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Abstract

Although in observational studies, propensity score matching is the most widely used bal-

ancing method, it has received much criticism. The main drawback of this method is that the

individuals of the case and control groups are paired in the compressed one-dimensional

space of propensity scores. In this paper, such a novel multivariate weighted k-nearest

neighbours-based control group selection method is proposed which can eliminate this dis-

advantage of propensity score matching. The proposed method pairs the elements of the

case and control groups in the original vector space of the covariates and the dissimilarities

of the individuals are calculated as the weighted distances of the subjects. The weight fac-

tors are calculated from a logistic regression model fitted on the status of treatment assign-

ment. The efficiency of the proposed method was evaluated by Monte Carlo simulations on

different datasets. Experimental results show that the proposed Weighted Nearest Neigh-

bours Control Group Selection with Error Minimization method is able to select a more bal-

anced control group than the most widely applied greedy form of the propensity score

matching method, especially for individuals characterized with few descriptive features.

Introduction

Case-control studies are widely applied risk analysis methods mainly used in healthcare and

social sciences. In retrospective medical studies, the case group typically contains diseased

patients, while the control group includes non-diseased individuals, and the study aims to eval-

uate those risk factors that potentially led to disease occurrence. In the case of prospective

studies, typically the effect of a treatment, intervention or other factor is evaluated by compar-

ing the outcome variables of the case (treated) and control (untreated) groups. The popularity

of these studies arises from their relatively inexpensive nature, however, the degree of their evi-

dence is lower than randomized trials. The reliability of these studies can be increased by (1)

increasing the number of cases included in the study, (2) performing thorough data prepara-

tion and data cleaning activities and (3) selecting a proper control group for the case group.
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The latter highlights the fact that the primary aim of case-control studies is to compare individ-

uals in the case and control groups. A prerequisite of carrying out appropriate analyses

requires that the case and control groups are similar on covariates that predict group member-

ship (e.g. treatment assignment) and affect the examined output. However, fulfilling these

requirements is not a trivial task. Many articles have highlighted the importance of the proper

implementation of a control group selection method and the effect of unbalanced control

groups on the result of analyses [1–5].

Nowadays, propensity score matching (PSM) [6] is the most widely used control group

selection method. It is widespread in healthcare analyses [7–9], and is gaining ground in social

sciences [10–12] and economics [13–15]. PSM matches the individuals of the case and control

groups based on their propensity score values, which is the probability of the group (e.g. treat-

ment) assignment conditional on the observed baseline covariates. From a practical viewpoint,

various PSM methods exist [16–20] that may differ in terms of selection methodology, the

ratio of the treated and untreated individuals or the nature of the selection process. On one

hand, individuals can be selected into the control group with or without the replacement of

the candidates. A general tendency is to apply PSM with replacement when the population

from which the control group is selected is too small. Otherwise, matching without replace-

ment can also be used. On the other hand, the ratio of the case and control groups can also be

varied. 1:1 matching is common practice, but in the case of large datasets, other implementa-

tions e.g 1:M matching can also be used. Thirdly, the variety of the propensity score-based

matching methods also increases by the fact that during the selection of the individuals, greedy

or optimal matching can also be applied. In the first case, untreated subject whose propensity

score is the closest to the score of a given treated subject is selected and matched. When opti-

mal matching is used, the aim is to minimize the total within-pair difference of the propensity

scores, and the pairing is optimized globally [21, 22]. Although, in the literature, different

extensions (e.g. radius matching, kernel matching, inverse probability weighting, GPS-CDF

method, etc. [23–26]) of the basic PSM methods were also proposed, in everyday practice the

greedy 1:1 matching without replacement is the most widely used form of the PSM method.

Despite the popularity of these methods, they have also received much criticism [27–29].

Most of the critical comments point to the possible imbalance between the case group and the

control group. It was shown in a recent article [30], that out of 1000 articles using PSM (pub-

lished between 1983 and 2015), only 6% used any iterative balance checking procedure. In the

remaining 94% of the articles, simple 1:1 greedy PSM was applied without any balance check-

ing. King and Nielsen highlighted that PSM is blind to the often large imbalance that can be

eliminated by approximating full blocking with other matching methods [30]. Moreover, they

pointed out that propensity score matching may increase imbalance even relative to the origi-

nal data. In a review article published by P. Austin [31] some articles were also identified con-

taining imbalance on the baseline covariates between the case and control groups despite the

suitable application of the PSM method. In [32] cardiovascular studies were examined, and

authors showed that propensity score methods are not necessarily superior to conventional

covariate adjustment.

The main problem with the most widely applied form of the PSM method presumably orig-

inates from the application of dimension reduction of the original feature space. Namely, pair-

ing is performed in the 1-dimensional space of the propensity score values, which reduced

space might hide the distributions of the original dimensions (features). Covariates that equally

affect the probability of individuals belonging to the treated (or diseased) group also affect the

value of the propensity score to the same extent. However, the distribution of these variables

may be different, and this difference will no longer appear in the 1-dimensional probability

values. As long as the matching is performed in the 1-dimensional space of the propensity
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scores, these differences can not be taken into account during the matching procedure. Publi-

cations [33] and [34] also highlighted that matched-pair analysis has to be performed only

when matched individuals are highly correlated, but matching subjects having similar propen-

sity scores do not necessarily result in matched subjects with similar covariate values. Based on

these considerations, we regard matching in the original n-dimensional vector space or its sub-

space more suitable than in the 1-dimensional space of propensity scores. The mentioned sub-

space refers to the covariates which should be included in the propensity score model. Based

on recommendations of Austin [35] and Brookhart [36], all variables that affect both the expo-

sure of the group membership and the outcome of the study should always be taken into

account.

In this paper, a novel weighted k-nearest neighbour matching method is proposed to select

the most suitable individuals into the control group. The proposed method and the most

widely used PSM are similar as both methods calculate the probabilities of group membership

(e.g. treatment assignment) using a logistic regression (LR) fit. However, PSM pairs the indi-

viduals in the reduced 1-dimensional space of propensity scores, the proposed method per-

forms the matching process in the original feature space of covariates utilizing the regression

coefficients of the LR model as weight factors of the dimensions. In this way, on the one hand,

the proposed method eliminates the main disadvantage of the PSM method, but at the same

time retains its advantage by utilizing its regression coefficients as weight factors of the covari-

ates. Monte Carlo simulations show, that the proposed method can overcome the aforemen-

tioned shortcomings of the PSM method and may result in a more balanced control group.

In the following, the propensity score matching method and the proposed Weighted Near-

est Neighbours Control Group Selection with Error Minimization method (WNNEM) are

introduced. Following this, a Monte Carlo study is presented to compare the most widely

applied form of the PSM method with the WNNEM method and to highlight the main advan-

tages of the proposed method. To demonstrate the relative utility of the proposed method,

some head to head comparisons with other well-known methods (stratified matching, nearest

neighbour matching and Mahalanobis metric matching) were also included in our study.

Methods

Matching-based control group selection methods aim to select and pair individuals from a set

of potential candidates (XC) to individuals of the case group (XT). Individuals Xi 2 {XC [ XT}

are characterized by n ðn 2 NÞ descriptive features (e.g. age, gender, diagnoses) denoted as f1,

f2, . . ., fn. Therefore, each subject is denoted as an Xi ¼ ½xif1
; xif2

; . . . ; xifn
� vector of variables,

where i = 1, 2, . . ., L and L = |XC [ XT|. The aim of control group selection methods is to select

such an XUT� XC control group, that is balanced to the case group, meaning that the distribu-

tions of the variables in both sets are similar. Naturally, XT and XUT must be disjoint sets, that

is XT \ XUT = ;. To ensure this requirement, XT and XC must also be disjoint (XT \ XC = ;).

Propensity score matching

Propensity score matching refers to matching techniques that are based on propensity scores

(PS). Propensity score is the conditional probability of treatment assignment based on the

observed baseline covariates:

pi ¼ Prðzi ¼ 1jXiÞ; ð1Þ

where pi denotes the propensity score for the i-th participant, and zi 2 {0, 1} denotes the treat-

ment variable in such a way that zi = 0 refers to the control (e.g untreated) group and zi = 1
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refers to the case (e.g. treated) group. Subjects characterized by the same properties have the

same propensity scores.

In retrospective observational studies, the true propensity score is unknown and has to be

estimated from available data. Usually, it is estimated using a logistic regression model, but

other methods have also been examined and used (e.g. recursive partitioning [37], random for-

ests [38], bagging and boosting [39, 40] and neural networks [35, 41]). When the dependent

variable is dichotomous, logistic regression is the most commonly used method to estimate the

propensity scores. In this case, treatment status is regressed on the observed baseline covariates

and propensity scores are estimated by the fitted model. The multiple linear regression func-

tion estimated by the logistic regression model can be defined as follows:

logitðpÞ ¼ b0 þ b1f1 þ b2f2 þ � � � þ bnfn ð2Þ

where

logitðpÞ ¼ ln
p

1 � p

� �

ð3Þ

and p is the probability of being exposed. Furthermore, the values bk (k = 1, 2, . . ., n) are the

regression coefficients that describe the relative effects of the covariates (fk) on the status of

group (e.g. treatment) assignment. The propensity score estimated by logistic regression is cal-

culated as:

p ¼
eðb0þb1f1þb2 f2þ���þbnfnÞ

1þ eðb0þb1 f1þb2f2þ���þbnfnÞ
ð4Þ

PSM methods essentially follow the nearest neighbour-based approach. That is, that indi-

vidual is selected from the candidates pairing whose propensity score is the most similar to the

propensity score of the individual to be paired in the case group. If multiple subjects from the

candidates have equally close propensity scores to the propensity score of the sample subject,

one of those is selected at random. As the greedy method does not contain any restrictions

concerning the maximum acceptable difference between the propensity scores of the two

matched subjects, practical implementations often take into account a threshold parameter for

the selection [42]. Individuals within a certain distance of the propensity scores (caliper size)

are matched together, and subjects that fall outside this caliper are neglected. Various sugges-

tions have been made for optimal caliper size in the literature [42–44], but usually 0.2 of the

standard deviation of the logit of the propensity scores is recommended [42].

Weighted nearest neighbours control group selection with error

minimization

As it was described in the Introduction, PSM methods are constantly in the midst of criticism

due to the imbalance of the covariates observed in some studies. The disadvantage of the most

widely used PSM and all other propensity score-based methods is that they perform the pair-

ing of individuals in the 1-dimensional space of the propensity scores. Additionally, uncer-

tainty is also increased by the fact that propensity scores are estimated and not known a priori.

Although earlier some methods have been proposed to pair individuals in the original vector

space of the features [45–47], to the best of our knowledge none of them utilizes the result of

fitting a logistic regression model during the matching performed in the original vector space.

In this section, such a novel weighted nearest neighbours-based control group selection

method is proposed in which the relevance of the covariates is estimated by fitting a logistic

regression model, furthermore control group selection is performed in the original vector
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space of the covariates by calculating the weighted distances of the treated individuals and the

possible candidates.

The suggested Weighted Nearest Neighbours Control Group Selection with Error Minimi-

zation method (WNNEM) considers each subject as an n-dimensional data point in an n-

dimensional space, where each covariate (fk, k = 1, . . ., n) represents a unique dimension. This

way, the problem of control group selection can be interpreted as a distance minimization

problem. To select a proper control group, we have to identify such individuals from the can-

didates that lie close to the individuals of the case group. The concept of lying close can be

defined in numerous ways. In the case of the proposed method, multivariate matching is per-

formed in which the adjusted odds ratio (OR) values of the fitted multivariable logistic regres-

sion model are utilized as weighting factors of the covariates to compute the distances between

the individuals.

Before the whole algorithm is presented, two aspects have to be clarified. Firstly, the term

distance and secondly the suggested weighting method has to be specified.

Generally, as individuals may be characterized by different types of variables (binary, nomi-

nal, ordinal, numerical), the distance calculation method to be applied must be able to handle

different data types. Furthermore, as the significance of the covariates may differ, distances

have to be calculated separately for each dimension. The third requirement of distance calcula-

tion is that the dissimilarity measures with identical values have to express the same degree of

dissimilarity.

To fulfil these requirements, the proposed algorithm calculates the differences for each

dimension separately and converts all dissimilarity values into the range of [0, 1]. The distance

calculation for different data types is performed as follows:

• In the case of binary variables, the simple matching distance is calculated. That is,

dðf Þij ¼

(
0 if xif ¼ xjf

1 if otherwise
ð5Þ

where dðf Þij yields the distance of individuals Xi 2 XT and Xj 2 XC, xif is the value of individual

Xi on binary variable f, and xjf of Xj, respectively.

• In the case of nominal variables, either the simple matching distance presented before (Eq 5)

can be calculated or these variables can be coded as a set of binary variables and the distance

can be calculated as the normalized distance of binary features, where the normalization

constant represents the number of possible values of the nominal variable.

• In the case of numerical variables, the dissimilarity measure can be calculated as the differ-

ence of the original values. As the distance calculated in this way depends on the range of the

original values, normalization is needed to achieve uniform significance for the same dissim-

ilarities and to make them comparable to the dissimilarity measures calculated on other

types of attributes. To fulfil this requirement, min-max normalization must be performed

separately for each numerical dimension to map the original values into the range of [0, 1] as

follows:

x�if ¼
xif � minf

maxf � minf
ð6Þ

where xif denotes the original value of individual Xi in the f-th dimension without normaliza-

tion, minf represent the minimum and maxf the maximum value measured in the f-th

dimension taking into account all individuals from XT [ XC, and x�if yields the normalized
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value of the individual Xi with regard to the f-th covariate. Subsequently, the distance of indi-

viduals Xi 2 XT and Xj 2 XC is calculated as the differences of their normalized feature val-

ues:

dðf Þij ¼ jx�if � x�jf j ð7Þ

• In the case of ordinal variables, the ordered values have to be coded as ranks and the distance

can be calculated as the aforementioned distance of numerical values.

After ensuring that meaning of the dissimilarity values is identical in each dimension, the

next step is to weight them according to their relevance to treatment assignment. Previously

mentioned, the adjusted odds ratio values of the multivariable logistic regression model fitted

on the status of treatment assignment are utilized for this purpose. Generally, the odds ratio is

the probability of a characteristic being present divided by the probability of the same charac-

teristic being absent. In our case, the adjusted odds ratio for each independent variable can be

obtained by applying the exponential function to the corresponding regression coefficient (bk)

obtained from the multivariable logistic regression model (Eq 2). That is, adjusted odds ratios

as the weights of the covariates are calculated as follows:

wk ¼ ORk ¼ ebk ð8Þ

where wk denotes the weighting factor of the k-th covariate (k = 1, 2, . . ., n).

The proposed WNNEM method calculates the distances for individuals Xi 2 XT and Xj 2

XC the following way:

distðXi;XjÞ ¼
Xn

k¼1

wkd
ðkÞ
ij ð9Þ

where dðkÞij represents the normalized dissimilarity value of Xi and Xj in the k-th dimension,

and wk is the weighting factor of dimension k.

The presented weighted attribute distance is utilized to match the best pairs of candidates

(XC) and individuals of the treated group (XT). Basically, the best pair for each Xi 2 XT is that

Xj 2 XC for which dist(Xi, Xj) is minimal. This way, the matching procedure can be regarded

an optimization problem, where ∑i,j dist(Xi, Xj) has to be minimized.

Our practical experiments show that for 1:1 matching, an adequate solution can be found

even without the use of a complex optimization algorithm. The only problem that needs to be

handled during optimization is management of the pairing process of those candidates which

lie closest to more than one individual from the case group. These candidates are called candi-
dates in conflict and formally are defined as follows: Xj 2 XC is a candidate in conflict if d(Xi,

Xj) is minimal for more than one Xi 2 XT.

For handling these conflicts, the order of the neighbours has to be determined. Let NN1(Xi)

denote the closest and NN2(Xi) the second closest neighbour to individual Xi 2 XT. By defini-

tion, NN1(Xi) and NN2(Xi) are calculated as follows:

NN1ðXiÞ ¼ argmin
Xj2XC

ðdistðXi;XjÞÞ ð10Þ

NN2ðXiÞ ¼ argmin
Xj2XC � fNN1ðXiÞg

ðdistðXi;XjÞÞ ð11Þ
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The design of the conflict-handling method to solve the competition of two individuals was

inspired by the Vogel-Korda method: instead of a greedy selection, the second neighbours of

the treated individuals are also taken into account. That is, the candidate in conflict is matched

to the individual for which the error function is greater. The error function is calculated as the

distance of the first and second neighbours of the individuals as follows:

EðXiÞ ¼ jdistðXi;NN1ðXiÞÞ � distðXi;NN2ðXiÞÞj ð12Þ

In this way, the problem of two competing individuals, Xl and Xm 2 XT, is solved. In the

case of multiple competing individuals, conflicts are handled by dynamic programming. First,

the conflict with the largest error is resolved followed by the others in descending order. This

principle is applied iteratively until all the conflicts are resolved.

In summary, the steps of the proposed Weighted Nearest Neighbours Control Group

Selection with Error Minimization method (WNNEM) are presented by Algorithm 1. It

should be noted that although the presented WNNEM algorithm performs 1:1 matching, it

can be easily extended for 1:M matching as well. In this case, in Step 3 the set of unpaired ele-

ments (Xunpaired) has to be defined in the way, that each individual of the case group (XT)

should be placed M times into the set Xunpaired. The other parts of the algorithm do not change.

Algorithm 1: Weighted Nearest Neighbours Control Group Selection with Error Minimi-

zation (WNNEM)
Input: XT case group, XC set of candidate individuals
Output: XUT control group
1 Perform a logistic regression to estimate wk weights for all
covariates.
2 Normalize XT and XC collectively using feature scaling and calculate
the D = dist(Xi, Xj) distance matrix for all pairs of individuals of Xi
2 XT and Xj 2 XC by Eq 9.
3 Set

Xunpaired = XT
XUT = ;

4 Determine NN1(Xi) and NN2(Xi) based on the distance matrix D for all
Xi 2 Xunpaired.
5 Calculate E(Xi) for all Xi 2 Xunpaired by Eq 12.
6 For all i 2 {arg(Xunpaired)}

Set l ¼ argmaxXi2Xunpaired
ðEðXiÞÞ

If NN1(Xl)=2XUT:
XUT = XUT [ {NN1(Xl)}
Xunpaired = Xunpaired − {Xl}
Set m = arg(NN1(Xl))
Set D(i, m) = 1 for all i 2 {arg(XT)}

7 Repeat Steps 4 to 6, till Xunpaired 6¼ ;.

Comparison of the PSM and WNNEM methods—Monte Carlo study

Study design. To present the effectiveness of the proposed method, a Monte Carlo simula-

tion-based experimental study was performed. In this study, the quality of the control group

arising from the proposed WNNEM method was compared to the quality of the control

groups arising from the following matching methods: (i) two greedy PSM methods, (ii) nearest

neighbour matching (NNM) [48], (iii) Mahalanobis metric matching (MMM) [47] and (iv)

stratified matching (SM) [49]. In the cases using PSM methods, the most widely applied form,

namely, the greedy 1:1 propensity score matching performed without replacement of individu-

als was applied. The only difference between the two forms of the PSM methods applied was

the ‘caliper size’ setting. In the first case (PSM_02), the caliper size was set as 0.2 of the
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standard deviation of the logit of the propensity scores. In the second case (PSM_DYN), the

caliper size in each simulation was determined dynamically and was set at the minimal value

for which 1:1 matching could be performed.

As the greedy nature of the PSM, the nearest neighbour matching and the Mahalanobis

metric matching makes them sensitive to the order of the candidates, these methods were run

10 times on each generated dataset in such a way, that the matching order was randomized in

each experiment. In contrast, when the WNNEM method or stratified matching was applied,

the control group selection was performed only once for each of the generated datasets,

because of the deterministic nature of these algorithms.

Datasets. For the comparisons, three scenarios of datasets with varying feature character-

istics were designed. For each scenario, 100 datasets were generated randomly with the same

distribution parameters predefined for the covariates. As a result, each scenario contained 100

different datasets with the same number of individuals. That is, in total, we evaluated the accu-

racy of the various control group selection methods on 300 datasets. Since the PSM methods,

the nearest neighbour matching and the Mahalanobis metric matching ran 10 times on each

dataset, the presented research is based on a total of 12600 outcome evaluations.

Scenario I In the first scenario, datasets contained 1000 individuals and correspond to the

dataset widely applied in theoretical PSM studies [50]. Individuals were characterized by 10

binary variables, each from a Bernoulli distribution (xj* B(0.5), j = 1, . . ., 10).

The calculation of the probability of treatment assignment was based on the following logis-

tic regression model:

logitðpi;treatÞ ¼ b0;treatþ

bLxi1 þ bLxi2 þ bLxi3 þ bMxi4 þ bMxi5þ

bMxi6 þ bHxi7 þ bHxi8 þ bVHxi9 þ bVHxi10

ð13Þ

where weights b denote low (L), medium (M), high (H) or very high (VH) effect on treatment

assignment.

For each subject, a treatment status indicator (Zi) was generated from a Bernoulli distribu-

tion with a subject-specified probability equal to pi,treat (Zi* B(pi,treat)). The treated group

consisted of subjects where Zi = 1, while subjects where Zi = 0 were assigned to the untreated

group (from which the control group was selected). The weights (bL, bM, bH and bVH) were

assigned in such a way that approximately 25% of the subjects were treated. The applied weight

coefficients were as follows:

• correction for binary: b0,treat = −1.344090

• low: bL = log(1.1)

• medium: bM = log(1.25)

• high: bH = log(1.5)

• very high: bVH = log(2.1)

Scenario II The second scenario models such studies in which fewer descriptive variables

are available. In this scenario, each individual was characterized by 1 ordinal and 5 binary vari-

ables. The ordinal variable represents 5 age groups, while the binary variables may represent,

for example, the gender of the subject or various diagnoses. In this scenario, 700 individuals

were simulated in each dataset, and the ratio of the candidate subjects to the treated individuals

in the 100 datasets was between 2.0 and 3.1.
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The assignment of weights to the descriptive variables was as follows: the ordinal variable

(x1) has very high effect, the binary variables have low (x2), medium (x3 − x5) and high (x6)

effect on the status of treatment (Eq 14).

logitðpi;treatÞ ¼ b0;treatþ

bVHxi1 þ bLxi2 þ bMxi3 þ bMxi4 þ bMxi5þ

bHxi6

ð14Þ

The applied weight coefficients, in this case, were the same as in Scenario I.

Scenario III The third scenario is similar to the second one regarding the attributes of indi-

viduals and the total number of subjects in each dataset. However, it simulates a more difficult

control group selection problem. Although each dataset still contained 700 individuals, the

number of treated individuals in the case of the third scenario is higher than in the second

one. While in scenario II, the size of the treated group varied between 24.5 and 33.0 percent of

the dataset, in the case of the third scenario, it is between 31.7 and 40.7 percent. In other

words, the third scenario simulates a more difficult case, where the ratio of the candidate

individuals to the treated subjects is lower (XC/XT� [1.5, 2.2]) than in the second scenario

(XC/XT� [2.0, 3.1]). Therefore, in this scenario, it is harder to find a proper pair for each

treated individual.

To achieve a higher treatment rate, the weight coefficients were modified as follows:

• correction for binary: b0,treat = −1.344090

• low: bL = log(1.35)

• medium: bM = log(1.6)

• high: bH = log(2.1)

• very high: bVH = log(3.1)

Methods to evaluate the similarity of the case and control groups. To validate the result

of control group selection, the similarity of the case group and the control group has to be eval-

uated. In our study, comparison was conducted the following ways: (1) comparing the distri-

butions of the covariates and (2) measuring the similarity of the matched pairs.

In the first case, two different performance evaluations were done. On the one hand, the

most common balance metric for comparing propensity score methods, namely the standard-

ized mean difference (SMD) [51] was calculated. Additionally, the most commonly applied

goodness of fit tests were also calculated. In the case of continuous covariates with normal dis-

tribution, Student two-sample t-test [52] was applied, and in the case of non-normal continu-

ous covariates the Kolmogorov-Smirnov test [53, 54] was used. In the case of testing the

similarity of categorical variables, Chi-square test [55] was applied.

The most common drawback of the previously mentioned methods is that they only exam-

ine the similarity of the values of a single covariate. As the Hansen and Bowers imbalance test

[56] is applied for more complex evaluation in biomedical studies, this aggregated imbalance

measure was also calculated in this study. The main virtue of this measure is that it is an aggre-

gated imbalance test, which allows the imbalance of all covariates to be evaluated simulta-

neously. The application limit of the test, namely that it can be applied for 1:1 matching

without replacement, made it ideal for our study. To extend the complex evaluation for all

covariate distributions together, the Distribution Dissimilarity Index (DDI) presented in [57]
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was also utilized. This measure first compares the disparity between histograms for each covar-

iate separately and calculates the differences of the frequencies of the histogram bins before the

differences are totalled and normalized.

As the similarity of the distributions of the covariates does not mean that the paired individ-

uals are also similar, two aggregated pairwise similarity measures, the Nearest Neighbour

Index (NNI) and the Global Dissimilarity Index (GDI) [57], were also calculated for each com-

parison. The common characteristic of these measures is that the overall distance of the case

and control groups is calculated by evaluating the pairwise distances of the matched subjects.

The NNI examines for each treated subject whether the paired individual is the closest individ-

ual in the given population. The GDI evaluates the similarity of the paired elements more pre-

cisely. First, it calculates the normalized distances of the paired subjects, then these distances

are totalled and normalized for all matched pairs. In this way, the Global Dissimilarity Index

expresses the magnitude of the distances of the paired individuals as well.

Results

In this section, the results of the study are presented. For a fair comparison, not only two types

of the PSM method were compared to the proposed WNNEM method, but other distance-

based approaches (nearest neighbour matching, Mahalanobis metric matching) and the widely

used stratified matching were also examined.

Scenario I

As mentioned before, in this scenario each dataset contains 1000 individuals, each character-

ized by 10 binary covariates.

Table 1 shows the mean value of the NNI, GDI and DDI distance measures with their stan-

dard deviations. All presented dissimilarity measures may fall within the range of [0, 1], and

the value of zero expresses that the case and control groups are identical. Consequently, the

greater the dissimilarity value, the higher the difference of the case and control groups is. The

results show that the WNNEM method performed the best in terms of control group selection.

All dissimilarity values, both for the paired evaluations (NNI and GDI) and the distribution-

based evaluation (DDI), are lower in the case of control groups selected by the WNNEM

method than by the other methods.

To evaluate the results of the selected control groups, the similarities of the covariates were

also evaluated separately. Firstly, the SMD values were calculated for all covariates and for all

matching methods applied. The detailed results are presented in Table 2. It can be seen that all

matching methods resulted in well-balanced control groups as all SMD values are less than 0.1.

There are only small differences between the values in favour of the distance-based methods.

On covariate x1 the nearest neighbour matching method, on covariates x2 and x3 the

Table 1. Dissimilarity measures for Scenario I. The Nearest Neighbour Index (NNI) and the Global Dissimilarity

Index (GDI) present the results of the evaluation of the similarity of matched pairs. The Distribution Dissimilarity

Index (DDI) evaluates the similarity of the histograms of covariates.

NNI GDI DDI

WNNEM 0.0599±0.0031 0.0613±0.0046 0.0120±0.0033

SM 0.5737±0.0248 0.5737±0.0248 0.5737±0.0248

NNM 0.0649±0.0034 0.0747±0.0057 0.0152±0.0040

MMM 0.0661±0.0036 0.0760±0.0064 0.0150±0.0041

PSM_02 0.3252±0.0290 0.3588±0.0339 0.0664±0.0179

PSM_DYN 0.2875±0.0259 0.3237±0.0327 0.0160±0.0038

https://doi.org/10.1371/journal.pone.0236531.t001
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Mahalanobis metric matching and on covariates x4 − x10 the WNNEM method resulted in the

most balanced control groups. Given that covariates x1 − x3 were associated only with low

weights to the group membership (Eq 13), we can say that the WNNEM method gave the most

accurate balancing on the major covariates.

In the next step, the similarity of the covariates for the case and control groups was tested

by the Chi-square test. A higher p-value means a more balanced control group in terms of a

given covariate. The detailed results are presented as box plots in Fig 1. As can be seen, the

median of the p-values for covariates x4 − x10 is the highest in the case of WNNEM method,

and for covariates x5 − x10 the interquartile ranges of the WNNEM method is the smallest. Fur-

thermore, the first quartiles from x4 to x10 are also the highest in the case of the WNNEM

method.

To summarize the balances of the covariates, the widely used Hansen and Bowers test was

also evaluated for all matching algorithms. In the Hansen and Bowers test, covariates are con-

sidered poorly balanced if the test value is significant (p< 0.05). The higher the p-value, the

more similar the case and control groups are. The p-values for all simulations are presented as

box plots in Fig 2.

Fig 2 clearly shows that the WNNEM method resulted in the most balanced control groups

in terms of the Hansen and Bowers test. Not only the interquartile range is the smallest in the

case of the WNNEM method, but the tail of the box as well. Furthermore, only a few outlier

simulations can be observed, and, except for one simulation, they all have high p-values. All

these facts support the advantages of applying the proposed WNNEM method.

Scenario II

The second scenario simulates such studies in which the age of the patients and another 5

binary parameters are considered as covariates.

The overall statistics of the control group selections are presented in Table 3. It can be seen

that the proposed WNNEM method performed better in terms of GDI and DDI measures

than the other methods. However, in terms of the Nearest Neighbour Index, the lowest value

can be seen at the nearest neighbour matching, but the difference is negligible (0.005). Further-

more, we can observe that distance-based algorithms generally give 1 order of magnitude bet-

ter results than PSM methods, except the DDI value of the PSM_DYN method. Furthermore,

Table 2. SMD values for Scenario I. The table shows the average value of the standardized mean differences and their standard deviations for each covariate separately.

x1 x2 x3 x4 x5

WNNEM 0.034±0.030 0.029±0.027 0.025±0.024 0.022±0.020 0.026±0.021

SM 0.057±0.046 0.057±0.042 0.044±0.036 0.057±0.047 0.057±0.039

NNM 0.024±0.019 0.030±0.022 0.026±0.021 0.028±0.021 0.027±0.021

MMM 0.027±0.026 0.024±0.022 0.023±0.019 0.030±0.024 0.031±0.030

PSM_02 0.039±0.029 0.035±0.024 0.035±0.029 0.033±0.027 0.031±0.024

PSM_DYN 0.034±0.024 0.031±0.023 0.032±0.024 0.028±0.021 0.031±0.023

x6 x7 x8 x9 x10

WNNEM 0.023±0.019 0.021±0.018 0.020±0.016 0.022±0.016 0.018±0.014

SM 0.056±0.040 0.059±0.046 0.048±0.032 0.059±0.043 0.065±0.050

NNM 0.027±0.019 0.034±0.027 0.030±0.024 0.033±0.022 0.045±0.030

MMM 0.026±0.024 0.032±0.031 0.027±0.026 0.035±0.033 0.046±0.037

PSM_02 0.035±0.024 0.037±0.027 0.034±0.023 0.036±0.025 0.042±0.029

PSM_DYN 0.029±0.021 0.031±0.025 0.029±0.020 0.028±0.020 0.030±0.022

https://doi.org/10.1371/journal.pone.0236531.t002
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by comparing these results to the results of Scenario I, it can be seen, that in this case, the

selected control groups are more similar to the case group.

For further evaluation, the similarity of the covariates was also calculated. Evaluating the

SMD measures for the covariates separately, we found that for all covariates and for all meth-

ods the average values are below 0.1, so the matched control groups are well balanced on each

covariate. The similarity of the case and control groups measured by the Chi-square test is pre-

sented in Fig 3. It is important to emphasize that in the case of completely missing boxes, the

first, second and third quartiles of the p-values were all equal to 1. In the case of partially miss-

ing boxes, the median was equal to 1, therefore the third quartile and maximum value were

equal. Consistent with the results observed for the NNI, GDI and DDI indices, Fig 3 also

emphasizes the better performance of distance-based measures (WNNEM, nearest neighbour

matching and Mahalanobis metric matching) for this data set.

Evaluating the Hansen and Bowers test (Fig 4), we can establish that all methods have

selected very similar control groups to the case groups. The differences between the boxes are

marginal, but the PSM method with a dynamically determined caliper size parameter resulted

in less similar control groups more times.

In this example, we have seen that all methods were able to select perfectly balanced control

groups. This is due to the lower variability of features of the individuals and the relatively large

number of available candidates.

Fig 1. Distribution of covariates in Scenario I. Distribution of the Chi-square p-values calculated for each covariate based on all simulations.

https://doi.org/10.1371/journal.pone.0236531.g001
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Scenario III

The third scenario is similar to the second one but it simulates a more difficult control group

selection problem as the ratio of the candidate individuals to the treated ones is less than in

Scenario II. In this scenario, on average, only 1.7 candidate individuals were available per

treated person, while in Scenario II this value was 2.5.

In Table 4 the overall dissimilarity measures are presented. By comparing Tables 3 and 4, it

can be seen that in the case of the third scenario, it was harder to select fully balanced control

groups. However, Table 4 shows that the distance-based methods were still able to select more

Fig 2. Results of Hansen and Bowers tests in Scenario I. Comparison of the p-values of the Hansen and Bowers test for the WNNEM method, the stratified matching,

the nearest neighbour matching, the Mahalanobis metric matching and two variants of the PSM method.

https://doi.org/10.1371/journal.pone.0236531.g002

Table 3. Dissimilarity measures for Scenario II. The Nearest Neighbour Index (NNI) and the Global Dissimilarity

Index (GDI) present the results of the evaluation of the similarity of matched pairs. The Distribution Dissimilarity

Index (DDI) evaluates the similarity of the histograms of covariates.

NNI GDI DDI

WNNEM 0.0073±0.0040 0.0069±0.0041 0.0036±0.0028

SM 0.0382±0.0190 0.0382±0.0190 0.0382±0.0190

NNM 0.0065±0.0033 0.0077±0.0040 0.0046±0.0023

MMM 0.0068±0.0035 0.0082±0.0044 0.0041±0.0027

PSM_02 0.0303±0.0169 0.0312±0.0174 0.0251±0.0148

PSM_DYN 0.0162±0.0104 0.0178±0.0119 0.0088±0.0052

https://doi.org/10.1371/journal.pone.0236531.t003
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balanced control groups than the greedy PSM methods, and the stratified matching resulted in

the worst dissimilarity measures. The nearest neighbour matching and the Mahalanobis metric

matching seem to give better results in terms of NNI and GDI measures than the WNNEM

method, but the deviation is less than 0.01.

Fig 5 details the covariate imbalances separately. As can be seen, the WNNEM method was

able to select better-balanced control groups than the PSM methods and the stratified match-

ing on all covariates. Comparing the WNNEM method to other distance-based methods we

can see that the WNNEM method was able to achieve more balanced results on covariates

with high (x6) and very high (x1) effect on the group assignment (e.g. treatment assignment).

The calculated average SMD values were still below 0.1 for all methods.

Fig 6 presents the overall results of the Hansen and Bowers tests. By comparing Fig 4 and

Fig 6, it can be seen that in the case of the third scenario, it was harder for each method to

select a fully balanced control group. However, Fig 6 shows that the WNNEM method was the

most suitable to select a balanced control group. In this way, Fig 6 confirms the ability of the

WNNEM method to select better control groups in harder situations. However it should be

noted, that the greedy PSM with dynamically determined caliper size also gave good results,

but in a few cases the resulting control groups are not well balanced. In the case of using the

WNNEM method, it happened only one time.

Fig 3. Distribution of covariates in Scenario II. Distribution of the Chi-square p-values calculated for each covariate based on all simulations.

https://doi.org/10.1371/journal.pone.0236531.g003
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Discussion

Although propensity score matching is the most widely used balancing method, many publica-

tions have drawn attention to the disadvantages of using it. Probably, the main problem arises

from the fact that the selection of individuals happens in a compressed one-dimensional space

of the propensity scores. In this paper, a multivariate control group selection method was pro-

posed, which performs the control group selection in the original vector space of the covari-

ates. The proposed Weighted Nearest Neighbours Control Group Selection with Error

Minimization method takes into account the nearest neighbours of the treated individuals and

tries to solve the problem of candidates in conflict. Candidates in conflict are those individuals

who are the closest to more than one treated subject. Distances between the individuals of

Fig 4. Results of Hansen and Bowers tests in Scenario II. Comparison of the p-values of the Hansen and Bowers test for the WNNEM method, the stratified matching,

the nearest neighbour matching, the Mahalanobis metric matching and two variants of the PSM method.

https://doi.org/10.1371/journal.pone.0236531.g004

Table 4. Dissimilarity measures for Scenario III. The Nearest Neighbour Index (NNI) and the Global Dissimilarity

Index (GDI) present the results of the evaluation of the similarity of matched pairs. The Distribution Dissimilarity

Index (DDI) evaluates the similarity of the histograms of covariates.

NNI GDI DDI

WNNEM 0.0304±0.0114 0.0351±0.0165 0.0115±0.0066

SM 0.1151±0.0334 0.1151±0.0334 0.1151±0.0334

NNM 0.0212±0.0065 0.0297±0.0114 0.0144±0.0058

MMM 0.0234±0.0079 0.0321±0.0129 0.0144±0.0067

PSM_02 0.1035±0.0335 0.1093±0.0362 0.0839±0.0304

PSM_DYN 0.0663±0.0255 0.0817±0.0352 0.0187±0.0086

https://doi.org/10.1371/journal.pone.0236531.t004
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treated and untreated groups are calculated as the weighted sum of the distances of the covari-

ates. As covariates may have different effects on treatment assignment, the proposed WNNEM

method weights them according to their relevance. The weighting factors for the covariates are

acquired from the logistic regression model fitted on the status of treatment assignment.

Monte Carlo simulations show that in the case of 1:1 matching, the proposed WNNEM

method is able to select a more balanced control group than the most widely applied greedy

forms of propensity score matching. In this article, we aimed to emphasize the fact that

although the most applied forms of PSM can result in a well-balanced control group, a more

similar control group can be reached with a simple nearest neighbour-based method proposed

in this article. The proposed method is advantageous when individuals are characterized by

fewer covariates and the search space is such small that there exist many individuals for select-

ing as control which are the most similar pairs of more than one treated subject. If more vari-

ables are available to characterize individuals, propensity scores describe the exposure of the

individuals more precisely, so individuals in conflict may also be less prevalent. As a result, the

selected control group is more balanced using the PSM method.

Furthermore, it must be emphasized that the presented form of the WNNEM method

solves the problem locally and does not consider further candidates in the selection process.

As a result, the proposed WNNEM method does not always select the best balanced control

group. This shortcoming of the proposed method can be eliminated by applying a global

Fig 5. Distribution of covariates in Scenario III. Distribution of the Chi-square p-values calculated for each covariate based on all simulations.

https://doi.org/10.1371/journal.pone.0236531.g005
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optimization method, e.g. particle swarm optimization or simulated annealing. In the next

step of our research, the advantages of extending the proposed method in this regard will be

examined. However, it should be noted that the method proposed in this article is able to select

a better control group for small datasets. Moreover, in the presented simple form, this can be

achieved without specifying extra parameters. Because of its simplicity, applying the proposed

method may be worthwhile, however, further investigations into this topic are necessary. The

other limitation of the presented method, that it can only handle covariates with positively

associated with the treatment assignment. In our next work, we plan to extend the method to

negatively associated covariates as well.
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