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Long noncoding RNAs (lncRNAs) are not transcriptional noise, as previously understood, but are currently considered to be
multifunctional. Exosomes are derived from the internal multivesicular compartment and are extracellular vesicles (EVs) with
diameters of 30–100 nm. Exosomes play significant roles in the intercellular exchange of information and material. Exosomal
lncRNAs may be promising biomarkers for cancer diagnosis and potential targets for cancer therapies, since they are increasingly
understood to be involved in tumorigenesis, tumor angiogenesis, and chemoresistance. This review mainly focuses on the roles of
emerging exosomal lncRNAs in cancer. In addition, the biogenesis of exosomes, the functions of lncRNAs, and the mechanisms of
lncRNAs in exosome-mediated cell-cell communication are also summarized.

1. Introduction

Noncoding RNAs (ncRNAs) account for the majority of
transcribed RNA. Long noncoding RNAs (lncRNAs) are
ncRNAs that are larger than 200 nucleotides [1, 2]. Rather
than being transcriptional noise, lncRNAs regulate biological
activities in a variety of ways, including transcriptional regu-
lation, posttranscriptional regulation, translation regulation,
and protein cell localization. LncRNAs are also found to
play a necessary role in the progression and prognosis of
tumors [3, 4]. LncRNAs have important regulatory functions
in fundamental pathological and biological processes, which
helps to elucidate the use of lncRNAs and their corresponding
proteins or peptides for cancer diagnosis and therapy [5].
EVs play an important role in different disease processes,
including renal disease [6], osteoarthritis [7], coronary artery
disease [8], dermatology [9], and neurodegenerative diseases
[10], leukemia [11] and even have immune-modulatory effects
on pregnancy and preeclampsia [12]. In addition, EVs are
closely related to endothelial damage in sickle-cell disease
[13], sinusoidal obstruction syndrome [14], and essential
thrombocythemia [15]. The exosome is a kind of vesicle
secreted by living cells that has a diameter of 30-100 nm

and a bilayer lipid membrane structure. Exosomes are widely
present in biological fluids, such as peripheral blood, ascites,
urine, saliva, synovial fluid, and cerebrospinal fluid, as well
as bronchoalveolar lavage and breast milk [16]. Exosomes
can deliver functional molecules, including lipids, proteins,
and nucleic acids, to recipient cells. Exosomes participate in
intercellular communication and affect various physiological
and pathological functions of cells. For example, pancreatic
cancer-derived exosomes are involved in the proliferation,
progression, and metastasis of pancreatic cancer [17]. How-
ever, the mechanisms by which these exosomal elements
affect target recipient cells have not been determined to date.
Exosomal lncRNAs have been found to participate in the
regulation of tumorigenesis, tumor angiogenesis, and drug
resistance, which suggests that there are ample opportunities
to explore the potential roles of exosomes as biomarkers in
cancer therapies. This review summarizes lncRNA functions
and exosome biogenesis in exosome-mediated cell-cell com-
munication and specifically focuses on the emerging roles of
exosomal lncRNA in cancer.The EVs studied in some articles
reviewed havemorphological features of exosomes. However,
the term EVs was used in these articles since exosomes are a
specific subset of vesicles with a distinctive biogenesis.
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2. LncRNAs

Currently, increasing evidence suggests that lncRNAs have
considerable effects on various molecular mechanisms. Prior
studies have indicated that mutations of the noncoding
genome are widely involved in common human diseases [18].
Regulatory DNAmutations can widely affect transcription by
altering enhancer and promoter activity or chromatin states,
which leads to the differential expression of lncRNAs in
cancer [19]. Although once considered to be transcriptional
noise, lncRNAs exhibit various functions, as illustrated in Fig-
ure 1, lncRNAs regulate mRNA selective splicing and stability
[20]. Additionally, many lncRNAs regulate gene expression
by recruiting chromatin modifiers to special genomic loca-
tions, similar to scaffolds [21, 22], or by isolating chromatin
modifiers from their regulatory locations, similar to decoys
[23]. Moreover, lncRNAs control posttranscriptional regu-
lation by functioning as ceRNAs (competing endogenous
RNAs) [24] or miRNA sponges [25]. LncRNAs can also
directly interact with important signaling proteins (e.g.,
phosphorylation) and modulate their functions [26]. Some
lncRNAs encode functional micropeptides by small open
reading frames (smORFs) [27, 28]. More importantly, Pang Y
found several peptides which correspond to nine transcripts
annotated as ncRNAs [5]. In addition, two smORFs, which
were mainly found in ncRNAs and 5' untranslated regions
(UTRs), could bind several ribosomes and participate in
translation. Dysregulated lncRNAs have been reported to
be involved in regulating the proliferation, metastases, and
recurrence of multiple cancers, including lung cancer [29],
prostate cancer [30], hepatocellular cancer [31], and ovarian
cancer [32].

3. Exosomes

3.1. Exosome Formation. Exosome biogenesis is observed in
various cells, including immune cells, mesenchymal stem
cells, neurons, epithelial cells, and endothelial cells (ECs).
This process is unlike the formation of microvesicles, which
are generated via outward budding at the plasma surface [33].
The underlying mechanism of exosome formation includes
several steps. First, an endosome forms through the inward
budding of the plasma membrane. Then, further inward
budding of the limiting membrane inside the endosome
leads to the formation of the multivesicular body (MVB)
with a diameter of 30-100 nm, peripheral proteins, cytosolic
contents, and the transmembrane, which can be merged
into the invaginating membrane through the exocytosis
pathway and maintained as extracellular vesicles. MVBs rich
in cholesterol fuse with the plasma membrane and then
release their contents into the extracellular space. Otherwise,
MVBs with deficient cholesterol fuse with lysosomes, causing
the degradation of vesicular contents [34]. These released
vesicles are known as exosomes. MVB packing was thought
to be highly conserved. However, MVB packing is now
related to the endosomal sorting complexes required for
transport (ESCRT) complex proteins [35]. ESCRT-0, -I, and
-II are responsible for recognizing and hiding ubiquitinated

membrane proteins in endosomal membranes, and ESCRT-
III facilitates cutting and inward budding [36]. However,
researchers have observed ESCRT-independent MVB pack-
aging pathways [37] (Figure 2).

3.2. Exosomal Molecular Components. Exosomes contain
proteins, RNAs, and DNAs [38]. According to the database
[ExoCarta (http://www.exocarta.org)], 9769 proteins, 3408
mRNAs, 2838 miRNAs, and 1116 lipids have been identified
in exosomes. Extracellular vesicles (EVs) are composed of
a lipid bilayer with transmembrane proteins that enclose
cytosolic proteins and RNAs [1]. According to the subcel-
lular origin, EVs include microvesicles (100-1000 nm) and
exosomes (30-100 nm), which are derived from the inter-
nal MVBs [3]. Employing asymmetric flow field-flow frac-
tionation, researchers identified three exosome subgroups:
large exosome vesicles (Exo-L, 90-120 nm), small exosome
vesicles (Exo-S, 60-80 nm), and “exomeres” (nonmembra-
nous nanoparticles, ∼35 nm). Each subpopulation contains
a unique component distribution [39]. Metabolic enzymes
and hypoxia, microtubule and coagulation proteins, as well
as proteins associated with specific pathways, i.e., glycolysis
andmTOR signaling, are abundant in exomeres.The proteins
contained in Exo-S and Exo-L are involved in endosomal
functions, secretion pathways, the mitotic spindle, and IL-
2/STAT5 signaling pathways. Additionally, diverse organ
distribution patterns have also been observed among those
three subpopulations.

3.3. Exosomal Release and Transportation. Intracellular cal-
cium, RabGTPases, and SNAREproteins are crucial elements
in exosome release. However, the precise coordination of
events involved in exosome release has not been determined
[40–42]. Rab27A, Rab27B, and Rab11 were observed to par-
ticipate in MVE docking at the plasma membrane and to act
as mediators in exosome releases [43, 44]. Another six small
GTPases are also associated with secretions (Rab2B, Rab5,
Rab7, Rab9A, Rab35, and RAL) [16, 45]. SNARE proteinsmay
participate in the fusion ofMVEs with the plasmamembrane
to release ILVs as exosomes [46]. Ca2+ was observed to be
involved in the activation of SNARE complexes in many cell
types [47]. However, the precise coordination involved in this
event has not been determined.

After being released into the extracellular space, extra-
cellular exosomes can be taken up by the recipient cell
membrane, thereby delivering exosomal contents into the
cytoplasm. In 2007, Valadi et al. first found that exosomes
can function as molecular component cargos after they
cocultured HMC-1 human mast cells with exosomes isolated
from MC/9 murine mast cells [48]. These researchers found
that some RNAs exist in vesicles and can be translated by
receptor cells. This exosome-mediated intercellular commu-
nication requires several steps: first, exosomes binding to the
plasma membrane; second, surface receptor and signaling
activation; third, vesicle internalization or fusing with the
recipient cells [49]. This binding seems target cell-specific
and may be determined by proteins enriched between the
exosomal surface and the recipient cell plasma membrane
[50]. Several mediators of these interactions are known,
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Figure 1: Functions of lncRNA. Decoys: lncRNAs act as decoys to attract transcription factors and influence protein expression [23]. Scaffolds:
LncRNAs regulate gene expression by recruiting chromatin modifiers to special genomic locations acting as miRNA sponges [9, 10]. Sponge:
lncRNAs can interact with miRNA, acting as “sponges” [13]. Signal: lncRNAs have a role in signal regulation [26]. Encode: lncRNAs encode
functional micropeptides encoded by short open reading frames [27, 28].

including extracellular matrix, tetraspanins [51], heparin
sulfate proteoglycans [52], and lectins [53].

Exosomes with different compositionsmay have different
functions. An example of this phenomenon is that the 𝛽-
amyloid protein present in exosomes derived from neurob-
lastoma can be specifically internalized by neurons. However,
CD-63-enriched exosomes can bind both neurons and glial
cells [54]. Additionally, some special structures at the target
cell plasma membrane can influence exosome destiny [55].
Once bound to recipient cells, exosomes can be internalized
by endocytosis, phagocytosis, ormicropinocytosis [56]. After
uptake by recipient cells, exosomes fuse with plasma mem-
brane and release their contents or reach MVBs and undergo
digestion by lysosomes [57], whereas some exosomes may
escape digestion [58].

3.4. Roles of Exosomes in Cancers. Neighboring or distant
cells can communicate through the secretion of exosomes.
A variety of biological components have been detected in
exosomes, such as proteins, mRNAs, and noncoding RNAs
[59]. Recent studies have found that tumor-derived EVs par-
ticipate in promoting antitumor immune responses, helping
metastatic dissemination, creating a microenvironment [60],
and assisting tumor angiogenesis [61].

4. Exosomal lncRNAs

Exosomes contain various ncRNAs, including lncRNAs.
Exosomal lncRNAs can be released from cancer cells and
internalized by recipient cells, which induces various effects.
RNA sequencing shows that exosomal RNAs reflect the inter-
cellular RNA compositions, which suggests that the RNAs are
selectively packed into exosomes [62]. Moreover, it has been
found that exosomal secretions of RNAs show discrepancies
between cancer cells and normal cells [63]. In addition,
researchers have observed that lncRNAs with low expression
levels in cells are enriched in secreted exosomes [64]. These
findings suggest that tumor cells can secrete specific lncRNA-
enriched exosomes and may effectively influence recipient
cells, which further affects tumorigenesis. In addition to
tumorigenesis, exosomal lncRNAs also influence brain dis-
orders [65] and cardiovascular diseases [66]. Accumulating
evidence has shown that lncRNAs can be packed into vesicles
and detected, which enables circulating lncRNAs to serve as
biomarkers [67, 68].

4.1. LncRNAs Sorted into Exosomes. The exosomal sorting
of RNAs has proven to be highly selective and exhibits cell
specificity [69]. Additionally, researchers have noticed that
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Figure 2: Exosome biogenesis and exosome-mediated delivery of ncRNAs to the recipient cell [37]. A. ncRNAs bind to packing proteins and
are selectively secreted. B. Early endosomes are generated from inward budding of the plasma membrane and mature after interacting with
Golgi complexes. C. Late endosomes form intraluminal vesicles (ILVs) and incorporate nucleic acids. D.MVB containing ILVs then fuse with
the plasma membrane and release exosomes. E. ncRNAs are transferred within exosomes to recipient cells and affect functions.

lncRNA molecules contained in exosomes can reflect the
cellular response to stimulation, such as DNA damage.These
findings suggest a potential regulatory mechanism of sorting
ncRNAs into exosomes. However, the mechanism behind
packaging specific biological contents into exosomes is not
well-understood at present. Researchers found a specific
sequence (GGAG) contained in the exosomal miRNAs,
which is identified as the EXOmotif and can be specifically
recognized by hnRNPA1 (heterogeneous ribonucleoprotein
A1) and hnRNPA2B1, thereby regulating the specific loading
of such miRNAs into exosomes [70]. Recently, hnRNPA2B1
has also been found to participate in the sorting of lncR-
NAs into exosomes by recognizing a specific sequence [71].
Another protein, Y-box–binding protein 1 (YBX1), may also
help to sort special RNAs into exosomes via binding to
specific structural motifs of RNAs, such as UAAUCCCA and
CAGUGAGC of lncRNAs and mRNAs [72].

5. Functions of Exosomal lncRNAs in Cancers

Exosomal lncRNAs can be used as cancer biomarkers and are
strongly involved in tumorigenesis, cancer drug resistance,
hypoxia signaling, and EMT. These functions of exosomal

lncRNAs are listed in Table 1 according to cancer type and
are described in the following subsections in detail.

5.1. Cancer Biomarker. The specific lncRNAs contained in
cancer cell-derived vesicles may be the measurable and non-
invasive clinic biomarkers [73]. Moreover, exosomes prevent
proteins and RNAs from being degraded, which renders
them intact and functional [74]. In articles published to date,
exosomal lncRNAs related to cancer diagnoses and prognoses
account for most items.

Serum lncRNAs are commonly used in cancer detection.
LncARSR (Ensembl: ENST00000424980) is highly expressed
in the plasma of renal cell carcinoma (RCC) patients. In
addition, the level of plasma lncRNA-ARSR is decreased after
tumor resection and elevated again upon tumor relapse. Cor-
relations between plasma lncRNA-ARSR and progression-
free survival (PFS) of RCC patients who underwent sunitinib
therapy have also been observed [60]. Exosomal ZFAS1
expression levels are elevated in gastric carcinoma patients
and associated with lymphatic metastasis and TNM stage
[75]. In addition, with high diagnostic sensitivity and speci-
ficity (80.0% and 75.7%), exosomal ZFAS1 is a promising
biomarker for gastric cancer diagnosis. Exosomal lncRNAs
also exhibit the ability to serve as biomarkers for colorectal
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adenoma [76, 77], laryngeal squamous cell carcinoma [78],
non-small-cell lung cancer [69], and cholangiocarcinoma
[71].

In addition to serum, exosomal lncRNAs exacted from
other bodily fluids were also found to be plausible biomark-
ers. Exosomal lncRNA MALAT1, HOTAIR, and MEG3 are
differentially expressed in cervical cancer cervicovaginal
lavage samples, which suggests that these lncRNAs can be
promising biomarkers in detecting cervical cancer [79]. In
addition, several lncRNAs (HOTAIR, HOX-AS-2, MALAT1,
SOX2, OCT4, HYMA1, LINC00477, LOC100506688, and
OTX2-AS1) are enriched in urine exosomes (UEs) from
urothelial bladder cancer (UBC) patients [80].

Despite various reports of exosomal lncRNAs function-
ing as tumor biomarkers, several of these studies did not
determine the sensitivity and specificity of the lncRNAswhen
applied to patients. In addition, many of the studies cannot
define the direct relationships of the tested exosomal lncR-
NAs and cancers. Moreover, methodological differences in
EV purification make this approach inadequate in achieving
testing reproducibility.

5.2. Tumorigenesis. As mentioned earlier, the expression and
function of lncRNAs are associated with various types of
cancers [81]. Considering that the roles of lncRNAs in cancer
are largely unexplored, research on exosomal lncRNAs is still
in its infancy. Most studies investigate the roles of different
lncRNAs in tumorigenesis, but they fail to demonstrate
that the intercellular transfers of lncRNAs via exosomes
play roles in tumorigenesis. For example, Iempridee et al.
[82] found that lncRNA-H19 enhances the proliferation and
spheroid forming ability of cervical cancer cells and is
enriched in cell-derived EVs. Similar experiments performed
by Kogure et al. show that lncRNA-TUC339 is most highly
expressed in hepatocellular carcinoma cells secreting EVs.
Up- or downregulation of TUC339 can effectively influence
HCC cell proliferation and metastasis [83]. However, these
studies did not find direct evidence to demonstrate that
exosomes/lncRNAs can directly affect tumorigenesis.

Lei et al. [75] found that lncRNA-ZFAS1 enriched in
exosomes can endow recipient cells (low lncRNA-ZFAS1
expression) with increased proliferation and migration abil-
ity, which suggests that ZFAS1 can be delivered by exosomes
to promote gastric cancer progression.

Dysregulation of angiogenesis occurs in various patholo-
gies and is one of the hallmarks of cancer [84]. Some
studies have illustrated that cancer cell-derived exosomes
can affect HUVECs in tube formation, in which exoso-
mal lncRNAs may play a pivotal role. CD90+ hepatic cell
carcinoma (HCC) has been described with cancer stem-
cell-like (CSC) properties [85]. Conigliaro et al. [86] found
that exosomes released by CD90+ cancer cells can affect
HUVECs by promoting cell-cell adhesion and tube forma-
tion. These researchers further found that lncRNA-H19 is
enriched in those exosomes. Another study performed by
Wu et al. [87] first showed that exosomes isolated from
tumor-associated macrophages (TAMs) can incorporate into
HUVECs and block the miR146b-5b/TRAF6/NF-𝜅B/MMP2
pathway, which results in efficient reduction of HUVEC

migration. In addition, these researchers used SKOV3-
derived exosomes andTAM-derived exosomes to costimulate
HUVECs and found that inhibition of migration caused by
TAM-derived exosomes is overcome. Two exosomal lncR-
NAs (ENST00000444164, ENST00000437683) were identi-
fied as NF-𝜅B pathway-associated genes. A study conducted
by Lang et al. [88] found that exosomes enriched in lncRNA-
POU3F3 promote angiogenesis in gliomas. Moreover, exoso-
mal lncRNA-POU3F3 has better function in inducing human
brain microvascular endothelial cell (HBMEC) migration,
proliferation, tube formation, and elevated angio-related gene
expression. These results suggest that lncRNAs carried by
exosomes can partly influence angiogenesis and further affect
tumorigenesis.

5.3. Hypoxia Signaling and EMT. Hypoxia in cancer pathol-
ogy is considered to be a significant element. Tumor cells
frequently utilize hypoxia signaling to maintain the prolif-
erative response in normoxia and escape growth arrest in
hypoxia [89]. Takahashi et al. first revealed that lncRNA-
ROR is a hypoxia-responsive lncRNA and can promote the
survival of cancer cells under ischemic conditions. More
importantly, these researchers found that lncRNA-ROR can
modulate intercellular responses to hypoxia via the trans-
fer of extracellular vesicles. In addition, hypoxia signaling
often stimulates a cellular epithelial-mesenchymal transition
(EMT) process, which is a critical regulator of metastasis.
Several exosomal lncRNAs have been shown to affect EMT
signaling in cancer cells. Xue et al. [90] found that UMUC2
has a positive effect on cell proliferation, migration, and
invasion when incubated with hypoxic 5637 cell-derived
exosomes. Moreover, compared to the normoxic cell-derived
exosomes, lncRNA-UCA1 is enriched in hypoxic cell-derived
exosomes. These hypoxia-derived lncRNA-UCA1-enriched
exosomes can elevate tumorigenesis, both in vivo and in
vitro, and induce cell EMT transformation. Transforming
growth factor (TGF)-𝛽 can promote epithelial-mesenchymal
transition (EMT) and further induce invasion and metastasis
in pancreatic cancer [91].

5.4. Drug Resistance. LncRNAs can be transported by exo-
somes and endow the recipient cells with acquired drug
resistance. Some studies have demonstrated that lncRNAs
have potential functions in delivering drug resistance in
recipient cells. TGF-1 has been shown to be involved in
obtaining chemoresistance in various human cancers [92].
The groups of Takahashi found that lncRNA-ROR and
lncRNA-VLDLR can be selectively enriched in EVs by
TGF𝛽1-stimulated HCC [93]. HCC-derived exosomes can
endow HepG2 cells with increased lncRNA-ROR expression
and high chemoresistance. Additionally, these researchers
found that lncRNA-ROR knockdown can reverse TGF𝛽-
induced chemoresistance in cancer stem-cell-like CD133+
cells [94]. Another study performed by this team also
revealed that lncRNA-VLDLR increases in cells and their
EVs under chemotherapeutic stress [95]. These researchers
found that lncRNA-VLDLR can be transferred by HCC cell-
derived EVs and can promote chemoresistance in recipient
cancer cells. Xu et al. [96] found that lncRNA-UCA1 shows
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high expression in both tamoxifen-resistant LCC2 cells and
their derived exosomes. LCC2-derived exosomes facilitate
the breast cell line MCF-7 with an increased ability to resist
tamoxifen. Moreover, knocking down UCA1 in exo/LCC
reverses this phenomenon.

The above studies have proven that exosomal lncRNAs
may function in drug resistance; however, they fail to
reveal the underlying mechanism of acquired drug resistance
related to exosomal lncRNAs. Other articles may better
explain the roles of exosomal RNAs in drug resistance.
Zhang et al. [97] demonstrated that curcumin-treated cell-
derived EVs can reduce the ability of A2780cp cells to
induce chemoresistance. LncRNA-MEG3 showed the great-
est upregulation in exosomes after curcumin treatment.
MEG3 overexpression after curcumin treatment can clearly
inhibitmiR-214 expression in cells andEVs.These researchers
proved that MEG3 can strengthen EV-mediated transfer of
miR-214, thereby downregulating drug resistance in recipient
cells. These researchers found direct evidence proving that
lncRNA-ARSR can be secreted from sunitinib-resistant cells
to sensitive cells and induce sunitinib resistance. Intracellular
lncRNA-ARSR elevation is directly due to exosome fusion,
rather than an increase in intracellular synthesis. LncRNA-
ARSR elevation caused by exosomal delivery functions as
competing endogenous RNA for miR-449 and miR-34 to
facilitate AXL and c-MET expression, which further affects
sunitinib resistance.

6. Conclusion

In general, exosomes are secreted in almost all types of cells.
Exosomes can selectively carry various elements and function
as cell-to-cell carriers. LncRNAs secreted by exosomes also
play an essential role in cancers. Liquid biopsy through
exosomal lncRNAs provides a novel method for diagnos-
ing cancer. Additionally, extracellular lncRNAs packed by
exosomes help us evaluate the prognoses and therapeutic
effects of the cancers. Moreover, exosomal lncRNAs have
been determined to participate in inducing drug resistance
in recipient cells, which provides a potential method of
cancer therapy. Despite significant progress made in recent
years, more work is needed to achieve a better understanding
of exosomal lncRNAs in the function and regulation of
tumorigenesis.

7. Perspective

LncRNAs have shown their utility in the diagnosis and
prognosis of some cancers. Unlike commonly used cell-
free DNAs (cfDNAs), which originate from dying cells,
exosomal nucleic acids (exoNAs), which are derived from
living cells, can better reflect the underlying cancer biology
[98]. Recently, researchers have presented a novel EGFR
T790M assay based on exosomal cfDNAs and RNAs/DNAs
from plasma and achieved 92% sensitivity and 89% speci-
ficity [99]. However, the use of lncRNAs as biomarkers
for cancer diagnosis and prognosis remains limited. First,
different methods of isolation, mainly ultracentrifugation-
based isolation and exosome precipitation techniques, were

used in the aforementioned studies. The methodological dif-
ferences in exosome isolation and lncRNA extraction make
the experimental results difficult to compare. Second, only
a small number of lncRNAs have already been investigated,
and many of them have been functionally characterized. The
construction of an extravascular lncRNAdatabase has greater
potential for the study of exosomes.

Moreover, as the natural transporter of functional small
RNAs and proteins, exosomes have been suggested to
have potential applications in the drug delivery field. It
has been demonstrated that specific lncRNAs enriched in
exosomes can change the phenotypes of neighboring cells
[100]. Moreover, lncRNAs delivered by exosomes can induce
drug resistance and angiogenesis in recipient cells. In the
field of other exosomal RNAs, researchers have found that
MSC-derived exosomes inhibit breast cancer growth by
downregulating vascular endothelial growth factor (VEGF)
and transferring miR-16 in mice [101]. Additionally, in the
field of lncRNAs, intercellular transfer of lncRNA-ARSR
through exosomes can significantly dampen the response
of RCC xenografts to sunitinib, with increased lncRNA-
ARSR expression being observed in tumors. A phase II trial
has recently evaluated IFN𝛾-DC-derived exosomes loaded
with MHC I/II confined cancer antigens as maintenance
immunotherapy after chemotherapy in advanced patients
without tumor progression, and exosomes may be used as
anticancer vaccines in the future. However, themodulation of
lncRNAs in vivo is not easy to achieve; therefore, there have
been no lncRNA drugs brought into clinical trials to date.
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