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Topological synchronization 
of chaotic systems
Nir Lahav1*, Irene Sendiña‑Nadal2,3, Chittaranjan Hens4, Baruch Ksherim5, Baruch Barzel5,6, 
Reuven Cohen5 & Stefano Boccaletti7,8,9

A chaotic dynamics is typically characterized by the emergence of strange attractors with their 
fractal or multifractal structure. On the other hand, chaotic synchronization is a unique emergent 
self-organization phenomenon in nature. Classically, synchronization was characterized in terms 
of macroscopic parameters, such as the spectrum of Lyapunov exponents. Recently, however, we 
attempted a microscopic description of synchronization, called topological synchronization, and 
showed that chaotic synchronization is, in fact, a continuous process that starts in low-density areas 
of the attractor. Here we analyze the relation between the two emergent phenomena by shifting the 
descriptive level of topological synchronization to account for the multifractal nature of the visited 
attractors. Namely, we measure the generalized dimension of the system and monitor how it changes 
while increasing the coupling strength. We show that during the gradual process of topological 
adjustment in phase space, the multifractal structures of each strange attractor of the two coupled 
oscillators continuously converge, taking a similar form, until complete topological synchronization 
ensues. According to our results, chaotic synchronization has a specific trait in various systems, from 
continuous systems and discrete maps to high dimensional systems: synchronization initiates from 
the sparse areas of the attractor, and it creates what we termed as the ‘zipper effect’, a distinctive 
pattern in the multifractal structure of the system that reveals the microscopic buildup of the 
synchronization process. Topological synchronization offers, therefore, a more detailed microscopic 
description of chaotic synchronization and reveals new information about the process even in cases of 
high mismatch parameters.

Complex systems present us with an immense challenge as we try to explain their behavior. One key element 
in their description is how synchronization and self-organization emerge from systems that did not have these 
properties when isolated and, particularly, if the systems exhibit chaotic behavior. Synchronization underlies 
numerous collective phenomena observed in nature1–4, providing a scaffold for emergent behaviors, ranging 
from the acoustic unison of cricket choruses and the coordinated choreography of starling flocks5,6 to human 
cognition, perception, memory and consciousness phenomena7–13. Surprisingly, although chaotic systems have 
high sensitivity to initial conditions and thus defy synchrony, in the 1980’s it has been shown that even chaotic 
systems can be synchronized14–17. Understanding how such a process can happen and characterizing the transi-
tion from completely different activities to synchrony in chaotic systems is fundamental to understanding the 
emergence of synchronization and self-organization in nature.

Chaotic dynamics present two fundamental and unique emergence phenomena, strange attractors which, 
in most cases, will have multifractal structure18–20 and Chaotic synchronization. Understanding how these two 
phenomena occur and relate to each other is essential to shedding more light on the process of emergence in 
nature. Usually, chaotic synchronization is investigated by analyzing the time series of the system. Often it is 
observed by tracking the coordinated behavior of two slightly mismatched coupled chaotic systems, namely two 
systems featuring a minor shift in one of their parameters. As the coupling strength increases, a sequence of tran-
sitions occurs, beginning with no synchronization, advancing to phase synchronization21, lag synchronization22, 
and eventually, under sufficiently strong coupling, reaching complete synchronization. The process is typically 
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characterized at the macroscopic level through the Lyapunov spectrum21 and at the mesoscopic level through 
the non-localized unstable periodic orbits23–27.

In Ref.28 we presented a new approach that revealed the microscopic level of the synchronization process. 
By presenting a new kind of synchronization, a topological synchronization, we shifted descriptive levels of the 
synchronization process to the topology domain of the synced attractors. We discovered that synchronization 
is a continuous process at the microscopic level that starts from local synchronizations in different areas of the 
attractor. These local topological synchronizations start from the sparse areas of the attractor, where there are 
lower expansion rates, and accumulate until the system reaches complete synchronization. This paper investigates 
the relationship between the two emergent phenomena of chaos, the multifractal structure and strange attractors’ 
synchronization process. In order to do so, we analyze the new phenomenon of topological synchronization. 
We show that topological synchronization of strange attractors is a gradual process at the emergent multifractal 
level. The multifractal structures of each strange attractor of the two coupled oscillators continuously converge 
to a similar form until complete topological synchronization ensues. Topological synchronization unveils new 
detailed information about the synchronization process. Specifically, we characterize how the fractal dimen-
sions change through the synchronization process and provide the probability of each scaling law to appear on 
the synchronized attractor and the probability of points to obey these scaling laws. In addition, after examina-
tion of various systems we show evidence that the chaotic synchronization process has a specific trait. Both in 
continuous system and discrete map and both in low and high dimensional systems, with the proper coupling, 
synchronization initiates from the sparse areas of the attractor and creates a zipper effect. A distinctive pattern 
in the multifractal structure of the system that reveals the microscopic buildup of the synchronization process. 
Lastly, we show that topological synchronization can also shade light in extreme synchronization cases between 
high mismatched coupled chaotic systems.

A multifractal structure typically characterizes the emergence of strange attractors18,19, which means that 
there is an infinite number of scaling laws in their structure, each captured by a different fractal dimension. 
Furthermore, every scaling law has a different number of points that obeying it29. Hausdorff dimension, that 
typically captured by box count dimension, is only one of these scaling laws. In order to demonstrate topological 
synchronization, we need to use a more general definition of dimension to account for this multifractality. To 
this end, we used Rényi Generalized dimension18,30 which fully describes the structure of a multifractal for the 
different probabilities of each fractal:

where Pi is the probability of a point (in state space) to be in sphere i, l is the radius of the sphere and q is a param-
eter that can be any real number. Parameter q captures different fractal dimensions Dq in the multifractal that 
have different probabilities for the trajectory to follow them. Thus, the general dimension is not just one value 
but a function of the parameter q. The dominant dimension is the box counting dimension, a mixture of all the 
scaling laws that will appear the most in the attractor, and it corresponds to D0 . D1 is the information dimension 
andD2 is the correlation dimension31. D−∞ represents a rare scaling law that appears only once in the strange 
attractor with a small probability of states obeying this law, and D∞ represents yet another very rare scaling rule 
that also appears once, but this time with a high probability of states obeying this law18,32.

Results
Equipped with Eq. (1) we can fully describe topological synchronization. We demonstrate it on one of the most 
fundamental examples in the context of synchronization, capturing two slightly mismatched chaotic Rössler 
oscillators33 coupled in a master–slave configuration. The equations of motion driving these oscillators take the 
form:

where x1 ≡ (x1, y1, z1) and x2 ≡ (x2, y2, z2) are the vector states of the master and slave oscillators respectively, 
σ is the coupling strength and f1,2(x) = (−y − z, x + ay, b+ z(x − c1,2)) . Without loss of generality we set the 
parameters to a = 0.1 and b = 0.1 identically across the two oscillators, and express the slight mismatch between 
the master and the slave through the parameters c1 = 18.0 versus c2 = 18.5 . System (2) describes a unidirectional 
master ( x1 ) slave ( x2 ) form of coupling, uniformly applied to all coordinates x, y and z. Under this directional 
coupling scheme, we can track and quantify the process of synchronization in a controlled fashion, as the slave 
gradually emulates the behavior of the master while the master continues its undisturbed oscillations.

In Ref.28, we showed the microscopic buildup of synchronization in the system (2). Local synchronization 
initiates in the sparse areas of the attractor and as the local synchronizations accumulate, phase synchroniza-
tion occurs for σps ≥ 0.1 and complete synchronization is obtained for σcs ≥ 2.0 . In Fig. 1 we show the general 
dimension curves, Dq of the system (2), which describes the process of the topological synchronization between 
the master and the slave. The master (black) has a fixed curve while the slave starts with a completely different 
Dq than the master in low coupling σ = 0.07 (blue) and converges with the master at higher coupling σ = 0.12 
(red dashed). Moreover, at the transition point to phase synchronization (red dashed), blow-ups for the master 
and slave curves show that in the slave case, Dq for q<0 is much closer to the master than Dq in the positive part 
( q>0 ). If we compare the two zooms on the positive and negative parts of the curve and consider the differ-
ence in the vertical axis ranges for negative (0.02) and positive (0.15) q, we observe a difference of almost one 

(1)Dq = lim
l→0

[

1

q− 1

ln
(
∑

i pi
q
)

ln
(

1
l

)

]

,

(2)
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order of magnitude. This result corresponds to the fact that local synchronization initiates in the sparse areas 
of the attractor where the probability of points is low. As we move to the negative part of the parameter q and 
approach D−∞ , we examine the sparse areas of the attractor with low probability scaling laws, and indeed they 
reach topological synchronization before the dense areas of the attractor (for q > 0).

The previous example demonstrates that the synchronization process between different strange attractors can 
be understood as a topological synchronization between the multifractal structures of the attractors. Topologi-
cal synchronization means that the multifractal structure of one attractor predicts the multifractal structure of 
the second attractor, and when complete topological synchronization occurs, the multifractal structure of one 
attractor fully predicts the other. Thus, topological synchronization is characterized by the boundedness of the 
difference between the Dq curves of the two oscillators over the whole dynamical evolution of the system. Con-
sequently, the condition for complete topological synchronization between oscillator 1 and 2 is:

In order to further analyze the properties of topological synchronization we chose a simple 1D discrete system 
from the Logistic map family, coupled in a master–slave configuration. The equations of motion driving these 
oscillators take the form34:

where k is the coupling strength. Without loss of generality, we express the mismatch between master and slave 
through the parameters c1 = 0.89 and c2 = 0.8373351 , respectively. The slave oscillator ( yn ) is on the onset of 
chaos with sparse strange attractor whereas the master ( xn ) has a dense strange attractor. In Fig. 2a we present 
the synchronization error parameter E versus k calculated as E = τ−1

∫ t0+τ

t0
�x1 − x2�dt (letting the system to 

evolve from random initial conditions with fixed integration time step of h = 0.001 from t = 0 up to t0 = 50,000 
t.u. and averaging the distance between the oscillators’ states during τ = 1000 t.u.). As E→0 at kCS∼0.9 complete 
synchronization emerges. Topological synchronization unveils the microscopic process underlying synchroniza-
tion. The microscopic buildup is caused by a topological matching mechanism which eventually leads to complete 
synchronization between the two attractors. Figures 2b–e and 3 examine the general dimension of the system 
(4) and reveal this topological synchronization process. Both figures show that a gradual increase of k causes 
a gradual decrease of the distance between the two Dq curves to zero. According to Fig. 3, around k = 0.21 the 
distance between the Dq curves for q ≤ 0 begins to decrease until it vanishes around k = 0.33 , whereas in the 
region q > 0 the distance begins to decrease at only around k = 0.3 . The system reaches complete topological 
synchronization with zero distance between the two Dq curves at k = 0.9.

Furthermore, in Fig. 2b–e, we show that the changes of the slave Dq curve versus k reveal a zipper effect of 
the general dimension from the negative q to the positive q. At low coupling, there is a continuous synchro-
nization of the negative part of the Dq curve ( q≤ 0 ). When the negative part of the Dq curve is synchronized 
around k = 0.33 (panel c), the positive part starts to synchronize. More specifically, D1 synchronizes at around 
k = 0.36 , D2 at around k = 0.42 , and D3 at k = 0.51 (panel d) and so on, “zipping” the topological synchroniza-
tion process until at around k = 0.9 , where complete synchronization is achieved, the D10 dimension of the slave 
equals that of the master (panel e. For video of the whole zipper effect process, see supplementary video 1 and 
supplementary video 2).
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Figure 1.   Generalized fractal dimension for slightly mismatched Rössler systems. General dimension Dq as 
a function of parameter q for the master (black) and slave for coupling strengths σ = 0.07 (blue solid) and 
σ = 0.12 (red dashed). Insets are blow-ups for the master and slave curves for σ = 0.12 in the q < 0 (bottom 
left) and q > 0 (top right) regions. Topological synchronization occurs as the Dq curve of the slave matches the 
Dq curve of the master.
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The finding of negative to positive zipper effect in the Dq curves concurs also with the Rössler system. As 
noted before, stepping from D−∞ to D∞ represents stepping from scaling laws with low occupation probability 

Figure 2.   Microscopic build-up of synchronization for the Logistic map system. (a) Synchronization error 
E as function of coupling strength k. Complete synchronization E ∼ 0 is reached around k ∼ 0.9 . (b)–(e) 
Topological synchronization and the zipper effect. General dimension Dq as function of the parameter q of 
master (blue) and slave (red) attractors. As the coupling k increases a zipper effect from the negative ( q ≤ 0 ) to 
the positive ( q > 0 ) part of Dq is seen.
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to scaling laws with high occupation probability. The zipper effect, thus, implies that as in the Rössler case, also 
in the Logistic map case, topological synchronization starts at low coupling strength at areas of the attractor that 
have a low probability of points and, only when these areas complete their local synchronization, the attractor 
will topologically synchronize also in areas with a high probability of points at a large coupling.

In both discrete map and continuous systems, we see the same distinctive pattern of the zipper effect in the 
multifractal structure, where topological synchronization starts from the sparse to the dense areas of the attrac-
tor, suggesting that this trait might be an essential feature in chaotic synchronization.

In order to validate the robustness of the zipper effect, we analyzed the topological synchronization of sev-
eral systems with different features, a high mismatch class III system and a high dimensional system. For the 
first system, we chose a special case of the Rössler system with a high mismatch between the parameters of the 

Figure 3.   Distance between the master and slave’s general dimensions for the mismatched Logistic map 
systems. Upper panel, color map denoting the distance between the Dq curves of the master and the slave, �Dq 
as a function of the parameter q (y axis) and the coupling strength k (x axis). Vertical dashed lines show the 
negative and positive zipper effect regions (as �Dq goes to zero). Bottom panel, distance between the master and 
slave Dq curves calculated as the norm between them, ||�Dq|| as function of k in the q ≤ 0 (red dashed curve), 
q > 0 (yellow dot-dashed curve) intervals and in the whole range of q (blue solid line). At k ∼ 0.33 , Dq<0 of the 
slave has completed its synchronization with the master and its Dq>0 starts a gradual approach to the master 
curve. The zipper effect is completed around k ∼ 0.9 . Vertical dashed lines mark the negative and positive zipper 
effect regions.
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system and with a different form of the master–slave coupling by taking c1 = 14 for the master and c2 = 18 for 
the slave coupled through the variable x. This can be achieved by substituting the coupling term in Eq. (2) with 
σ(x1 − x2) , a coupling applied uniquely to the x variable. This change turns the coupled oscillators into a class 
III system, in which synchronization is confined to a finite interval in σ17,35. Indeed, now the system features a 
first transition at σ = σ

1
CS , in which it enters almost complete synchronization, followed by a second transition 

at σ = σ
2
CS > σ

1
CS , in which it begins to de-synchronize (Fig. 4a).

In such an extreme scenario, the multifractal structures of the two oscillators are sufficiently different to 
observe the process of the two distinctive Dq curves converge. Because of the system’s high mismatch, a much 

Figure 4.   Microscopic build-up of synchronization for high mismatched Rössler systems. (a) Synchronization 
error E as function of coupling strength σ . We obtain a window of approximate complete synchronization, in 
which E ≪ 1 , between σ1

CS
∼ 3 and σ2

CS
∼ 7 . (b)–(d) Topological synchronization and the zipper effect. General 

dimension Dq as function of the parameter q of master (blue) and slave (red) attractors. As coupling σ increases 
a zipper effect from the negative to the positive part of Dq can be seen. (c) At low couplings, the slaves’ negative 
Dq part syncs and reaches a minimal stable distance from the master. (d) The positive Dq part synchronizes only 
after the negative part has completed to synchronize and reaches a stable minimal distance from the master as 
well.
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higher coupling strength is needed to synchronize, but complete topological synchronization can not be achieved. 
Nevertheless, an approximate zipper effect occurs here as well.

Figure 4 presents the microscopic buildup of synchronization for the high mismatched Rössler systems. The 
synchronization error parameter E approaches zero at a window of approximate complete synchronization, in 
which E ≪ 1 , between σ1CS ∼ 3 and σ2CS ∼ 7 (Fig. 4a). Figure 4b–d reveals that indeed, there is a zipper effect 
of the general dimension from the negative part of Dq ( q ≤ 0 ) to the positive part of Dq ( q > 0 ) also in the high 
mismatch Rössler system. The slaves’ negative Dq part synchronizes at low coupling and reaches a minimal stable 
distance from the master (panel c). The positive Dq part start its’ synchronization only after the negative part 
finished to sync around σ∼3.5 and the system approaches an almost complete synchronization at σ∼6 (panel d. 
For video of the whole zipper effect process, see supplementary video 3 and supplementary video 4). Figure  5 
shows |�Dq|

∗ , the distance between the Dq curves of the master and the slave normalized by the initial distance 
between the Dq curves at σ = 0 . As the coupling strength σ increases, a gradual decrease of the distance between 
the two Dq curves is observed. Around σ∼0.25 the distance of the negative part of the Dq curve begins to decrease 
until it reaches a minimal stable distance from the master around σ∼3 whereas the distance of the positive part 
of the Dq curves begins to decrease only at around σ∼3.5 and reaches zero at around σ∼6 . Interestingly, both in 
the Logistic map case and in high mismatched Rössler system the first dimension that syncs with the master and 
starts the zipper effect in the q ≤ 0 is D0 (which is a mixture of all the scaling laws that will appear the most in 
the attractor18. See supplementary material note 1). Above σ2CS∼7 , the system exits the synchronization window 
with a reverse zipper effect. The positive part of Dq gradually increases its distance from the master curve while 
the negative part of Dq remains with the same distance from the master. The physical interpretation of the reverse 
zipper effect is that as the system exits the synchronization window, the dense regions of the attractor will de-
synchronize before the low density regions. Indeed, in28, we showed that in class III systems, de-synchronization 
starts from the dense regions of the attractor.

For the second system we chose the Mackey–Glass equation36. This equation contains a delay τ , which makes 
it an infinite dimensional system. According to Farmer37, as the value of τ is increased, the dimension of the 
attractor increases as well:

where σ is the coupling strength and τ1 , τ2 are the delays of oscillator 1 and 2 respectively. Without loss of gen-
erality we set the parameters to γ = 0.1 , β = 0.2 and n = 10 identically across the two oscillators. We express 
the mismatch between the master and the slave through the delays, τ1 = 27 and τ2 = 26 . With such delays we 
could explore topological synchronization in high dimensional space. In order to explore the attractors generat-
ing from Eq. (5) we need to use a time delay embedding of the equations, with embedding delay of τ′ = 32 and 
embedding dimension of D = 6 . Figure 6 presents both the synchronization error parameter E and |�Dq|

∗ , the 
distance between the Dq curves of the master and the slave normalized by the initial distance between the Dq 
curves at σ = 0 . As the coupling strength σ increases the synchronization error parameter E approaches zero and 
a gradual decrease of the distance between the two Dq curves is observed. In low coupling strengths the distance 
of the negative part of the Dq decreases until it reaches a minimal stable distance from the master around σ∼0.5 
whereas the distance of the positive part of the Dq curves begins to decrease only after σ∼0.5 to reach a minimal 
stable distance from the master as well. as a result, there is a zipper effect of the general dimension from the 
negative part of Dq ( q ≤ 0 ) to the positive part of Dq ( q > 0 ) also in high dimensional Mackey–Glass system. 
The positive Dq part start to synchronize only after the negative part finished to sync and the system approaches 
an almost complete synchronization at σ∼2.

Discussion
In this paper, we analyzed the relationship between the emergence of two phenomena of chaotic dynamics. On 
the one hand, the multifractal structure of a strange attractor and, on the other hand, chaotic synchronization. 
We demonstrate this relationship by introducing topological synchronization, in which the multifractal structure 
of one strange attractor approaches the other until the multifractal structure of the attractors is the same. Topo-
logical synchronization shifts the descriptive levels of synchronization to the emergence level of the topology 
domain of the attractors. Topological synchronization is a powerful tool to investigate chaotic synchronization, 
and it gives us relevant information even in high mismatched systems and in high dimensional systems. It reveals 
that chaotic synchronization is a continuous process that can be described by the zipper effect. The fact that we 
see the same zipper effect in various different systems, from logistic map and the canonical Rössler system to an 
extreme case of high mismatched Rössler system and high dimensional chaotic system like the Mackey–Glass 
system, supports that the zipper effect is an essential trait of chaotic synchronization. Furthermore, we even see 
that in class III system, not only that the zipper effect is present during the synchronization process, it is also 
present during the de-synchronization process as a reverse zipper effect. Our findings, therefore, suggest that, 
typically, the road to complete synchronization starts at low coupling with topological synchronization of the 
sparse areas in the attractor and continues with topological synchronizations of much more dense areas in the 
attractor until complete topological synchronization is reached for high enough coupling. The study of chaotic 
microscopic behavior can only be observed through numerical tools, and motivated and supported, as we did 
in the paper, by reasoning and qualitative arguments. As a result, in order to build a solid case, topological 

(5)
ẋ1(t) = −γ x1(t)+ β

x1(t − τ1)

1+ x1(t − τ1)n

ẋ2(t) = −γ x2(t)+ β
x2(t − τ2)

1+ x2(t − τ2)n
+ σ[x1(t)− x2(t)],
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synchronization needs to be studied more and additional numerical studies need to be performed in order to 
continue and validate the results that we presented in this paper.

One application of these results is to determine how much synchronization a physical system has and where, 
in phase space, it occurred. For some real chaotic systems, complete synchronization will be detected, whereas 
other systems may only sync until the point where their less crowded areas in the attractor will be synchronized. 
Topological synchronization can detect these differences and show which areas of the phase space have already 
synchronized. Furthermore, by applying topological synchronization to extreme cases of chaotic systems (like 

Figure 5.   Distance between the general dimension of master and slave for high mismatched Rössler systems. 
Upper panel, color map denoting the normalized distance between the Dq curves of the master and the slave, 
�D∗

q as a function of the parameter q (y axis) and the coupling strength σ (x axis). Vertical dashed lines show the 
negative and positive zipper effect regions (as distance decreasing to a minimum fixed value). Bottom panel, the 
normalized distance between the Dq curves of the master and the slave calculated as the norm between them, 
||�D∗

q || as a function of σ in the q ≤ 0 (red dashed curve), q > 0 (yellow dot-dashed curve) intervals and in the 
whole range of q (solid blue line). At σ ∼ 3 , the negative part of Dq has completed its synchronization, and the 
positive part starts a gradual approach to the master curve. The zipper effect completes around σ ∼ 6 . At σ ∼ 7 
the system exits the synchronization window with a reverse zipper effect. The positive part of Dq gradually 
separates from the master curve (and thus the distance from the master increases) while the negative part of Dq 
remains with the same close distance to the master. Vertical dashed lines show the negative and positive zipper 
effect regions.
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cases of high mismatch between the parameters of the system) we can extend our understanding of the synchro-
nization process to cases that were hard to study before.
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