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Aged population is increasing worldwide due to the aging process that is inevitable. Accordingly, longevity and healthy aging
have been spotlighted to promote social contribution of aged population. Many studies in the past few decades have reported
the process of aging and longevity, emphasizing the importance of maintaining genomic stability in exceptionally long-lived
population. Underlying reason of longevity remains unclear due to its complexity involving multiple factors. With advances in
sequencing technology and human genome-associated approaches, studies based on population-based genomic studies are
increasing. In this review, we summarize recent longevity and healthy aging studies of human population focusing on
DNA repair as a major factor in maintaining genome integrity. To keep pace with recent growth in genomic research,
aging- and longevity-associated genomic databases are also briefly introduced. To suggest novel approaches to investigate
longevity-associated genetic variants related to DNA repair using genomic databases, gene set analysis was conducted,
focusing on DNA repair- and longevity-associated genes. Their biological networks were additionally analyzed to grasp
major factors containing genetic variants of human longevity and healthy aging in DNA repair mechanisms. In summary,
this review emphasizes DNA repair activity in human longevity and suggests approach to conduct DNA repair-associated
genomic study on human healthy aging.

1. Introduction

Aging is an inevitable process in human life. Many countries
are rapidly transitioning to an aging society due to increasing
life expectancy and advanced medical supports [1–3]. Over
the last few decades, the advent of aging society is considered
a crucial issue that may cause future decline in productivity
of community [1, 4]. Many researchers have recently warned
that urban environmental pollutants can cause physiological
weakness and increase the risk of premature aging or chronic
diseases in the elderly population [5–9]. Thus, interest in
antiaging and healthy longevity is constantly increasing.
“Active aging” or “successful aging” has been spotlighted as

a strategy to promote social contribution of the elderly [10].
The definition of successful aging remains controversial.
However, its main point is to live a healthy life in physical,
cognitive, and biomedical aspects [10–12]. Although many
studies have dealt with the topic of aging in the past, it is
too complex to clearly understand fundamental causes of
the aging process.

Longevity is usually defined as living until life expectancy
that is typically over 85 years old. Exceptional longevity such
as centenarians is considered when one is more than 95 years
old with a healthy life [10, 13]. Several researchers have
emphasized the importance of in-depth studies on longevity
to cope with an aging society [14, 15] because such studies
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could suggest various biomedical clues for living a long and
healthy life. Oldest-old individuals, often centenarians,
represent an adequate model to investigate the complex phe-
notype of healthy longevity. Among enormous population-
based studies on centenarians, one major focus is on people
with exceptionally long lives without functional impairment
[10, 16–21]. Several landmark studies on healthy centenar-
ians have found that the progression of major diseases such
as cancer, cardiovascular disease, and stroke is delayed in
the oldest group compared to that in the other younger or
same-aged control groups, suggesting a substantial relation-
ship between healthspan and longevity [10, 20, 22].

Although successful longevity traits are modulated by
various factors, such as environmental, behavioral, and/or
endogenous causes, genetic factor might be a major factor
that contributes to healthy aging. Within the past few
decades, many researchers have tried to identify longevity-
associated genes using diverse species, ranging from less
complex organisms to higher organisms [18, 23–26]. With
development in genomic technology, genetic factors associ-
ated with longevity have been suggested in human popula-
tion studies and human genome-wide association studies
[18, 21, 27]. It has been found that variants of APOE and
FOXO3A are highly associated with longevity. This finding
has been consistently replicated in many different
population-based studies [21, 28–30]. Despite the complexity
of healthy longevity in human due to various influences,
genetic factors are thought to be exceedingly important to
understand the genetic basis of longevity. Accordingly, many
studies have investigated various genetic factors, including
nuclear genomic variants, mitochondrial variants, telomere,
and epigenetics, to elucidate the substantial contribution of
genetic factors to longevity [31–34].

Accumulation of DNA damage is associated with func-
tional decline in the aging process [35–37]. Thus, mainte-
nance of genomic integrity might be a crucial factor for
healthy life and longevity. Genome instability generally
increases with age. DNA repair machineries control genome
stability [38]. Previous studies on centenarian have shown
that oldest-old population have enhanced DNA repair
activity with significant lower frequency in genomic and
cellular damage compared to their younger counterparts
[35, 39, 40]. Thus, DNA repair plays an important role
in understanding exceptionally long-lived individuals.

In this review, we focus onmajor DNA repairmachineries
associated with longevity. We also explored longevity-
associated population studies using genome-wide approaches.
With brief introductions of genomic databases in aging
and longevity field, ample genomic resources of normal
long-lived human population were utilized for DNA
repair-focused approach. Herein, we suggest a new aspect
of longevity study to investigate the complex interplay
between DNA repair and longevity by processing human
genetic variations based on previous studies, providing a
brief interpretation of their molecular networks. This
review not only provides an overview of the importance
of DNA repair mechanism in longevity but also suggests
a novel approach to select candidate genes associated with
healthy aging in human.

2. Healthy Traits of Long-Lived Population

As concerns about longevity increase, many research studies
have investigated longevity using model organisms to under-
stand the association between genetic contribution and life-
span [23, 24, 26, 41–43]. However, human lifespan is too
complex to clearly elucidate its biological and sociocultural
factors. Therefore, many studies on human longevity have
been conducted epidemiologically by comparing populations
divided by age [44–47]. Recently, older population with good
health and longevity has been investigated to characterize
healthy aging phenotypes and differences compared to those
with same age or younger to provide better public health care
[48–51]. Nolen et al. have published a comprehensive review
on cancer prevalence in the oldest-old population and found
that centenarians and the oldest-old have lower risk of cancer
[50]. In Japan, where there is a relatively high population of
centenarians, the Okinawa Centenarian Study, the world’s
longest-running population-based study of centenarians,
has been performed to understand the contribution of
genetic and environmental factors to exceptional longevity
[18]. Interestingly, these studies commonly concluded that
not all elder people showed higher degree of age-associated
disorders. In fact, long-lived individuals with inherited pre-
disposition and their offspring showed beneficial profiles of
major disabilities [18, 48–50, 52, 53]. However, understand-
ing about the effect of genetic factors on longevity is still lim-
ited. Novel gene and/or genetic variations and contribution
of different aspects to longevity need to be determined in
the future.

Enhanced DNA repair capacity is thought to be a crucial
factor for healthy longevity based on previous studies using
oldest-old population [40, 54]. Evidence for improved DNA
repair system that leads to delayed aging has been accumu-
lated based on several human population studies [55–57].
Indeed, the frequency of DNA damages such as cytogenic
aberrations and micronuclei is significantly lower in the old-
est age group than that in the other groups, suggesting more
genomic stability in the oldest-old population [58]. However,
Chevanne et al. [40] have reported that DNA repair capacity
in centenarians is similar to that in young generations. In
accordance to these findings, the importance of DNA repair
activity in longevity needs to be clarified to elucidate factors
associated with longevity.

3. DNA Repair and Longevity

Disturbance of genome integrity is commonly known as a
staple factor in the etiology of age-related cellular dysfunc-
tion and pathogenesis, although a plethora of extrinsic and
intrinsic factors can also threaten genome stability. Accumu-
lated DNA damage can lead to cellular dysfunction, cell
death, and carcinogenesis. Generally, DNA repair mecha-
nisms in cellular protection system can rescue various cyto-
toxic and mutagenic lesions to maintain DNA integrity.
Accordingly, studies on the association between DNA
repair mechanism and aging are increasing. In this review,
we only focused on DNA double-strand break repair, base
excision repair (BER), and nucleotide excision repair (NER)
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associated with aging and longevity in terms of maintaining
genome integrity. Although there are many kinds of DNA
repair mechanisms to prevent genomic instability, other
pathways have been more related to diseases such as cancer
and disorders other than aging [59–62].

Age-related increase of DNA double-strand breaks is
consistently considered as a genetic blueprint of progeroid
syndromes because DNA double-strand breaks cause the
most deleterious damage to DNA [63–65]. Major repair
pathways for DNA double-strand breaks are homologous
recombination (HR) and nonhomologous end joining
(NHEJ). HR uses undamaged sister chromatid as template
during cell division. It is an error-free pathway [66]. NHEJ
occurs even in G1 phase of the cell cycle where sister chroma-
tid does not exist. It can join the ends of a double-stand break
without a template [67]. Several studies have shown that
DNA double-strand break repair is reduced in the aging pop-
ulation [63, 68, 69]. Many proteins involved in the NHEJ
process need to maintain telomeres. Ku70, Ku80, DNA-
PKCS, WRN, and PARP1 are key proteins of genome integ-
rity [70–73]. Deficiency of these proteins induces premature
aging and age-associated disorders [74–76]. Recently, it has
been found that SIRT6, one longevity gene, is involved in
DNA double-strand break repair by recruiting PARP1 to
damaged DNA region [77].

One major hypothesis on aging is that exposure to reac-
tive oxygen species (ROS) is increased over the lifespan [63,
69, 78]. The production of ROS can be induced by multiple
extrinsic and intrinsic factors. It causes various kinds of
DNA damage, including apurinic/apyrimidinic sites due to
DNA base lose, single-strand break, and double-strand break
[79, 80]. Accumulated DNA damages due to ROS frequently
lead to cellular dysfunction, a known consequence of chronic
oxidative stress with aging [78]. Several defense mechanisms,
including DNA repair machinery, can cope with the threat of
ROS [81]. BER predominantly corrects oxidative lesions [82].
Indeed, many subunits such as APE1, PCNA, and HSP70
related to BER pathway are involved in the defense mecha-
nism against cellular oxidative stress, including DNA repair
[82]. Many studies have shown the association between
BER and aging. For example, BER capacity is significantly
decreased in brain and liver tissues of old mice [83]. Many
studies have also reported that the decline of major compo-
nents (polβ, polγ, APE1, and Sirt6) of BER pathway is asso-
ciated with aging [84–89]. Interestingly, deficiency of APE1,
a vital element of BER initiation, leads to telomere dysfunc-
tion and segregation, suggesting that BER plays a role in
aging through telomere protection [90, 91].

NER, another type of DNA repair pathway, copes with a
wide range of lesions that distort the double helix structure of
DNA [81]. DNA bulky damages recognized by NER can
cause premature aging and/or cancer [92, 93]. NER is subdi-
vided into global genome NER and transcription-coupled
NER depending on where it occurs, covering lesions that
can be detected by NER subunits [60, 94]. Some NER pro-
teins are thought to be important factors in the aging process
due to their direct association with progeroid syndromes
such as trichothiodystrophy (TTD), Cockayne syndrome
(CS), and xeroderma pigmentosum (XP) [95–98]. A point

mutation at different sites in XPD gene can trigger TTD or
CS [96]. A defect in XP gene family (XPA-XPG) induces
XP. The patient with such defect has shown dramatically
accelerated skin aging [99]. Although whether decline of
NER efficiency is associated with aging remains controversial
[100–102], defect in NER machinery virtually provokes age-
related pathology and premature aging. Hermetic effects on
this aspect supports the crucial role of NER in healthy aging
through conserved pathway [103–105]. A prominent mecha-
nism of cellular protective responses is regulation of IGF-1
signaling that leads to somatotropic attenuation by RNA
polymerase II stalling. Interestingly, this prosurvival
response was commonly found in naturally aged, progeroid,
and long-lived mutant mice [106–108]. However, the mech-
anism eventually enhances longevity assurance in wild type,
while it has severe consequences in NER defects [104, 105].
In this regard, the modulation of DNA damage is thought
to be a more significant factor with a prosurvival harbor
[107]. Other intrinsic or extrinsic factors, of course, should
have to be considered for elucidating this complicated pro-
cess. Thus, understanding longevity in terms of DNA repair
is crucial in the aspect of genome integrity preservation.
The complex interplay between DNA repair and longevity
remains unclear.

4. Genomic Resources for Understanding Aging
and Longevity

Although longevity is a multifactorial process, genomic
approaches can be used to elucidate biological aspects of
longevity by identifying standardized parameters such as
biomarkers [109]. With development of next-generation
sequencing, a large number of long-lived individuals have
been studied to obtain their specific genomic information
such as single nucleotide polymorphisms, copy number
variations, transcriptomics, and epigenomics [110–114].
Although disease-susceptibility alleles are well characterized
in genome-wide association study (GWAS) catalog by the
National Human Genome Research Institute, research data
for illustrating low frequency of disease alleles in exceptional
longevity are limited or controversial [115]. Up to date,
APOE and FOXO3A have been consistently suggested as
well-described candidate genes in human longevity by vari-
ous cross-sectional studies [21, 116, 117]. Furthermore, joint
roles of genetic variants and phenotypes in longevity have
been suggested to improve our understanding on aging and
longevity [48]. Pathway-based candidate gene studies have
been performed to encompass their molecular and biological
networks in longevity [118–121]. However, their roles in lon-
gevity remain controversial.

Based on exponentially accumulated data, major aging
research groups have started global interdisciplinary collabo-
ration to share large scale genomic resources obtained from
sequencing data [122]. Human Ageing Genomic Resources
(HAGR; http://genomics.senescence.info) provides in-depth
information about the biology and genetics of aging [123].
HAGR now includes six core databases: GenAge, AnAge,
GenDR, DrugAge, and LongevityMap. GenAge contains
benchmark database of genes associated with aging. It is

3Oxidative Medicine and Cellular Longevity

http://genomics.senescence.info


now subdivided into two: (1) potential aging-related genes in
human and (2) lifespan-associated genes in model organisms
[124]. AnAge is a database of aging and longevity in animals
for comparative and evolutionary studies in this field [124].
Since there are many theories and factors of aging and lon-
gevity, HAGR has been expanded. It now has new categories
to deal with different aspects of this issue. GenDR is focused
on dietary restriction. DrugAge is a database of life-extending
drugs in model organisms. CellAge is a very recent database
to support overall cellular longevity study [125]. Longevity-
Map is an inclusive database based on genomic studies of
human longevity and healthy aging, excluding long-lived
individuals who have unhealthy traits such as disease, disor-
der, and/or dysfunction [126]. Utilizing these open source
data may aid biogerontologists to interpret human aging

and longevity in diverse aspects of the complex process
involved in aging and longevity.

5. DNA Repair and Longevity-Associated
Genetic Variation

With valuable longevity population data in longevity data-
bases, we investigated healthy longevity-associated genetic
variations in terms of major elements of DNA repair
mechanism. We focused on people with normal phenotype
in elder population. Data of human genetic variants asso-
ciated with longevity were retrieved from LongevityMap.
Contents of enormous studies on human longevity and
healthy aging ranging from cross-sectional investigations
to extreme longevity are curated in LongevityMap [126].

Table 1: Summary of DNA repair-associated genes with significant genomic variants in longevity.

Genes Variations Region Populations References

ATM rs189037 5′-UTR
Chinese (Han) [132]

Italian [133]

ATRIP rs9876781 Upstream American (Caucasian) [134]

EGFR

rs2072454 Exon (synonymous)

Korean [135]
rs2293347 Exon (synonymous)

rs3807362 3′-UTR
rs884225 3′-UTR

ERCC2 Lys751Gln§ Missense (stop-gain) Polish [136]

EXO1

rs1776180 Upstream

German [137]rs735943 Exon (missense; H/R)

rs4149965 Exon (missense; V/M or V/L)

HSPA1A
−110A/C Upstream§§ Italian (Southern) [138]

Danish [139–141]

G190C §§ Chinese (Uighur in Xinjiang) [142]

HSPA1B A1267G §§ Danish [141]

Chinese (Uighur in Xinjiang) [142]

HSPA1L T2437C §§ Danish [141]

Chinese (Uighur in Xinjiang) [142]

MLH1
C670, A676, T1172 §§ Korean [143]

rs13320360 Intron Danish [119]

POLB rs2953983 Intron Danish [119]

RAD23B rs1805329 Exon (missense; A/V) Danish [119]

RAD52 rs11571461 Intron Danish [119]

SIRT1

rs3758391 Upstream
Chinese (Han) [144]

rs4746720 3′-UTR
rs7896005 Intron American (Caucasian) [145]

rs12778366 Upstream Dutch [146]

TP53
rs1042522 Exon (missense; P/R or P/H)

Danish [127]

Italian (Central) [128]

rs9616906 Upstream American (Caucasian) [134]

WRN rs13251813 Intron Danish [119]

XRCC5 rs705649 Intron Danish [119]
§Variation in amino acid; §§studies on haplotype analysis.
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We trimmed these data by their significance in association
with longevity. To elucidate correlations between human
healthy longevity and DNA repair in the aspect of genetic var-
iants, we collected genes associated with canonical DNA repair
mechanisms from well-reviewed publications. DNA repair-
associated genes were obtained through search using keywords
such as NER, BER, NHEJ, HR, and MMR in human-oriented
samples. Gene sets that had significant association with lon-
gevity and DNA repair were analyzed to identify common
genes in these two groups. As a result, 16 genes were obtained,
including key factors of DNA repair mechanism such as TP53,
ATM, WRN, and POLB (Table 1). These results should be
cautiously grasped. For instance, in case of rs1042522 on
TP53 gene, two different population studies suggested oppo-
site interpretations on the same SNP [127, 128]. However,
the two studies also described common cellular effects of each
allele as well. This may be due to differentially designed

population studies (cross-sectional versus prospective follow-
up). Their advantages and pitfalls in each methodological
strategy must be considered seriously to understand popula-
tion studies, especially, for aging and longevity, because these
are very complex and multifactorial processes. Therefore,
complicated interactions instead of a single factor should be
taken into account. In addition, integrative approach should
be used to understand aging and longevity.

6. Complex Interplay on DNA
Repair Mechanism

To interpret the meaning of these common genes, biological
network analysis was conducted using Pathway Studio, a text
mining-based pathway analysis program. Recently, analyzing
molecular network is considered a more critical part than just
detecting alteration of DNA sequence and/or gene expression

SIRT1

POLB

APOE

FOXO3

Life span
CETP

Aging

Senescence

ATRIP

ERCC2

ELN

XRCC5

WRN

RAD52

RAD23B

EXO1

EGFR

HSPA1A

ATM

TP53

MLH1

DNA repair
deficiency

DNA repair
deficiency

disorder

Premature
aging

Genotoxicity

HSPA1B

HSPA1L

Cell Process

Disease

Protein

Protein
(Protein kinase)

Protein
(Receptor)

Protein
(Transcription factor)

Protein
(Transporter)

Binding

DirectRegulation

Expression

GeneticChange

PromoterBinding

ProtModification

Regulation

Figure 1: Direct networks among genes obtained by comparison of gene sets associated with DNA repair and human longevity. The analysis
of molecular and biological networks was conducted by using Pathway Studio Web (version 11.4.0.8). Green highlighted entities indicate 16
common genes obtained by gene set comparison. These networks were built with careful curation considering the number of reference (>10)
and their correlation with longevity, aging, and DNA repair.
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Figure 2: Major enriched networks of common genes and the top ranked pathway suggesting key contributors to longevity in aspect of DNA
repair. (a) Pathways and ontologies enriched in these genes shown in a bar graph. x-axis indicates the number of overlapped genes with
elements of each pathway/ontology while y-axis shows the name of statistically meaningful pathways/ontologies (p value< 0.05). (b) The
most enriched pathway, “persisted DNA repair triggers genomic instability,” and direct pathway analyzed previously were combined using
Pathway Studio Web (version 11.4.0.8) to explore major genes including candidate longevity-associated loci in DNA repair to provide
better visualization. Green highlighted entities indicate common genes collected by gene set comparison.
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to understand difference in phenotype. Various tools have
been developed to conduct network analysis for genes of
interest due to advance in bioinformatics industry and accu-
mulating research products. Pathway Studio as a commercial
software for biological pathway analysis can navigate related
biological processes using data mining interface [129]. In this
review, we explored interacting networks of these 16 com-
mon genes to elucidate the role of DNA repair in longevity
using Pathway Studio. These genes were initially analyzed
for their direct interactions and correlations with lifespan-
associated genes and cell processes (Figure 1). Many of these
genes are known as genetic parameters of genomic instability
and premature aging. According to results of our network
analysis, TP53, ATM, and SIRT1 were the top three elements
with high number of connections with others, suggesting that
their genetic variants might be considered as key nodes to
elucidate genetic contribution of major DNA repair factors
to longevity and healthy aging.

We also conducted gene set enrichment analysis using
the Pathway Studio software to explore which pathways
and ontologies might be mostly involved in these common
genes associated with DNA repair and longevity. Statistical
enrichment in this gene set was collected. We curated the
result by a p value of less than 0.05 (Figure 2(a)). Approxi-
mately half of these 16 common genes had overlapped
biological function, namely, “persisted DNA repair triggers
genomic instability.” For better visualization, pathways of
biological function derived from this software and those
of direct network from our analysis were combined
(Figure 2(b)). The results showed that ATM and TP53
played a major role in DNA repair by detecting DNA damage
and modulating downstream DNA repair machineries.
Although further meticulous study is needed to confirm their
roles in longevity, longevity-associated human genetic vari-
ants in TP53, ATM, and SIRT1 are worth considering to
identify potential key factors and understand the linkage of
DNA repair to longevity and healthy aging.

7. Conclusions

Although the importance of genomic stability in longevity is
continuously discussed [35, 130, 131], studies using genomic
and molecular approaches to understand genetic variations
of extremely old population in the aspect of DNA repair are
limited. In this review, we focused on DNA repair mecha-
nisms associated with longevity and healthy aging to eluci-
date their effects on the aging process. As reported in many
studies, this review also emphasized the role of DNA repair
in maintaining genome integrity as a crucial factor for
healthy longevity. With enormous resources of human lon-
gevity population that are freely available online based on
NGS studies, DNA repair-focused approach is useful for
identifying the association of genes with longevity by inte-
grated network analysis. This research approach could be
ideal and valuable for handling genomic data. The present
reviewmay provide a clue to utilize genomic databases to elu-
cidate contribution of genetic factors to longevity in many
different aspects. Although we only dealt with DNA repair
associated with longevity, comprehensive data from lifestyles

should be considered to better understand the process of
healthy aging. It might lead to the development of personal-
ized antiaging strategy.
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