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Abstract
Background: Multiple models have been proposed to interpret the retention of duplicated genes. In this study, we 
attempted to compare whether the duplicates arising from tandem duplications and retropositions are retained by the 
same mechanisms in human and mouse genomes.

Results: Both sequence and expression similarity analyses revealed that tandem duplicates tend to be more 
conserved, whereas retrogenes tend to be more divergent. The duplicability of tandem duplicates is also higher than 
that of retrogenes. However, positive selection seems to play significant roles in the retention of both types of 
duplicates.

Conclusions: We propose that dosage effect is more prevalent in the retention of tandem duplicates, while 'escape 
from adaptive conflict' (EAC) effect is more prevalent in the retention of retrogenes.

Background
Gene duplication is one of the most important sources of
genomic novelty and complexity [1]. There are three
main molecular mechanisms leading to new duplicates
[2,3]: 1) unequal crossing-over during homologous
recombination, 2) duplicative transposition at the DNA
level and retroposition mediated by mRNA, and 3) poly-
ploidization. While polyploidization is characterized by
bursts of large-scale genome duplication, the former two
processes are often small-scale and proceed continuously
[4]. Recently, the investigations of full genome sequences
have revealed that both large- and small-scale duplica-
tions play significant roles in the evolution of various
organisms [5]. Although the molecular basis of gene
duplication has been well understood, how the newly cre-
ated duplicates are fixed in the population is still quite
controversial [6]. Several evolutionary models for this
issue have been proposed, and according to the current
perspective [3], they can be distinguished from two inde-

pendent dimensions: 1) the extent of functional diver-
gence for the new duplicates, and 2) whether positive
(adaptive) selection is involved in the process. The out-
comes of functional divergence are usually classified as
gene conservation, subfunctionalization and neofunc-
tionalization [2,3], though the definitions for the latter
two are often ambiguous. Theoretically, the duplicates
can undergo adaptive evolution or neutral genetic drift to
achieve each outcome.

Statistical analyses on empirical data have suggested
that none of the mechanisms alone can interpret the
maintenance of all duplicates [3]. However, we suspect
that these retention mechanisms may not contribute
equally for duplicates stemming from different molecular
bases. In fact, by examining the substitution rate between
duplicated pairs, Jun et al. [7] have found that retrotrans-
posed and interspersed segmental duplicates diverge
more quickly than tandem duplicates. To further com-
pare the underlying retention mechanisms, we attempted
to investigate the tandem duplicates arising from unequal
crossing-over and retrogenes arising from retroposition
in human and mouse genomes. We chose both types of
duplicates because: 1) tandem duplicates and retrogenes
are easier to screen, and 2) after ancient large-scale
genome duplications at the origin of vertebrates, most
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duplicates have been created via small-scale events in
mammalian genomes [8]. In addition, we made the
assumption that the duplication rate for each type is con-
stant per year rather than per generation in mammalian
genomes. This seems a reasonable assumption because
the duplication rate has often been presented with
respect to absolute time scale in previous studies [9,10].

Methods
Collection of duplicates
All paralogs (protein-coding genes with pseudogenes
excluded) and relevant annotations (identity scores, loca-
tions and exons) were retrieved from Ensembl database
(release 50) via BioMart [11], which amounted to 80,683
and 159,047 pairs of duplicates in human and mouse
genomes, respectively. The original dataset had a lot of
redundant pairs in multi-member gene families. For
example, in a n-member family, there would be n(n-1)/2
paralogous pairs listed, although at most only n-1 dupli-
cation events were needed to create the family. In this
case, we only chose the n-1 pairs that contained all the
members and had the highest total identity score. Alto-
gether, 9,425 and 11,224 non-redundant pairs were pre-
served for the two genomes. Next, we applied CHSMiner
[12] to detect and remove paralogous segments arising
from large-scale duplications. The segments should con-
tain at least two pairs of duplicates, and the gap size
between two neighbouring duplicates in either segment
should be less than 30 genes [13]. The duplicated pairs
located in those segments with FDR < 0.05 were filtered.
After this step, we obtained 6,552 and 8,308 pairs for fur-
ther screening in human and mouse genomes, respec-
tively.

Screening tandem duplicates and retrogenes
Although tandem duplicates should be adjacent to each
other on one chromosome, the extensive gene inversions
may insert irrelevant genes into the tandem arrays. We
followed the stringent definition adopted by previous
studies [14,15] to screen the tandem duplicates, which
restricted the inserted spacers to no more than one gene.
This resulted in 1,210 and 1,802 paralogous pairs in
human and mouse genomes, respectively [see additional
file 1 and 2]. We implemented a method similar to those
of Emerson [16] and Pan [15] to screen retrogenes. First,
the pairs with a multi-exon member and an intronless
member were considered as putative parental-retrogene
pairs, but the pairs with both members intronless were
ignored as they were not clearly created via retroposi-
tions. Next, for the putative pairs with both members
located on the same chromosome, we discarded those
with the intervening spacers containing less than 10
genes, since they were confused with tandem duplicates.
Finally, we preserved 410 and 680 pairs resulting from

retropositions in the two genomes, respectively [see addi-
tional file 3 and 4].

Sequence similarity analysis
The similarity of protein sequences between two dupli-
cates, as measured by their average amino acid identity,
can be retrieved directly from BioMart. The dN and dS of
their coding sequences were downloaded from the EPGD
database http://epgd.biosino.org/EPGD/[17] [see addi-
tional file 1, 2, 3, and 4]. To avoid the influence of satura-
tion effect [18], only the pairs with dS < 1 were
considered in the dN/dS analysis.

Expression similarity analysis
The tissue-specific expression profiles and the annotation
of the probesets were downloaded from the GNF gene
expression database http://wombat.gnf.org[19]. We chose
the datasets HUMAN U133A/GNF1H and MOUSE
GNF1M for the corresponding species. The Present/
Absent calls in the profiles were used to indicate whether
a probeset was expressed or not, and the Marginal calls
were also treated as Present calls. When a gene had many
probesets, it was considered to be expressed if any one of
the probeset was present. We ignored the probesets such
as '_f_at', '_s_at' and '_x_at' because they could not be
mapped to unique genes in a gene family. For a duplicated
pair, common probesets shared by the two members were
also excluded. Finally, if s was the number of tissues
where both members were expressed, and d was the
number of tissues where one member was expressed
while the other was not, then their expression similarity
was calculated as s/(s+d) [see additional file 1, 2, 3, and 4].

Results
Gene duplicability
We identified 1,210 tandem duplicates and 410 retro-
genes in the human genome, and 1,802 tandem duplicates
and 680 retrogenes in the mouse genome. The higher
number of tandem duplicates than retrogenes in both
genomes implies a higher gene duplicability for tandem
duplicates. Previous studies have found that gene dupli-
cability is positively correlated with gene dosage [20] and
gene complexity [21], although the correlation with func-
tional essentiality is not always the same in yeasts and
mammals [22-25]. To investigate the difference in gene
duplicability between tandem duplicates and retrogenes
in more detail, we counted the number of each type of
duplicates in gene families with various sizes (Figure 1).
The result shows that their distributions among gene
families are quite different (p < 0.01 for both genomes,
chi-square test). Specifically, tandem duplicates are more
likely to be enriched in larger families, whereas retro-
genes do not display a preference.

http://epgd.biosino.org/EPGD/
http://wombat.gnf.org


Wang et al. Genetics Selection Evolution 2010, 42:24
http://www.gsejournal.org/content/42/1/24

Page 3 of 6
Sequence similarity
Similarity of coding sequences has been widely used to
indicate whether the new duplicates undergo gene con-
servation or functional divergence. While some reports
have suggested that the duplicates really undergo
sequence divergence when they are newly produced
[9,26], other reports have found that they still remain
more conserved than singletons [27]. However, taking all
duplicates as a whole will neglect some specific factors
that belong to different molecular bases. For example, the
effect of gene conversion, which keeps duplicates appear-
ing similar through local DNA recombination [28], may
have greater influence on tandem duplicates than retro-
genes. The higher duplicability of tandem duplicates may
also leave more recent and less divergent gene pairs. To
test the hypothesis, we compared the amino acid identity
between both types of duplicates (Figure 2). The result
shows that, the sequence identity of tandem duplicates is
significantly higher than that of retrogenes (human: p =
0.021, mouse: p = 0.034, rank sum test). In agreement
with Jun et al. [7], this result implies that tandem dupli-
cates tend to be more conserved, whereas retrogenes
tend to be more divergent.

Expression similarity
In addition to the coding sequences, the evolution of reg-
ulatory elements is also important to determine the fate
of duplicates. In fact, the differentiation of regulatory
motifs can increase the expression specificity of the
duplicates among various tissues and developmental
stages, which is perhaps the most common form of sub-
functionalization [29]. Previous reports have found that a
rapid expression divergence exists between duplicates
[30], and that the expression diversity is also increased
compared to singletons [31]. However, as tandem dupli-
cations directly occur at the DNA level, it is more likely
that the new duplicates preserve their original regulatory
motifs and expression patterns. In contrast, as retrogenes

are randomly inserted into the genome via mRNAs, they
are more likely to acquire distinct regulatory motifs and
expression patterns. To test this hypothesis, we compared
the expression similarity for tandem duplicates and retro-
genes by using microarray data across diverse tissues
(Figure 3). Although a lot of duplicates have been quite
differentiated for both types, the expression similarity
between tandem duplicates is still significantly higher
than that between retrogenes (human: p = 0.036, mouse:
p = 0.002, rank sum test). Therefore, the gene expression
profiles also support the difference in functional diver-
gence for both types of duplications.

Role of positive selection
As mentioned in the section Background, the retention
mechanisms are determined by both functional diver-
gence and evolutionary forces. To compare the evolution-
ary forces for both types of duplicates, we first performed
the traditional dN/dS analysis (Figure 4A). The result
shows little difference in the dN/dS ratios between tan-
dem duplicates and retrogenes (human: p = 0.607, mouse:
p = 0.257, t-test). In addition, the non-synonymous sub-
stitutions in most duplicates are under selective con-
straints (dN/dS < 1).

Figure 1 Gene duplicability. Distribution of the duplicates among 
small (≤5 members) and large (>5 members) families; tandem dupli-
cates are more likely to be enriched in large families than the retro-
genes (p < 0.01 for both genomes, chi-square test)

Figure 2 Percentage of amino acid identity. Medians for tandem 
duplicates and retrogenes in mouse genomes are 74 and 68.75, re-
spectively (p = 0.034, one-tailed rank sum test); medians for both types 
of duplicates in human genomes are 63 and 55.75, respectively (p = 
0.021)
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Nonetheless, the dN/dS test is directed to single site
substitutions, which is not suitable for the case of whole
gene substitutions such as the addition of duplicates.
Lynch [32] has presented a new strategy for this issue by
examining the role of effective population size. Briefly, if
the new duplicates are nearly neutral and fixed by genetic
drift, a small population size is favourable for their reten-
tion. On the contrary, if the new duplicates are advanta-
geous and fixed by positive selection, the opposite should
be true. In fact, Lynch has suggested that the long-term
increase of duplicates from prokaryotes to eukaryotes is
initially a neutral process in response to the reduction of
population size [32]. However, Shiu et al. [33] have
argued that positive selection also plays an important role
at least in mammalian genomes because there are more
duplicates retained in the mouse lineage (larger popula-
tion size) than in the human lineage (smaller population
size), which cannot be explained by the difference in their
duplication rate. Furthermore, since the generation time
in mice is shorter than in humans, there will be more gen-
erations that are subject to selective pressures for mice
and consequently, more duplicates retained in the mouse
genome. In our dataset, there are both more tandem
duplicates and more retrogenes in the mouse genome. To

test if the excessive duplicates are really created in the
mouse lineage, we grouped the age of the duplicates
(inferred from dS) according to the divergence time
between the two species (Figure 4B). The result shows
that, while the duplicates generated prior to the split of
the two genomes are more or less the same, there are
more duplicates arising in the mouse-specific lineage (p <
1e-4 for both types, chi-square test). Based on the same
assumption with Shiu et al. [33], this result implies that
positive selection plays essential roles in the retention of
both types of duplicates.

Discussion
Dosage effect is more prevalent in tandem duplicates
Of the two key dimensions to determine the retention
mechanisms, we have found that the extent of functional
divergence is distinct for tandem duplicates and retro-
genes, whereas the underlying evolutionary forces are the
same. As tandem duplicates are generated at the DNA
level and easily influenced by gene conversion, they are
more likely to be maintained (Figure 2 and 3). Two main

Figure 3 Percentage of tissues with duplicates co-expressed. Me-
dians for tandem duplicates and retrogenes in mouse genomes are 8.5 
and 1.8, respectively (p = 0.002, one-tailed rank sum test); medians for 
the both of duplicates in human genomes are 7.9 and 2.0, respectively 
(p = 0.036)

Figure 4 Role of positive selection. (A) Comparison of dN/dS ratios 
for tandem duplicates and retrogenes (log-scale). The non-synony-
mous substitutions in most duplicates are under selective constraints 
(dN/dS < 1); there is little difference in the dN/dS ratios between both 
types of duplicates (human: p = 0.607, mouse: p= 0.257, t-test) (B) Dis-
tribution of the duplicates before and after the split of human and 
mouse lineages (≈80 million years ago [33]). dS/2 was used to estimate 
the duplication age, which can be translated to the absolute time scale 
by using 2.5e-3 substitutions per site per million years [9]; there are sig-
nificantly more tandem duplicates and retrogenes arising in the 
mouse-specific lineage (p < 1e-4 for both types, chi-square test)
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models can be used to account for the conservation of
duplicates, i.e. dosage model and buffering model. The
former proposes that as the new duplicates will increase
the gene dosage, they can bring about some selective
advantages [20]. In contrast, the latter argues that the
conserved duplicates are just used for compensation in
case of the functional loss of their counterparts [34], and
thus they are free from selective pressures. Given the sig-
nature of positive selection (Figure 4), we propose that
the dosage model is more prevalent in the fixation of tan-
dem duplicates. In fact, the dosage model predicts that
the fitness of dosage-sensitive genes will increase with the
increase of gene copies [20], which is consistent with our
observation that tandem duplicates tend to form large
families (Figure 1). Another large-scale functional analy-
sis has revealed that tandem duplicates are enriched in
receptors and binding proteins [14], which are also dos-
age-sensitive genes [20]. Interestingly, copy number vari-
ants (CNV), which are strongly associated with
segmental tandem duplicates [35], may also be main-
tained by dosage effect and positive selection [36].

EAC effect is more prevalent in retrogenes
Retrogenes and tandem duplicates display nearly oppo-
site molecular properties. Since retrogenes are often dis-
tant from their parental counterparts and lose the
original regulatory elements, they are more likely to
undergo functional divergence (Figure 2 and 3). There are
also two main models available to account for the func-
tional divergence, namely 'escape from adaptive conflict'
(EAC) model [37] and 'duplication-degeneration-comple-
mentation' (DDC) model [38]. Both of the models predict
that the new duplicates will share the functions of the
ancestral genes. However, the EAC model argues that
duplications can release the potential benefits through
functional specialization, whereas the DDC model only
requires that the joint effect of the duplicates fulfil the
original functions. The signature of positive selection in
the retention of retrogenes votes for the prevalence of the
EAC model (Figure 4). In addition to our results, the anal-
ysis of gene movements has revealed that the X-linked
genes are excessively transferred to autosomes via ret-
ropositions in mammalian genomes [16]. These retro-
genes can not only sustain essential functions during the
inactivation of the male X chromosome, but also develop
male-specific expression patterns [16,39]. The coexis-
tence of functional divergence and selective benefits pro-
vides an important evidence for the EAC model.
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