) showed that the random forest model achieved good

performance in predicting the clinical outcome after rupture

of anterior communicating artery aneurysms with areas under

the receiver operating characteristic (ROC) curve (AUC) of

0.90 in the internal test and 0.84 in the external test. Lv et al.

(18) found that a user-friendly nomogram incorporating clinical

factors and scoring systems could be convenient for predicting

mortality and facilitating physician decision-making. Aneurysm

morphologies, such as size, size ratio (SR), aspect ratio (AR),

and irregular shape have been reported as significant risk factors

for aneurysm rupture (12, 19–21). However, the application of

ML for predicting the rupture of small aneurysms in specific

locations has not been reported.

This study aimed to develop a random forest model to

predict the rupture status of small middle cerebral artery (MCA)

aneurysms. In addition, we developed an easy and visualized

nomogram to facilitate clinical application.

Materials and methods

Patient selection

This study was approved by our institutional ethics

committee, which waived the requirement for written informed

Abbreviations: MCA, middle cerebral artery; CTA, computed tomography

angiography; AUC, areas under receiver operating characteristic curve;

SAH, subarachnoid hemorrhages; ML, machine learning.

consent. Between January 2009 and June 2020, 426 consecutive

patients with 454 small MCA aneurysms detected using CTA

in a hospital were enrolled in this study. The MCA aneurysms

with a diameter < 7mm were defined as small. A ruptured

aneurysm is defined as a plain CT scan or cerebrospinal

fluid examination showing SAH that is confirmed by CTA,

digital subtraction angiography, or surgery (21). The exclusion

criteria were as follows: patients with fusiform aneurysms,

poor CTA image quality, aneurysms with a size ≥ 7mm,

aneurysms combined with other cerebrovascular diseases (such

as, Moyamoya disease or arteriovenous malformations), and

multiple aneurysms with failure to determine the responsible

aneurysm. The flowchart of the study is shown in Figure 1.

All aneurysms were randomly divided into the training and

validation cohorts (n = 7:3). Additional independent datasets

were used for external validation from four other hospitals

(B, C, D, and E): hospital B (from September 2019 to

March 2020), hospital C (from January 2017 to October

2019), hospital D (from January 2018 to June 2021), and

hospital E (from January 2018 to June 2021). A total of 78

small MCA aneurysms were included in the final external

validation cohort.

CTA image acquisition

In hospital A, the CTA images were acquired using

three CT scanners, including a 320-detector row CT scanner

(Aquilion ONE, Toshiba Medical Systems, Japan) with a

0.5mm section thickness, a 512 × 512 matrix size, a 0.5mm

reconstruction interval, a 100 kV tube voltage, and a 300

mAs tube current; a 64-channel multidetector CT scanner

(Lightspeed VCT 64 General Electric Medical Systems,

Milwaukee, WI, USA) with a 0.625mm section thickness, a

matrix size of 512 × 512, a 0.625mm reconstruction interval,

a 100 kV tube voltage, and a 500 mAs tube current; and a

16-channel multidetector CT scanner (Lightspeed pro16;

General Electric Medical Systems, Milwaukee, Wisconsin,

USA) with a 1.25mm section thickness, a matrix size

of 512 × 512, a 1.25mm reconstruction interval, a 120

kV tube voltage, and a 300 mAs tube current. The CTA

imaging protocol has been described in detail previously

(22). The details of the CTA image scanning in the

other four hospitals are described in Supplemental Digital

Content 1.

Morphological parameters definition

Morphological parameters of the aneurysm, such as

aneurysm size, aneurysm height, perpendicular height, neck size,

width, vessel size, aneurysm angle, vessel angle, and flow angle,

were measured using a CTA image reconstruction workstation

(Version 4.6; GE Medical Systems). The measurement of
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FIGURE 1

The flowchart of this study.

aneurysm morphological parameters has been described in

previous studies and is shown in Figure 2 (23). The aneurysm

had the largest cross-sectional diameter. The aneurysm height

was the greatest distance between the center of the aneurysm

neck and the aneurysm dome. Vessel size was defined as

the mean of all arteries’ vessel diameters compared with the

aneurysm. The diameter of a specific artery was determined

by averaging the diameter of the cross-section of the vessel

next to the aneurysm neck (D1) and the diameter of the

cross-section at a 1.5 × D1 distance from the aneurysm neck.

The bottleneck ratio was defined as the ratio of aneurysm

width to neck size. The AR is the ratio of the perpendicular

height to the neck size. The SR is the ratio of aneurysm

height to vessel size. The aneurysm angle was the angle formed

between the plane of the aneurysm neck and the vector of

the aneurysm height. The flow angle was defined as the angle

between the aneurysm height line and the vector of blood

flow in the parent artery. The vessel angle was defined as

the angle between the aneurysm neckline and the blood flow

vector. The daughter dome had an irregular protrusion of the

aneurysm wall.

Feature selection and model
development

Primary data from hospital A were randomly assigned to the

training group (70%, n= 317) and the internal validation group

(30%, n = 137). Feature selection in the training group was

performed using univariate and multivariate logistic analyses.

The hyperparameters of the random forest model were obtained

by a 5-fold cross-validation. The n_estimators, max_depth,

and min_samples_split values were 6, 6, and 12, respectively.

The performance of the random forest model was evaluated

using the AUC, sensitivity, specificity, and overall accuracy.

The performance of the model was tested using training and

validation cohorts. A nomogram was constructed based on

multivariate logistic analysis.

Statistical analysis

The chi-squared test was used for categorical variables.

Student’s t-test or the Mann–Whitney U-test was used for
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FIGURE 2

Measurements of aneurysm morphological parameters.

continuous variables between the two groups, and an ANOVA

test was used for continuous variables between the three groups.

Continuous variables were expressed as mean ± standard

deviation (SD), and categorical variables were expressed as

frequency (percentage). The DeLong test and the Bonferroni

correction were used to compare the AUCs of these models.

All statistical analyses were performed using R 3.5.1, Python

3.5.6, and SPSS 23.0 (IBMCorp, Armonk, New, USA). Statistical

significance was defined as a two-tailed p-value of <0.05.

Results

Baseline characteristics

In total, 426 patients with 454 small MCA aneurysms

were enrolled in this study. A total of 294 patients with 317

small MCA aneurysms were randomly included in the training

cohort, and 132 patients with 137 small MCA aneurysms were

randomly selected in the internal validation cohort. Therefore,

78 patients with 78 small MCA aneurysms were included

for external validation. Supplemental Digital Content 2

shows the baseline characteristics of the training and

internal and external validation cohorts. Only the age was

significantly different between the training and external

validation cohorts. In the training cohort, 166 patients (56.5%)

were women. The median age of the patients was 58.2 ±

12.1 years (range, 20–88 years). There were 164 ruptured

and 153 unruptured aneurysms. Patients in the ruptured

group were younger (55.4 vs. 61.8 years) and had a lower

percentage of hypertension (56.2 vs. 71.8%) than those in

the unruptured group. The distribution of patients who

smoked (20.5 vs. 20.6%) was similar between the two groups

(Supplemental Digital Content 3).
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TABLE 1 The univariate analysis of morphological features of small middle cerebral artery (MCA) aneurysms in the training cohort.

Variable Sample Unruptured (n= 153) Ruptured (n= 164) P-value

Multi aneurysms (%) 110 76 (49.67%) 34 (20.73%) <0.001

Irregular (%) 82 21 (13.73%) 61 (37.20%) <0.001

Daughter dome (%) 40 6 (3.92%) 34 (20.73%) <0.001

Aneurysm location (%) 0.185

M1 125 65 (42.48%) 60 (36.59%)

Mbif 180 80 (52.29%) 100 (60.98%)

Mdist 12 8 (5.23%) 4 (2.44%)

Projection in axial (%) 0.306

Anterior 169 76 (49.67%) 93 (56.71%)

Posterior 55 26 (16.99%) 29 (17.68%)

Neutral 93 51 (33.33%) 42 (25.61%)

Projection in coronal (%) 0.801

Superior 105 51 (33.33%) 54 (32.93%)

Inferior 101 51 (33.33%) 50 (30.49%)

Neutral 111 51 (33.33%) 60 (36.59%)

Vessel size (mm) 317 2.41± 0.58 2.28± 0.49 0.06

Size (mm) 317 4.06± 1.34 4.75± 1.20 <0.001

Aneurysm height (mm) 317 2.67± 1.24 3.68± 1.18 <0.001

Perpendicular height (mm) 317 2.34± 1.09 3.10± 1.07 <0.001

Width (mm) 317 3.22± 1.22 3.53± 0.99 0.001

Neck size (mm) 317 3.49± 1.08 3.21± 0.80 0.01

AR 317 0.69± 0.32 1.01± 0.42 <0.001

SR 317 1.17± 0.70 1.73± 0.82 <0.001

Bottleneck ratio 317 0.93± 0.25 1.14± 0.36 <0.001

Height width ratio 317 0.73± 0.21 0.89± 0.27 <0.001

Aneurysm angle (◦) 317 71.42± 16.61 65.87± 16.53 0.004

Vessel angle (◦) 317 49.29± 25.22 53.97± 26.18 0.106

Flow angle (◦) 317 135.63± 26.98 135.63± 29.81 0.797

Parent daughter angle (◦) 317 87.43± 29.64 79.66± 23.17 0.005

M1, proximal segment of middle cerebral artery; Mbif, main middle cerebral artery bifurcation; Mdist, distal middle cerebral artery; AR, aspect ratio; and SR, size ratio.

Morphologic characteristics between
ruptured and unruptured small MCA
aneurysms

The details of the small MCA aneurysms in the training

cohort are presented in Table 1. A univariate logistic analysis

revealed that 14 morphological parameters were significantly

different between the ruptured and unruptured groups. The

results of the multivariate logistic regression analysis are

shown in Table 2. The independently significant discriminants

were SR [odds ratio (OR) 1.774, 95% CI: 1.006–3.127;

p= 0.047], AR (OR 7.667, 95% CI: 2.697–21.795; p < 0.001),

aneurysm angle (OR 0.980, 95% CI: 0.964–0.997; p = 0.020),

daughter dome (OR 4.307, 95% CI: 1.630–11.379; p= 0.003),

and multi aneurysms (OR 0.243, 95% CI: 0.137–0.433;

p < 0.001).

TABLE 2 The multivariate analysis of morphological features of small

middle cerebral artery aneurysms in the training cohort.

Variables OR 95% CI P-value

SR 1.774 1.006–3.127 0.047

AR 7.667 2.697–21.795 <0.001

Aneurysm angle 0.980 0.964–0.997 0.020

Daughter dome 4.307 1.630–11.379 0.003

Multi aneurysms 0.243 0.137–0.433 <0.001

OR, odds ratio; CI, confidence interval; AR, aspect ratio; and SR, size ratio.

Performances of random forest models

The random forest model used five attributes for rupture

prediction: SR, AR, aneurysm angle, daughter dome, and
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FIGURE 3

(A–C) Receiver operating characteristic (ROC) curves of the random forest and logistic regression models in training, internal, and external

validation cohort. (D) The performance of the random forest and logistic regression models to predict the rupture of small middle cerebral

artery (MCA) aneurysms. AUC, area under the receiver operating curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity;

PPV, positive predictive value; and NPV, negative predictive value.

multiple aneurysms. Figure 3 shows the prediction performance

of the random forest model. The AUCs of the random

forest models in the training, internal validation, and external

validation cohorts were 0.922 (95% CI, 0.899–0.945), 0.889 (95%

CI, 0.842–0.934), and 0.92 (95% CI, 0.865–0.962), respectively.

The random forest model outperformed the logistic regression

model (p = 0.048). The calibration curve of the random

forest model for the probability of ruptured small MCA

aneurysms demonstrated better agreement between prediction

and observation than that of the logistic regression model

(Supplemental Digital Content 4).

Nomogram for predicting rupture risk of
small MCA aneurysms

A logistic regression model that incorporated the above five

attributes was also developed and presented as a nomogram

(Figure 4). The logistic regression model had satisfactory

discrimination ability, with an AUC of 0.825 (95% CI, 0.785–

0.862), 0.797 (95% CI, 0.732–0.857), and 0.805 (95% CI, 0.723–

0.882) in the training, internal validation, and external validation

cohorts, respectively (Figure 3).

Discussion

In this study, we found that the SR, AR, and daughter dome

were associated with aneurysm rupture, whereas aneurysm angle

and multiplicity were inversely associated with small MCA

aneurysm rupture. The ML method has excellent performance

in quantitative individual risk assessments for small MCA

aneurysms and may aid in choosing optimal management.

Aneurysm morphology has been reported to be associated

with aneurysm rupture (20, 24). Previous studies have shown

that SR and AR are consistently associated with aneurysm

ruptures (23, 25). A larger SR may increase the area of low
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FIGURE 4

A nomogram for predicting small middle cerebral artery aneurysm rupture. The nomogram incorporated five attributes: SR, multi aneurysms,

daughter dome, AR, and aneurysm angle. To use the nomogram, read the scoring points from the “Point” reference line in line with the variable,

add the points from all the variables, and find the predicted probability of rupture risk at the bottom “Risk” line. AR, aspect ratio; SR, size ratio.

aneurysmal wall shear stress and result in more complex

flow patterns within the aneurysm (26). These changes may

lead to ruptured aneurysms (26). With the increase in AR,

the velocity of blood flow in aneurysms slows down, and

this hemodynamic change is associated with a higher rupture

risk for aneurysms (24). These findings were consistent with

those of our studies, which showed that aneurysms with

larger SR or AR were more common in ruptured small

MCA aneurysms. Another important risk factor for ruptured

aneurysms in our study was the presence of a daughter dome.

The development of the aneurysm dome may be due to the

increased intra-aneurysmal pressure, which increases the risk

of aneurysm rupture (23). Moreover, multiple aneurysms are

more commonly observed in unruptured small aneurysms (27).

We found that aneurysm multiplicity was inversely associated

with small MCA aneurysms. Our findings are supported by the

current results (28). Therefore, there is a lower risk of small

MCA aneurysm rupture in patients with multiple aneurysms

than in those with aneurysms in other locations.

In this study, we developed a model to predict the rupture

of small MCA aneurysms using five attributes (SR, multiple

aneurysms, daughter dome, AR, and aneurysm angle) based

on a large dataset. Previous studies have attempted to build a

scoring system based on clinical and morphological risk factors

to predict the risk of aneurysm rupture. The PHASES score

system (29), which was developed from the natural course of

unruptured intracranial aneurysms, includes a history of SAH,

hypertension status, age, aneurysm size, aneurysm location,

and geographical region. Lin et al. (30) analyzed 638 MCA

aneurysms and constructed a morphological risk-score model.

However, there are distinctive pathophysiological presentations

and clinical treatments for large and small intracranial
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aneurysms (10, 31, 32). Varble et al. (27) developed a model for

small aneurysm rupture with an AUC of 0.84 in the training

cohort by using the multivariate logistic regression. Apart from

location-specific and size-specific intracranial aneurysms, we

investigated the use of ML algorithms to assess morphological

risk factors for the rupture instability of small MCA intracranial

aneurysms and found that the performance of the random forest

model was significantly better than that of the logistic regression

model. Compared with traditional statistical methods, the ML

algorithm-generated model has higher accuracy for aneurysm

rupture risk prediction (33) and has become a tool of growing

importance in aneurysm detection and stratification (34, 35).

Recently, a convolutional neural network was applied to classify

the unstable status of 272 patients with small intracranial

aneurysms, and this model achieved a sensitivity of 78.76%,

a specificity of 72.15%, and an AUC of 0.755 (36). The most

important aspect of our study is that we verified our models

using internal and external validation datasets, which further

verified the robustness and generalizability of the results. We

constructed a nomogram based on a logistic regression model

and a model visualization figure. The logistic regression model

achieved good prediction performance, and the calibration

curves of the nomogram demonstrated good agreement between

the predicted small MCA aneurysm rupture risk and the actual

small MCA aneurysm status.

Limitations

Although large-scale small MCA aneurysms were analyzed

in this study, there are several limitations. First, this was

a retrospective study, and selection bias was inevitable.

Unruptured aneurysms were incidentally found in hospitalized

patients who were generally older and had a history of

hypertension. Second, only the morphological features of

aneurysms were analyzed in this study; other risk factors, such

as hemodynamics, wall enhancement, and genetics, were not

included. Third, morphological changes in aneurysms after

rupture were not considered in our study. The model predicted

only the current rupture status of the aneurysm rather than the

future aneurysm risk. Further longitudinal studies are needed to

identify whether this model can be used to predict the rupture

risk of small aneurysms.

Conclusion

In summary, we developed a random forest model based on

a large number of small MCA aneurysms from multiple centers.

The model achieved good prediction performance in both the

training and validation cohorts and significantly outperformed

the conventional logistic regression model. Moreover, we

constructed an easy-to-use nomogram tool for practical

applications. Our findings may aid in individualized decision-

making for patients with unruptured intracranial aneurysms.
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