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The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships

between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute

period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular

neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of

lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice

subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome

characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobeha-

vioural deficits. Experimental impact injury was associated with axonopathy, blood–brain barrier disruption, astrocytosis, micro-

gliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated

tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by

24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized

with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced

MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the

hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions

distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood–

brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction.

Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions

matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and

seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before

onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear
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stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses,

structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head

impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional

sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and rela-

tionship to traumatic brain injury and its aftermath.
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Introduction
Closed-head impact injuries are a common cause of con-

cussion (Ropper and Gorson, 2007; Harmon et al., 2013;

McCrory et al., 2013; Sharp and Jenkins, 2015) and trau-

matic brain injury (TBI) (Langlois et al., 2006; Menon

et al., 2010; Jordan, 2013; Sharp et al., 2016). These inju-

ries are also associated with post-traumatic sequelae

(Guskiewicz et al., 2007a; Ropper and Gorson, 2007;

Blennow et al., 2012; Smith et al., 2013b), including late-

life cognitive decline, neurodegenerative disease, and de-

mentia (Guskiewicz et al., 2005; Gavett et al., 2010;

Lehman et al., 2012; Stamm et al., 2015; Stein et al.,

2015b; Montenigro et al., 2017). Emerging evidence impli-

cates repetitive neurotrauma, including sports-related

closed-head impact injuries, as a major risk factor for

later development of chronic traumatic encephalopathy

(CTE), a progressive tau protein neurodegenerative disease

(McKee et al., 2013, 2016; Mez et al., 2017).

An association between sports-related head injuries and

chronic neuropsychiatric disturbances was first described

by Martland as the ‘punch-drunk syndrome’ of pugilists

(Martland, 1928). Parker and later Millspauch variously

dubbed the same condition ‘traumatic encephalopathy’

(Parker, 1934) and ‘dementia pugilistica’ (Millspaugh,

1937). Critchley proposed the name ‘chronic traumatic en-

cephalopathy’ (Critchley, 1949, 1957) to capture the pro-

gressive long-term nature of the disorder. CTE is now

recognized as a distinct tau protein neurodegenerative dis-

ease that is neuropathologically defined by perivascular
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accumulation of abnormally phosphorylated tau protein in

the depths of cortical sulci (McKee et al., 2016). Based on

the presence of this distinctive lesion, CTE has been con-

firmed in post-mortem brains from individuals across a

wide age range, including teenagers and young adults

(McKee et al., 2013; Bieniek et al., 2015; Mez et al.,

2017). Modern case series have documented CTE neuro-

pathology in contact sport athletes with repetitive concus-

sive and subconcussive head injuries (Omalu et al., 2005;

McKee et al., 2009, 2013; Mez et al., 2017) as well as

military veterans with combat-related blast exposure

(Omalu et al., 2011; Goldstein et al., 2012; Shively et al.,

2016). In addition, deep sulcal tau pathology has been re-

ported in long-term TBI survivors of single-episode neuro-

trauma (Johnson et al., 2012). While the preponderance of

reported CTE cases include a history of repeated mild TBI,

a subset (�20% of cases) is notable for absence of prior

concussion (McKee et al., 2014; Bieniek et al., 2015; Stein

et al., 2015a). This observation suggests that repeated head

injuries, even in the absence of frank concussion, may

induce brain pathologies associated with CTE.

Mild forms of TBI (Kay et al., 1993; Carroll et al., 2004;

Ruff et al., 2009; Menon et al., 2010; Katz et al., 2014;

Kristman et al., 2014) account for the majority of head

injuries worldwide (Roozenbeek et al., 2013; Bazarian

et al., 2014; Gardner and Yaffe, 2015). While the patho-

genesis of CTE is unknown, emerging evidence points to a

putative causal association with neurotrauma (Omalu

et al., 2005, 2011; McKee et al., 2009, 2013; Goldstein

et al., 2014; Montenigro et al., 2017). Recent research

has shown that contact sport athletes with repetitive head

injuries and military veterans with blast exposure demon-

strate similar patterns of post-mortem CTE neuropathology

(Omalu et al., 2005, 2011; McKee et al., 2009, 2010,

2013; Goldstein et al., 2012; Shively et al., 2016). These

observations support the hypothesis that neurotrauma

induced by different injuries triggers common pathogenic

mechanisms that induce convergent CTE neuropathology.

This hypothesis is further supported by research showing

that laboratory mice exposed to experimental blast develop

progressive brain pathologies and functional sequelae that

resemble CTE in humans (Goldstein et al., 2012; Huber

et al., 2013; Kondo et al., 2015). This experimental work

implicates traumatic head motion as a plausible mechanism

underpinning the observed similarities in human CTE brain

pathology despite differences in the mechanisms of injury.

Based on this evidence, we hypothesized that biomechanical

and pathophysiological determinants underpinning blast

neurotrauma would also drive early CTE neuropathology

after closed-head impact injury (Goldstein et al., 2012;

Ghajari et al., 2017). Furthermore, emerging clinical evi-

dence (Guskiewicz et al., 2007b; Bazarian et al., 2014;

Davenport et al., 2014; Talavage et al., 2014) and clinico-

pathological correlation analysis (McKee et al., 2013,

2014, 2015; Stein et al., 2015a; Mez et al., 2017) suggest

that TBI and CTE pathobiology may be independent of the

mechanisms that trigger concussion. These observations

suggest that repeat head injuries, even in the absence of

concussion, may induce TBI and CTE brain pathologies.

Despite growing awareness of links between head injury

and CTE, the substrates and mechanisms underpinning this

association, and relationships to concussion and TBI,

remain largely unknown and matters of significant contro-

versy. Most notably, there is insufficient knowledge regard-

ing changes in brain structure and function during the

acute-subacute period after head injury that may represent

the earliest antecedent pathologies of CTE.

Here we developed a novel mouse model of lateral

closed-head concussive impact injury that produces head

kinematics matched to a companion blast neurotrauma

mouse model (Goldstein et al., 2012; Kondo et al.,

2015). We deployed both animal models to test the

hypothesis that neurotrauma induced by different injury

mechanisms triggers common pathogenic mechanisms

and convergent CTE neuropathology. We used non-

anaesthetized mice to facilitate comparative investigation

of acute neurobehavioural responses to different types of

neurotrauma. We conducted biomechanical modelling,

computational simulations, and human clinicopathological

correlation analysis to investigate mechanisms leading to

observed differences in acute neurobehavioural responses

and similarities in chronic brain pathologies induced by

neurotrauma.

Materials and methods

Human subjects

The brain and spinal cord from a total of eight teenage and
young adult athletes (Supplementary Table 1), four males with
recent sports-related closed-head impact injuries sustained
1 day to 4 months prior to death (n = 4; ages 17 to 18
years; mean, 17.5 years) and four males without history of
symptomatic impact head injury or neurological disease
(n = 4; ages 17 to 22 years; mean, 19.2 years). Impact expos-
ure, trauma history, and neurological status at the time of
death were determined through review of medical records
and interviews with next of kin. This study was approved by
the Institutional Review Board at Boston University School of
Medicine and conforms to principles of human subject protec-
tion in the Declaration of Helsinki.

Animal subjects

Adult male C57BL/6 mice (Charles River Laboratories) and
male CCR2RFP/CX3CR1GFP mice (The Jackson Laboratory),
10–12 weeks of age, were group-housed at the Laboratory
Animal Science Center, Boston University School of
Medicine. B6.129(Cg)-Ccr2tm2.1Ifc/J mice and B6.129P-
Cx3cr1tm1Litt/J were transferred, bred, and utilized for experi-
ments in accordance with the Material Transfer Agreement
between The Jackson Laboratory, Bar Harbor, ME, USA
and Boston University School of Medicine, Boston, MA,
USA. Cohort size was 8–10 per group or as noted. Mice
were provided with standard mouse chow and water ad
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libitum. Ambient temperature was controlled at 20–22�C with
12-h light-dark cycles. Animal experiments were conducted in
accordance with guidelines from the Association for
Assessment and Accreditation of Laboratory Animal Care,
National Research Council Guide for the Care and Use of
Laboratory Animals, and the Laboratory Animal Welfare
Act. Animal experiments were approved by Institutional
Animal Care and Use Committees at Boston University
School of Medicine and New York Medical College. See
Supplementary material for additional details.

Human and murine neuropathology

Post-mortem human brain and spinal cord were received as
fresh tissue and as fixed tissue in formalin after processing
by medical examiners. Neuropathological analysis followed es-
tablished protocols at the Boston University Alzheimer’s
Disease Center and Chronic Traumatic Encephalopathy
Center and included comprehensive examination for all neuro-
degenerative conditions (McKee et al., 2013, 2016). Sections
of fixed, paraffin-embedded human brain were stained with
Luxol fast blue, haematoxylin and eosin, or processed for
immunohistochemistry or immunohistofluorescence. Mice
were euthanized by CO2 asphyxiation followed by open thora-
cotomy and transcardial perfusion with phosphate-buffered
saline. Mouse brains were prefixed in 10% neutral buffered
formalin, block-sectioned into coronal slabs, post-fixed in 4%
paraformaldehyde, paraffin-embedded, and serially sectioned
at 10 mm. Primary detection antibodies for human and
murine brains neuropathology (Goldstein et al., 2012;
McKee et al., 2013; Kondo et al., 2015): glial fibrillary
acidic protein (GFAP) mouse monoclonal antibody GA5
(Millipore), rabbit polyclonal antibody Z0334 (Dako); phos-
phorylated tau protein (pS202, pT205) mouse monoclonal
antibody AT8 (Pierce Endogen); phosphorylated tau protein
(pS202) mouse monoclonal antibody CP13 (Peter Davies,
Albert Einstein College of Medicine); cis-phosphorylated tau
protein (cis-pT231) mouse monoclonal antibody (Kun Ping
Lu, Harvard Medical School); amyloid precursor protein
(human APP, aa66-81) mouse monoclonal antibody 22C11
(Millipore); phosphorylated neurofilament mouse monoclonal
antibody SMI-34 (Abcam); HLA-DR II (MHC) mouse mono-
clonal antibody LN3 (Invitrogen); ionized calcium-binding
adaptor molecule 1 (human Iba1, aa135-147) rabbit poly-
clonal antibody Iba1 (Wako); serum albumin (human SALB)
chicken polyclonal antibody ab106582 (Abcam); phosphory-
lated Smad2/3 (human Smad2, pS465, pS467) rabbit poly-
clonal antibody 3101 (Cell Signaling); transforming growth
factor-b complex (TGF-b, human C-terminal peptide) rabbit
polyclonal antibody ab66043 (Abcam). Ultrastructural studies
were conducted on fixed mouse brain specimens embedded in
Epon

TM

, sectioned at 60 nm, stained with uranyl acetate or lead
citrate, and examined with a Tecnai-G2 Spirit BioTWIN elec-
tron microscope with an AMT 2K CCD camera. See
Supplementary material for additional details.

Experimental closed-head concussive
impact injury

A compressed gas-driven closed-head impact injury system
(Supplementary Fig. 1A) was custom designed and fabricated

at the Boston University Neurotrauma Laboratory, Boston
University School of Medicine, for use in awake, unanaesthetized
(anaesthesia-naı̈ve) young adult male C57BL/6 mice. The instru-
ment uses a momentum transfer mechanism to deliver a scalable
closed-head impact that results in traumatic head acceleration
without gross skull deformation. As implemented in this study,
left-lateral impact produced right-lateral flexion of the cervical
spine and rightward translation of the head in the horizontal
plane of motion (Fig. 2A and B). Mouse positioning and instru-
ment parameters were set such that head kinematics produced by
experimental impact were comparable to our blast neurotrauma
mouse model (Supplementary Table 2) (Goldstein et al., 2012;
Kondo et al., 2015). Instrument data were acquired and pro-
cessed in MATLAB (MathWorks, Natick, MA). Animal experi-
ments were conducted without anaesthesia to: maximize clinical
relevance and animal model fidelity with respect to human head
injuries and facilitate accurate assessment of acute neurobeha-
vioural responses post-injury (Huang et al., 2016); maintain
physiological responsivity of central receptors, channels, and
neurotransmitter systems; and prevent anaesthetic modulation
of neuroinflammation and tau protein phosphorylation (Planel
et al., 2007; Luh et al., 2011; Wojnarowicz et al., 2017).
Unanaesthetized mice were pretreated with a non-sedating dose
of the analgesic buprenorphine (0.2 mg/kg, i.p.), placed in a mod-
ified DecapiCone (Braintree Scientific, Inc.), and secured in the
instrument in the prone position. The head and cervical spine
were not restrained during experimental exposure. The single-
repeat design incorporated two impacts separated by 15 min to
mimic a minimal repeat head injury as commonly occurs during
a single session of contact sport play or practice (Crisco et al.,
2010). Experimental head injury was compatible with 100%
survival without evidence of skull fracture, spinal trauma, per-
sistent gross neurological impairment, or post-traumatic apnoea.
See Supplementary material for additional details.

High-speed videography kinematic
analysis

High-speed videography was conducted with a FASTCAM SA5
camera (Photron USA, Inc., Tech Imaging) operated at 10ms
frame capture rate (100 000 fps; 100 kHz). Videographic records
were reassembled and processed in MATLAB (MathWorks). A
2 kHz second-order, zero-phase Butterworth filter was applied to
position-time data. First, second, and third derivatives (velocity,
acceleration, jerk) were calculated from the filtered position
versus time vectors using discrete differentiation.

Acute neurobehavioural response
test battery

The test battery is a quantitative multidimensional evaluation
protocol for objective assessment of transient neurobehavioural
responses to experimental neurotrauma in awake, unanaesthe-
tized (anaesthesia-naı̈ve) mice (Supplementary Fig. 1B). A com-
posite score (0–15) was derived by summing component scores
on each of three subtests: open-field, inverted wire mesh, beam
walk. Each subtest was conducted over 30 s and scored on a
six-point scale (0–5) based on standardized metrics that capture
graded neurobehavioural deficits specific for each test
(Supplementary Fig. 1B). A composite score of 15 indicated
unimpaired performance in all three subtests. Lower scores
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indicate increasing impairment (mild: 14–10; moderate: 9–5;
severe: 4–0). Testing was conducted before exposure (pre-
injury baseline), 2 min after exposure (post-injury), and after
3 h rest period (recovery). See Supplementary material for add-
itional details.

Tau protein immunoblot analysis

Quantitative phosphorylated and total tau protein immunoblot
analyses were conducted on homogenates of left and right
hemisected brains from perfused mice sacrificed 2 weeks
after impact injury or sham (no injury) control exposure.
Snap-frozen hemisected brains were thawed, resuspended in
0.7 ml of protease-phosphatase inhibitor buffer, and homoge-
nized. Protein concentrations were normalized and equal
sample volumes analysed by polyacrylamide gel electrophoresis
(Goldstein et al., 2012). Immunoblot detection was conducted
with monoclonal antibody CP-13 (courtesy of Peter Davies,
Albert Einstein College of Medicine) directed against phos-
phorylated tau protein (pS202) and rabbit polyclonal antibody
Tau 5 (Cell Signaling) directed against total tau protein
(bovine tau, aa210-241). Triplicate measurements were ana-
lysed with ImageJ software.

Blood–brain barrier functional
analysis

Mice were injected with Evans blue dye (4 ml/kg, i.p.) 1 h
before impact injury or sham (no-injury) control exposure.
Following sacrifice, mice were transcardially perfused with
saline. Gross pathology was documented by photomacroscopy
with a Nikon D5200 digital camera under cross-polarized
white light illumination. Brains were sectioned (2 mm) coron-
ally and imaged with an IVIS Spectrum In Vivo Imaging
System (PerkinElmer). Fluorescence images were acquired at
0.5 s exposure with a 535 nm excitation filter and the follow-
ing emission filters: 580, 600, 620, 640, 660, 680, 700, 720,
740, 760, 780, 800, 820, 840 nm. Non-specific autofluores-
cence was removed by spectral unmixing (Living Image soft-
ware, PerkinElmer). Calibrated images were masked in Adobe
Photoshop and analysed with a custom MATLAB script
(MathWorks, Natick, MA) was used to process pixel data.
Evans blue-specific fluorescence signal intensity was normal-
ized to pixel area for each masked region. Percentage of
pixels demonstrating Evans blue-specific fluorescence was cal-
culated by thresholding to the mean 95th percentile of all
counts in control sections. Total percentage of Evans blue ex-
travasation pixels for each mouse brain was calculated by
summation across all slices. Grouping by Evans blue extrava-
sation was performed using a Gaussian mixture model.

Dynamic contrast-enhanced MRI

In vivo T1-weighted and dynamic contrast-enhanced MRI
were performed using a 11.7 T MRI (Bruker) at the Boston
University High-Field NMR Imaging Core Facility. Mice
were anaesthetized with 0.5–2.5% isoflurane during imaging
with respiration rate monitoring. For the dynamic sequence,
0.1 ml gadofosveset trisodium (0.25 mmol/ml; Lantheus
Medical Imaging) was administered by tail vein catheter.
Five baseline scans were obtained before injection. After

injection, 145 scans were acquired over 31 min. Post-acquisi-
tion image analysis was performed using customized MATLAB
scripts (MathWorks). See Supplementary material for add-
itional details.

Metallomic imaging mass spectro-
metry brain mapping

Ultra-trace elemental and isotopic analytical brain mapping for
gadolinium (Gd) was performed by laser ablation-assisted
metallomic imaging mass spectrometry (Gd-MIMS) at the
Boston University Center for Biometallomics. A quadrupole
inductively-coupled plasma mass spectrometer (iCAP-Q,
Thermo Scientific) was custom hyphenated to a Nd-YAG
laser with frequency quadrupling to attain 213 nm output.
Laser pulse duration was 5 ns with a pulse repetition rate of
20 Hz. Spot size was 20 mm and scan speed was 40 mm/s.
Laser-generated aerosol was transported from a custom-
designed laminar flow laser ablation cell to the mass spectro-
meter by carrier gas mixture at constant flow rates. Generated
ions were transported by mass flow into the mass spectrometer
and separated according to mass-to-charge ratio. Analytical
calibration was performed with a reference standard (SRM
612, NIST). Datasets were exported to a customized
MATLAB program (Mathworks) for analytical processing,
quantitation, and 2D analytical mapping.

Flow cytometry immunophenotyping

Flow cytometry was performed on single-cell suspensions pre-
pared from homogenized brains (Jay et al., 2015). Briefly, cells
were separated on a 30–70% Percoll� gradient (GE
Healthcare). Single-cell suspensions were stained with a
master mix composed of anti-CD45-APC (1:100; BioLegend),
anti-CD11b-Efluo450 (1:200; eBioscience), anti-Ly-6G-FITC
(1:1000; BioLegend), anti-Ly-6C-PE/Cy7 (1:200; BioLegend),
TREM2-PE (1:100; R&D Systems). Cell populations were
defined as inflammatory cells, CD45+ ; microglia,
CD45lowCD11b + ; and monocytes, CD45highCD11b+Ly-6G–.
Ly-6 C was used to phenotype distinct monocyte subpopula-
tions (Ly-6Chigh, Ly-6Cmiddle, Ly-6Clow). Events were gated on
single cells and CD11b-positive events. Samples with 45000
CD11b-positive events were used for analysis. Fluorescence
Minus One (FMO) was used to assess cells expressing trigger-
ing receptor expressed on myeloid cells 2 protein (TREM2+).
The percentage of cells from each population was determined
by flow cytometry at the Boston University School of Medicine
Flow Cytometry Core on a LSR-II (BD Biosciences). Analyses
were performed using FlowJo software (FlowJo, LLC, Ashland,
OR). The absolute number of each cell population was calcu-
lated as the percentage multiplied by isolated cells per brain.
Significant differences between groups were determined by one-
way ANOVA with post hoc Student’s t-tests using the
Bonferroni correction. See Supplementary material for add-
itional details.

Hippocampus and medial prefrontal
cortex electrophysiology

Mice were decapitated under deep isoflurane anaesthesia and
brains quickly harvested by manual dissection. The forebrain
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was mounted on a cutting stage and immediately submerged in
ice-cold cutting solution (200 mM sucrose, 10 mM NaCl,
2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 0.5 mM
CaCl2, 4 mM MgCl2, saturated with 95% O2 and 5% CO2).
Slices containing the hippocampus or medial prefrontal cortex
(Supplementary Figs. 5A–C) were cut by vibratome at 350 mm
thickness. Slices were transferred to an incubation chamber,
warmed to 32�C for 30 min, and equilibrated in a slice record-
ing chamber at 32�C with continuous perfusion (2 ml/min) of
artificial CSF (10 mM glucose, 126 mM NaCl, 2.5 mM KCl,
1.25 mM NaH2PO4, 1.3 mM MgCl2, 2.5 mM CaCl2, 26 mM
NaHCO3 saturated with 95% O2 and 5% CO2). Axonal con-
duction velocity was assessed with two recording electrodes
placed in CA1 stratum alveus spaced �200mm
(Supplementary Fig. 5A). Long-term potentiation (LTP) of syn-
aptic neurotransmission in the medial prefrontal cortex was
assessed with a stimulating electrode placed in mixed inputs
in layer VI and extracellular recording electrode placed as
indicated in Supplementary Fig. 5C. See Supplementary mater-
ial for additional details.

Mouse headform pressure
measurements

Pressure film measurements were conducted with a mouse
headform consisting of a 15 ml polypropylene vial filled with
10% gelatin. Fuji Prescale� pressure sensitive film (Sensor
Products, Inc.) was fixed flush to the outer surface of the
vial and exposed to a single blast or impact under conditions
identical to the in vivo experiments. Control films were fixed
to identical headforms and placed in the experimental instru-
ments without impact or blast exposure. Exposed films were
digitally scanned, imported into MATLAB (MathWorks), and
converted to monochrome luminescence images (NTSC stand-
ard, RGB colour: Y = 0.2989*R + 0.5870*G + 0.1140*B,
equivalent to rgb2gray MatLab). A 1000 � 500 pixel bound-
ary was applied to all images. Histogram analysis was used to
identify the lower threshold of pixel values attributable to
noise and subtracted from all images. The sum of noise-cor-
rected pixels in the bounded region was measured and
recorded.

Computational simulations

Computational simulations were conducted using ALE3D
(Noble et al., 2017) in explicit dynamics mode with the solid
regions held Lagrangian and the gas regions allowed to advect
and relax to prevent mesh entanglement. All elements for the
impact simulations were 3D linear reduced integration elem-
ents, whereas the blast simulations used 2D axisymmetric
reduced integration elements. In all simulations, materials
were initialized to 295 K, and 1 bar ambient pressure, except
gas pressure in the blast tube driver chamber. All materials
were initially at rest, except for the impact rod. Gases were
described by gamma-law gas equations of state (� = 1.4, air;
1.67, He). Predicted blast pressure histories were validated
against analytic solutions for shock tube dynamics
(Liepmann and Roshko, 1957). The skull was modelled as
an isotropic linear elastic hollow sphere with 1.08 cm outer
diameter, 0.02 cm thickness, four radial zones and 2.5�

zoning. CSF was modelled as a water layer 0.02 cm thick

with four radial zones. The brain was modelled as a 0.5-cm
radius viscoelastic sphere, with 30 radial zones. Material prop-
erties for the skull and brain were incorporated as previously
described (Moss et al., 2009). The gas zones surrounding the
skull were ratio-zoned, increasing from 0.03 cm thickness at
the skull, to a fixed value of 0.2 cm thickness 4 cm from the
skull centre. The calculated Reynolds number for non-steady
airflow in the blast simulation was �105, indicating a turbu-
lent flow field, that was accounted for in the simulation. The
sled and impact rod were modelled as linear elastic solids. See
Supplementary material for additional details.

Statistical analyses

Linear mixed-effects regression analyses were used to evaluate
group differences and test for correlation with composite and
subtest scores on the acute neurobehavioural response test bat-
tery. Linear mixed-effects regression analyses were also used to
determine group differences of Evans blue extravasation (dye-
specific fluorescence signal intensity) in post-mortem brains. For
each linear mixed-effects regression analysis, we allowed for
outcome-specific fixed effects and subject-specific random ef-
fects. Outcomes were correlated using an unstructured covari-
ance matrix for within-subject correlation. Mixed effect
analyses represent more realistic outcome models than using
independent regression models for each outcome while remov-
ing multiple comparisons and providing greater power
(Goldstein, 2011; Gelman et al., 2012). Immunoblot densitom-
etry and biochemical data were evaluated by two-tailed
Student’s t-test. Flow cytometry data were evaluated by one-
way ANOVA followed by post hoc Student’s t-tests using the
Bonferroni correction. Comparisons of axonal conduction vel-
ocity and LTP magnitude were made using three-way ANOVA.
Spearman’s rank-order coefficient was computed between lost
points on the test battery and end-point metrics (Supplementary
Table 3). Levels of significance: *P50.05; **P50.01;
***P50.001; NS = no significant difference. Statistical signifi-
cance was set at an alpha-level of P5 0.05. Exact P-values are
reported for statistical significance except when P5 0.0001.

Results

CTE pathologies in brains from
teenage athletes in the acute-suba-
cute period after mild closed-head
impact injury

We conducted neuropathological examinations of rare

post-mortem brains obtained from teenage athletes (four

males, aged 17–18 years; mean, 17.5 years;

Supplementary Table 1, Cases 1–4) who sustained sports-

related closed-head impact injuries and died in the acute-

subacute period 1 day to 4 months post-injury (Fig. 1A,

C–J, L, M and O–R). We compared these brains to post-

mortem control brains from comparably-aged athletes

(four males; aged 17–22 years; mean, 19.2 years;

Supplementary Table 1, Cases 5–8) without recent head

injury (Fig. 1B, K and N). None of the cases showed
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evidence of skull fracture, subdural haematoma, subarach-

noid haemorrhage, or other evidence of moderate-to-

severe TBI.

We included four cases in the acute-subacute post-TBI

cohort. Case 1, an 18-year-old male high school athlete

(American football, baseball, basketball, weight-lifting)

who died by suicide from hanging 4.2 months after sustain-

ing a mild closed-head injury while snowboarding. The de-

cedent’s head injury exposure history was notable for

amateur participation in American football (9 years total).

He played fullback and middle linebacker, positions asso-

ciated with frequent high-magnitude head impacts (Crisco

et al., 2011). He sustained 10 concussions, none other than

the last with loss of consciousness. Four months before

death, he sustained a concussion while snowboarding and

briefly lost consciousness (�2 min). He was evaluated at a

local hospital and released without follow-up. After the

injury, he complained of frequent headaches and mental

fogginess. His parents noted increased frustration, emo-

tional lability, verbal hostility, physical aggression, and

school absences. He was clinically evaluated and diagnosed

with post-concussive syndrome. Due to school absences,

school officials did not allow him to participate in his

high school graduation ceremony. The next day, 4.2

months after the snowboarding injury, he hanged himself

in his bedroom. His past medical history was notable for

attention deficit hyperactivity disorder that was diagnosed

in the third grade and treated for 1 year with methypheni-

date. He had no history of depression, anxiety, or prior

episodes of suicidal ideation or suicide attempts. The

intact brain (1460 g) was obtained as a fresh specimen

with a post-mortem interval of 1 day. Grossly, the brain

did not show evidence of atrophy, asymmetry, swelling,

cavum septum pellucidum, or contusions.

Case 2, an 18-year-old male high school athlete

(American football, rugby, soccer, in-line hockey) who

died suddenly 10 days after the second of two sports-

related head injuries. The decendent’s head injury exposure

history was notable for four sports-related concussions. He

played American football at the amateur level starting at

age 11 and continued intermittently through high school

(3 years total). In his junior and senior year of high

school, he played rugby (amateur then semi-professional

level). One month before death, he sustained a severe con-

cussion during a rugby match that resulted in post-trau-

matic somnolence. Two weeks later he sustained a second

rugby-related head injury that resulted in sideline collapse

and a 2-day hospitalization for clinical observation and

recuperation. Seven days after hospital discharge, he

engaged in light weightlifting after which he collapsed sud-

denly while eating dinner with his family. He was taken to

the hospital where he died from acute cerebral oedema, the

recorded cause of death. Selected brain regions were ob-

tained as fixed sectioned specimens on microscope slides.

The brain weight was 1680 g. The post-mortem interval is

not known.

Case 3, a 17-year-old male high school American football

and lacrosse player who died by suicide from hanging. The

decedent was diagnosed with two sports-related concussions

during life, the last sustained 2 days before death. He was

evaluated in an emergency room after his last head injury (no

reported loss of consciousness) where he was noted to be

confused, could not recall events and circumstances sur-

rounding the injury, and was unable to recite the days of

the week in reverse order. He had no history of depression,

anxiety, mood disorder, impulsivity, suicidal ideation, or

prior suicide attempts. The intact whole brain (1600 g) was

obtained as a fresh specimen with a post-mortem interval of

3 days. Grossly, the brain was diffusely swollen without evi-

dence of atrophy, asymmetry, or contusions. A small anterior

cavum septum pellucidum was noted.

Case 4, a 17-year-old male high school American football

player who sustained three sports-related concussions (26

days, 6 days, 1 day) before death from second impact syn-

drome. During the football game in which he sustained a

terminal head injury, he received a hard tackle, landed on

his helmet, and was rendered immobile and unresponsive. A

tonic-clonic seizure ensued. He was intubated and ventilated

on the field, then transferred to a hospital emergency ward.

A CT head scan showed global cerebral oedema without

evidence of haemorrhage. Despite surgical decompression,

cerebral swelling progressed to fatal brain herniation. He

died 1 day after the proximate head injury. The recorded

cause of death was second impact syndrome. The brain

(1450 g) was obtained as coronal tissue sections on glass

slides. The post-mortem interval is not known.

We included four cases in the control athlete cohort. Case

5, a 19-year-old male high school American football player

who died of multiple organ failure and cardiac arrest. The

intact brain (1430 g) was obtained as a formalin-fixed tissue

specimen with an unknown post-mortem interval. Grossly,

the brain did not show evidence of atrophy, asymmetry,

herniation, or contusions. Case 6, a 19-year-old male college

hockey player with a history of six concussions who died of a

cardiac arrhythmia. The intact brain (1500 g) was obtained as

a formalin-fixed tissue specimen with an unknown post-

mortem interval. Grossly, the brain did not show evidence

of atrophy, asymmetry, or contusions. Case 7, a 17-year-old

male high school American football player who died from

oxycodone overdose. The brain was obtained as formalin-

fixed coronal slabs of available tissue with an unknown

post-mortem interval. A 0.3-cm cavum septum pellucidum

was noted. Case 8, a 22-year-old male former high school

American football player who died by suicide (unknown

mechanism). The decedent’s head injury exposure history

was notable for three remote concussions, one with loss of

consciousness of indeterminate duration, all sustained more

than 7 years before death. He was diagnosed with bipolar

disorder and had two suicide attempts prior to the completed

suicide. The intact whole brain (1630 g) was obtained as a

fresh tissue specimen with a 2-day post-mortem interval.

Grossly, the brain did not show evidence of atrophy, asym-

metry, or contusions.
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Figure 1 Post-mortem pathologies in brains from teenage athletes in the acute-subacute period after mild closed-head impact

injury. (A) Coronal brain section immunostained for the astrocytic marker glial fibrillary acid protein (GFAP) in Case 3, a 17-year-old male high

school American football player who died by suicide 2 days after a closed-head impact injury. Widespread GFAP immunoreactivity (brown

staining) indicative of reactive astrocytosis was diffusely present in white matter fibre tracts throughout the brain. Representative whole-mount

brain section, 50mm thickness. (B) Coronal brain section immunostained for GFAP in control Case 8, a 22-year-old male former high school

American football player without history of recent head injury who died by suicide. GFAP immunoreactivity is restricted to the periventricular

area and diencephalon. Representative whole-mount brain section, 50 mm thickness. (C and D) Haemosiderin-laden macrophages (arrows)

surrounding a small blood vessel consistent with prior microhaemorrhage in Case 1, an 18-year-old male high school American football player

who died by suicide 4 months after a closed-head impact injury. Representative Luxol fast blue haematoxylin and eosin (C) and haematoxylin
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Microscopic examination of post-mortem brains from

young athletes in the acute-subacute period after sports-

related head injury revealed diffuse astrocytosis with

increased glial fibrillary acidic protein immunoreactivity in

white matter (Fig. 1A) and surrounding small blood vessels

in the cerebral cortex (Fig. 1I and J); perivascular foci of

hemosiderin-laden macrophages indicative of resolved

microhaemorrhage (Fig. 1C and D); dystrophic axons with

swellings immunoreactive for amyloid precursor protein

(Fig. 1F–H); perivascular clusters of activated microglia

(Fig. 1L and M) in all four cases. Multifocal axonal

injury was observed diffusely in frontal, temporal, and sub-

cortical white matter. Axonal spheroids and retraction balls

with digestion chambers were noted in the dorsolateral mid-

brain and cerebellar white matter (Case 1) (McKee et al.,

2014). We detected focal phosphorylated tau protein in two

of the four cases, and early-stage CTE in one case. These

cases were notable for perivascular pretangles, neurofibril-

lary tangles, dot neurites, and dystrophic axons immunor-

eactive for phosphorylated tau protein (Fig. 1E and O–R).

Focal cortical lesions demonstrating perivascular accumula-

tion of serum immunoglobulin G (Fig. 1S–U) were detected

in proximity to neighbouring blood vessels of similar calibre

that did not show microvascular pathology (Fig. 1V). These

results are consistent with extravasation and intraparenchy-

mal accumulation of serum proteins secondary to localized

traumatic microvascular injury and focal blood–brain bar-

rier disruption. By contrast, none of the post-mortem brains

from the control group demonstrated evidence of micro-

vascular or axonal injury, astrocytosis, microgliosis, or

phosphorylated tauopathy indicative of CTE or other neu-

rodegenerative disease (Fig. 1B, K and N). None of the

cases, including those with early CTE pathology, showed

evidence of neuropathology associated with Alzheimer’s dis-

ease or other neurodegenerative diseases.

Mechanistic links between
experimental closed-head impact
injury, early CTE pathologies, and
functional sequelae

A novel mouse model of closed-head impact injury

Clinicopathological correlation suggested that impact injury

may, in some cases, trigger early pathologies associated

with CTE. However, causal mechanisms underpinning

this association cannot be established with certainty based

solely on post-mortem neuropathological examination. We

hypothesized that closed-head impact injury is mechanistic-

ally linked to, causally determinative of, and temporally

associated with early CTE brain pathologies.

Figure 1 Continued

(D) staining, 10mm paraffin sections. Scale bars = 100 mm. (E) Case 1, microhaemorrhage surrounded by neurites immunoreactive for phos-

phorylated tau protein (asterisks) detected by monoclonal antibody AT8 directed against hyperphosphorylated tau protein (pSer202, pThr205)

with haematoxylin counterstain, 10 mm paraffin section. Scale bar = 100 mm. (F–H) Perivascular anti-amyloid precursor protein (APP)-immuno-

reactive axonal swellings (arrows) in the corpus callosum from Case 3. Representative APP immunostaining with haematoxylin counterstain,

10 mm paraffin sections. Asterisk in G marks a small blood vessel. Scale bars = 100 mm. (I and J) Perivascular astrocytosis in white matter from

Case 3. Representative GFAP immunostaining with haematoxylin counterstain, 10 mm paraffin section (I) and 50 mm free-floating section (J).

Asterisk in I marks a small blood vessel. Scale bars = 100 mm. (K) Minimal GFAP-immunoreactive astrocytosis in the white matter from control

Case 8. Representative GFAP immunostaining, 50mm free-floating section. Scale bar = 100 mm. (L) Perivascular clusters of activated microglia

around a small blood vessel in the subcortical white matter from Case 4, a 17-year-old male high school American football player who sustained

three closed-head impact injuries 26 days, 6 days, and 1 day before death. Representative LN3 immunostaining directed against human leukocyte

antigen DR-II (HLA-DR II), 50mm free-floating section. Asterisk indicates small blood vessel. Scale bar = 100 mm. (M) Microgliosis in brainstem

white matter in Case 1. Representative LN3 immunostaining, 50 mm free-floating section. Scale bar = 100 mm. (N) Few activated microglia in

brainstem white matter in control Case 8. Representative LN3 immunostaining, 50 mm free-floating section. Scale bar = 100 mm.

(O) Phosphorylated tau protein-containing neurofibrillary tangles, pretangles, and neurites in the sulcal depths of the cerebral cortex consistent

with neuropathological diagnosis of early-stage CTE in Case 4. Representative CP13 immunostaining directed against hyperphosphorylated tau

protein (pSer202), 50mm free-floating section. Scale bar = 100 mm. (P and Q) Perivascular dot-like neurites immunoreactive for CP13-

immunoreactive phosphorylated tau protein in frontal cortex sulcal depths consistent with early-stage CTE in Case 4. Representative CP13

immunostaining, 50 mm free-floating section. Scale bar = 100 mm. (R) Dystrophic axons immunoreactive for CP13-immunoreactive phosphory-

lated tau protein in frontal cortex white matter in Case 4. Representative CP13 immunostaining, 50 mm free-floating section. Scale bar = 100 mm.

(S) Persistent vascular leakage in Case 1 demonstrated by anti-IgG immohistofluorescence in the brain parenchyma surrounding two blood

vessels (dashed lines, 1 and 2) in the dorsolateral frontal cortex. These findings are consistent with focal blood–brain barrier disruption. Another

blood vessel of similar calibre in the same field (denoted by solid line, number 3) does not exhibit evidence of blood–brain barrier disruption,

consistent with the high degree of focality. Other smaller blood vessels (white arrows) are also devoid of perivascular IgG immunoreactivity,

thereby confirming specificity of the microvascular pathology. Scale bar = 200 mm. (T) High magnification photomicrograph of the same field in

Case 1 showing perivascular IgG immunoreactivity in the brain parenchyma surrounding blood vessel 1 (dashed line, 1). The intensely immu-

noreactive material in the centre of the lesion is residual blood in the vessel lumen. Two nearby blood vessels (arrows) do not show evidence of

blood–brain barrier disruption. Scale bar = 100 mm. (U) High magnification photomicrograph of the same field in Case 1 showing perivascular IgG

immunoreactivity in the brain parenchyma surrounding blood vessel 2 (dashed line, 2). Scale bar = 100 mm. (V) High magnification photo-

micrograph of the same field in Case 1 showing the absence of perivascular IgG immunoreactivity in the brain parenchyma surrounding blood

vessel 3 (solid line, 3). Scale bar = 100 mm.
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To test this hypothesis, we developed an experimental

instrument that uses momentum transfer to produce

traumatic head acceleration without gross skull deforma-

tion in awake (anaesthesia-naı̈ve) mice. Experimental par-

ameters were optimized to match head kinematics in our

companion blast neurotrauma mouse model (Goldstein

et al., 2012; Kondo et al., 2015). The developed instrument

(Supplementary Fig. 1A) was designed for use in una-

naesthetized young adult male mice to model subject vari-

ables, injury conditions, and brain pathology as in the

human cases (Goldstein et al., 2014; Wojnarowicz et al.,

2017). The instrument incorporates a gas-driven momen-

tum transfer mechanism to deliver a lateral closed-head

impact that induces traumatic head acceleration without

gross skull deformation (Fig. 2A and B). The rationale

for this design was to enable evaluation of acute neurobe-

havioural responses and cellular-molecular effects without

confounding interference of systemic anaesthetics (Statler

et al., 2006; Planel et al., 2007, 2008; Fish et al., 2011;

Luh et al., 2011; Whittington et al., 2013; Gao et al.,

2016). Unanaesthetized mice were restrained across the

thorax in the prone position such that the inner pad of

the sled contacted the left temporal-zygomatic region of

the head. Linear translation of the sled resulted in left-lat-

eral closed-head impact, right lateral flexion at the cervical

spine, and traumatic acceleration of the head in the hori-

zontal plane of motion (Fig. 2A and B). Head motion was

assessed by high-speed videography (100 000 fps, 100 kHz).

Sled velocity of 5.1 � 0.2 m/s [mean � standard deviation

(SD)] produced the following head kinematics (mean �

SD, n = 18): swing radius, 30.0 � 2.3 mm; peak X-

acceleration, 12.6 � 103
� 3.4 � 103 m/s2; peak angular

acceleration, 398.8 � 111.0 krad/s2; peak X-jerk, 5.3 �

107
� 2.5 � 107 m/s3 (Fig. 2C). Impact-induced head

kinematics (n = 18) were statistically indistinguishable

(Bonferroni-corrected two-tailed Student’s t-tests, P4 0.05)

from head motion produced by experimental blast exposure

(n = 8) at a peak pressure of 72.3 � 2.8 kPag (Goldstein

et al., 2012; Kondo et al., 2015). These results justified

setting the impact instrument sled velocity at 5.0 m/s and

holding operating parameters constant (Supplementary

Table 2). Experimental impact head injury at this intensity

was compatible with 100% survival without evidence of

skull fracture or deformation; subdural, epidural, or sub-

arachnoid haemorrhage; cervical trauma or spinal cord

injury; post-traumatic apnoea; or persistent gross neuro-

logical impairment.

Closed-head impact injury induces acute

neurobehavioural deficits in unanaesthetized mice

Unanaesthetized mice subjected to unilateral closed-head

impact injury exhibited variable degrees of transient neuro-

behavioural dysfunction with abrupt onset, transient

course, and spontaneous recovery (Supplementary Video

1). To objectively assess this transient concussion-like syn-

drome, we developed an acute neurobehavioural response

test battery and standardized scoring criteria

(Supplementary Fig. 1B). The test battery consists of three

subtests: open-field, inverted wire mesh, and beam walk.

Each 30-s subtest is scored on a six-point scale (0–5) ac-

cording to graded criteria that capture neurobehavioural

deficits specific to each subtest (Supplementary Fig. 1B). A

composite score of 15 reflects unimpaired performance in

all three subtests. Lower composite scores indicate increas-

ing impairment (mild, 14–10; moderate, 9–5; severe, 4–0).

The test battery was used to assess neurocognitive function

before exposure (pre-injury baseline), after exposure (post-

injury), and following a 3-h rest period (recovery).

Awake, unanaesthetized (anaesthesia-naı̈ve) adult male

mice, 10 weeks of age, were exposed to single-repeat

impact injury or sham (no injury) control condition. This

experimental protocol was designed to model a common

head injury scenario in contact sports (Crisco et al., 2010).

A total of 320 adult male mice were subjected to experimen-

tal closed-head impact injury (n = 203) or sham (no-injury)

control condition (n = 117). Impact-exposed mice demon-

strated significant post-injury decrements in composite and

subtest scores on the acute neurobehavioural response test

battery (Fig. 2D). Sled velocity (between 3.75 m/s and

6.25 m/s) did not significantly correlate with test battery

composite scores (Spearman r = �0.16, P = 0.025, n = 203).

However, the significant decrement in composite scores de-

tected after second impact (Fig. 2D) showed significant posi-

tive correlation with composite scores after first impact

(Spearman r = 0.52, P5 0.0001, n = 203). Post-traumatic

deficits were noted only in impact-injured mice, spanned

multiple functional domains, and followed a transient

course with spontaneous recovery (Fig. 2D). Mean compos-

ite test battery scores showed a highly significant difference

between impact and control groups (linear mixed-effects re-

gression analysis, P50.0001). Comparisons within the

impact group revealed a significant decrement in mean com-

posite score from baseline (pre-injury) to first post-injury

tests [mean � standard error of the mean (SEM):

14.9 � 0.0, 11.6 � 0.2; P5 0.0001] and further significant

decrement after second impact (mean � SEM: 10.1 � 0.2;

P5 0.0001). There were no significant differences in com-

posite or subtest scores in the control group at any time

point. Impact-injured mice demonstrated spontaneous recov-

ery with complete resolution of deficits and return to base-

line (pre-injury) performance by 3 h post-injury

(mean � SEM: 14.8 � 0.0).

Despite tight control of the experimental injury param-

eters, the spectrum of acute neurobehavioural responses

showed wide variation with skewing towards the milder

end of the spectrum (Fig. 2E and F). 81.8% (n = 166/

203) of all impact-injured mice exhibited minimal or no

acute neurological impairment (composite test battery

score 510) post-injury (Supplementary Video 1, Mouse

P-238). Nearly two-thirds of these mice (66.5%; n = 135)

showed minimal or no acute neurological impairment after

a second head injury. 15.8% (n = 32/203) of all impact-

injured mice demonstrated transient unilateral acute neuro-

logical impairment (composite score 9–5) post-injury
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Figure 2 Experimental closed-head impact injury in awake, unanaesthetized (anaesthesia-naı̈ve) mice induces abrupt onset,

transient course, and rapid resolution of neurobehavioural impairments that resemble human concussion. (A and B) Schematic of

momentum transfer instrument before (A) and after (B) experimental closed-head impact injury. The developed instrument was designed for use

with unanaesthetized C57BL/6 mice and is compatible with 100% survival without evidence of skull fracture; subdural, epidural, or subarachnoid

haemorrhage; cervical trauma or spinal cord injury; commotio cordis or retinae; or post-traumatic apnoea. Animal subjects are secured across the

thorax and positioned prone such that the head is in physical contact with a helmet analogue composed of an inner foam pad (P) and an outer hard

shell (Sh) fixed to a mobile sled (S). Sled movement is constrained to linear translation by a low-friction monorail track (not shown). Sled motion

is initiated by an operator-triggered computer program that actuates a solenoid valve, releases a bolus of pressurized gas, and accelerates a

stainless-steel slug within the instrument barrel. Vent holes in the barrel convert slug motion to constant velocity. Sequential momentum transfer

from the slug to a captive stainless-steel rod (R; known mass, mr, empirically-determined velocity, vr) and finally to the sled (S; known mass, ms,

empirically-determined velocity, vs). Sled motion results in closure of the distal gap (G1), opening of the proximal gap (G2), and termination by the

backstop (B). A detailed schematic of the developed instrument is shown in Supplementary Fig. 1A. (C) Head motion analysis (time-history plot)

during experimental closed-head impact injury reconstructed from high-speed videographic records (100 000 fps; 100 kHz). Head position,

acceleration, and jerk are plotted as a function of time after initiation of head motion (t = 0). Maximal head acceleration and jerk are observed

within the first millisecond after impact. Experimental parameters were selected to kinematically match head motion in our blast neurotrauma

mouse model (Supplementary Table 2). Blue dashed line, mean peak X-acceleration (n = 18 mice). Red dashed line, mean peak X-jerk (n = 18

mice). (D) Composite and subtest scores on the acute neurobehavioural response test battery (Supplementary Fig. 1B) assessed in awake

unanaesthetized (anaesthesia-naı̈ve) mice: (i) at pre-injury (baseline test); (ii) at 2 min after experimental closed-head impact injury (IMP) or
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(Supplementary Video 1, Mouse L-070). The observed

motor deficits in this group were exclusively ipsilateral

with respect to impact (i.e. left-lateral impact induced

right-sided neurological deficits). Only rarely (2.5%,

n = 5/203) did we observe mice that demonstrated global

neurological impairment (sustained immobility or frank

seizure; composite test battery score 4 4) after the first

impact (Supplementary Video 1, Mouse P-199). Severe

global responses were rare (n = 13, 6.4%) after the

second impact. Head-injured mice recovered to neuro-

logical baseline, typically within minutes and always by

the end of the 3-h recovery period (Fig. 2E, F and

Supplementary Video 1).

Closed-head impact injury induces early CTE brain

pathologies in unanaesthetized mice

Previous research in our laboratory and others pointed to

the intensity of traumatic head motion, rather than the type

of insult, as the causally determinative mechanism that trig-

gers CTE brain pathologies (Goldstein et al., 2012; Huber

et al., 2013; Kondo et al., 2015). To test this hypothesis,

we set experimental parameters in our impact injury mouse

model such that head motion was kinematically compar-

able to our blast model (Supplementary Table 2). We

hypothesized that impact injury would initiate shearing

forces in the brain, thereby causing microvascular injury,

reactive neuroinflammation, and accumulation of patho-

genic species of phosphorylated tau protein similar to the

cascade triggered by blast exposure (Goldstein et al., 2012;

Huber et al., 2013; Kondo et al., 2015). To investigate this

hypothesis, we examined brains from mice sacrificed 24 h,

3 days, and 2 weeks after single-repeat left-lateral impact

injury (24 h post-injury: impact-injured mice, n = 7; unin-

jured sham control mice, n = 3; 3 days post-injury: impact,

n = 6; sham, n = 2; 2 weeks post-injury: impact, n = 7;

sham, n = 3; 5.5 months post-injury, cis-p-tau only:

impact, n = 3; sham, n = 1). In contrast to the diffuse

brain pathology noted after blast exposure (Goldstein

et al., 2012), the brain lesions observed after lateral

impact injury localized predominantly to ipsilateral cerebral

cortex subjacent to the impact contact zone (Fig. 3).

Affected brain regions included left perirhinal, insular,

entorhinal, and piriform cortices, as well as adjacent

regions of the left basolateral amygdala. Histopathological

examination of brains 24 h post-injury revealed shrunken

acidophilic neurons with eosinophilic cytoplasm and

pyknotic basophilic nuclei at various stages of degeneration

(Fig. 3A). Dystrophic axons (Fig. 3D) containing hyperpho-

sphorylated neurofilaments were observed in proximity to

activated astrocytes (Fig. 3G) and reactive microglia

(Fig. 3J). By 3 days post-injury, we observed decreased

neuronal density indicative of neuronal demise, brisk astro-

cytosis and reactive microgliosis in the ipsilateral perirhinal

cortex (Fig. 3B, E, H and K). By 2 weeks post-injury, we

noted regions of markedly decreased neuronal density,

resolving astrocytosis and microgliosis, and clusters of peri-

vascular hemosiderin-laden macrophages (Fig. 3C, F, I and

L). The contralateral perirhinal cortex was histopathologic-

ally normal at all three time points. We did not detect

trauma-related brain pathology in uninjured control mice

(Supplementary Fig. 2A–O). Neuropathological analysis of

post-mortem brains from mice subjected to a single expos-

ure closed-head impact (24 h post-injury: impact, n = 6;

sham, n = 3; 3 days post-injury: impact, n = 6; sham,

n = 3; 2 weeks post-injury: impact, n = 5; sham, n = 3)

under identical experimental conditions revealed a similar

pattern and time course of TBI-related brain pathologies

(Supplementary Fig. 3) as that observed in brains of mice

exposed to two impacts.

Analysis of phosphorylated tauopathy revealed a more

complex pattern. Post-mortem brains at 24 h, 3 days, and

2 weeks post-injury did not reveal evidence of neuronal or

astroglial phosphorylated tauopathy when probed with a

monoclonal antibody directed against a mature tau proteo-

form phosphorylated at serine residue 202 (CP13; pSer202;

Fig. 3M–O). However, we detected robust immunostaining

with the monoclonal antibody cis-p-tau directed against a

highly pathogenic phosphorylated tau proteoform with the

cis-Thr231-Pro motif, an early driver of tau-mediated

neurotoxicity in Alzheimer’s disease and TBI (Nakamura

et al., 2012; Kondo et al., 2015; Lu et al., 2016). Cis-p-

tau immunostaining (Fig. 3P–W) revealed pronounced

axonal pathology in ipsilateral perirhinal cortex as early

as 24 h post-injury. Importantly, cis-p-tau was not detected

elsewhere in the brain at this early time point nor in brains

from control mice at any time point (Supplementary Fig.

Figure 2 Continued

exposure to the sham (no injury) control condition (CON) (post-injury test); and (iii) after a 3-h rest period (recovery test). Mice subjected to

experimental impact injury showed significant decrements in composite scores and all three sub-test scores (open-field, inverted wire mesh, beam

walk). IMP, n = 203 mice. CON; n = 117. Values represent means � SEM. ***P5 0.001. Transient neurobehavioural impairments spanned multiple

functional domains (including arousal, responsivity to environmental stimuli, locomotion, exploration, motor performance, habituation) that

recapitulate features of concussion in humans (Supplementary Video 1). (E) Histogram and box-and-whiskers plot for population frequency

distribution of composite scores on the acute neurobehavioural response test battery at baseline (pre-impact) and after first impact in awake

(anaesthesia-naı̈ve) mice exposed to experimental closed-head injury (n = 203). Baseline test: median score, 15; mean � SEM, 14.9 � 0.0 (white-

bordered black inverted triangle). Impact 1 test: median score, 12; mean � SEM, 11.6 � 0.2 (black inverted triangle). (F) Histogram and box-and-

whiskers plot for population (n = 203) frequency distribution of composite scores on the acute neurobehavioural response test battery after

second impact and 3-h recovery. Impact 2 test: median score, 11; mean, 10.1 � 0.2 (black inverted triangle). Recovery test: median score, 15;

mean, 14.8 � 0.0 (white-bordered black inverted triangle).
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Figure 3 Experimental closed-head injury induces early and progressive brain pathologies associated with CTE in cerebral

cortex ipsilateral and subjacent to impact. (A–C) Luxol fast blue haematoxylin and eosin (LHE) staining in ipsilateral (left) perirhinal cortex

24 h (A), 3 days (B), 2 weeks (C) post-injury. (A) LHE staining at 24 h post-injury revealed dying neurons (arrows) with pyknotic basophilic nuclei

and intensely eosinophilic cytoplasm interspersed with normal-appearing neurons (arrowheads). Black box, magnified view showing neuronal

necrosis. Scale bar = 100 mm. (B) Decreased neuronal density (below line) indicative of neuronal demise, ipsilateral (left) perirhinal cortex 3 days

post-injury. Normal-appearing neurons (arrowheads, above line). Scale bar = 100 mm. (C) Decreased neuronal density (below line) indicative of

neuronal demise and gliosis near a small blood vessel (between dashed lines). Clusters of haemosiderin-laden macrophage (darts) represent

microhaemorrhage residua. Scale bar = 100 mm. Contralateral (right) perirhinal cortex was histopathologically normal by LHE staining

(Supplementary Fig. 2A–C). (D–F) Immunostaining with monoclonal antibody SMI-34 (phosphorylated neurofilament) in ipsilateral (left) perirhinal

cortex 24 h (D), 3 days (E), 2 weeks (F) post-injury. (D and E) SMI-34 immunostaining revealed neurons with swollen, beaded neuronal processes

(arrowheads) and cytoplasmic immunoreactivity (arrow, E). Scale bars = 100 mm. (F) Haemosiderin-laden macrophages (darts), but not SMI-34

immunoreactivity, were observed in the ipsilateral (left) perirhinal cortex 2 weeks post-injury. Scale bar = 100 mm. Contralateral (right) perirhinal
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2P–W). By 3 days and 2 weeks post-injury, cis-p-tau immu-

noreactivity was present not only in axons but also as dot-

like puncta that were miscompartmentalized in the soma

and dendrites of neurons in the ipsilateral (left) perirhinal

cortex, and to a lesser degree, contralateral (right) peri-

rhinal cortex. Surprisingly, cis-p-tau immunoreactivity was

robustly present in perirhinal and primary motor cortices of

both hemispheres 5.5 months post-injury (Fig. 3S and W).

The presence of bilateral cis-p-tau immunoreactivity at this

remote post-injury time point, and in brain regions distant

from the primary locus of brain injury, suggests either ex-

treme persistence of incipient tauopathy, or alternatively,

progressive tauopathy involving spread beyond the origi-

nating injury (see ‘Discussion’ section). Neuropathological

analysis of post-mortem brains from mice subjected to a

single closed-head impact (Supplementary Fig. 3Y–HH) re-

vealed a similar pattern and time course of tau protein

pathologies as that observed in brains of mice exposed to

two impacts.

Perivascular accumulation of phosphorylated tau protein

in the depths of cortical sulci represents the defining patho-

logical hallmark of CTE (McKee et al., 2016) and points to

traumatic microvascular injury (Kenney et al., 2016) as a

likely contributor to CTE pathogenesis. To test the hypoth-

esis that experimental impact injury induces traumatic

microvascular injury, we conducted electron microscopic

analysis of brains from mice 2 weeks post-injury.

Ultrastructural examination of these brains revealed evi-

dence of persistent, focal microvascular injury notable for

dysmorphic capillaries; abnormal endothelial cells with

Figure 3 Continued

cortex was histopathologically normal by SMI-34 immunostaining (Supplementary Fig. 2D–F). (G–I) Immunostaining for astrocytic glial fibrillary

acidic protein (GFAP) in ipsilateral (left) perirhinal cortex 24 h (D), 3 days (E), 2 weeks (F) post-injury. (G) Sparse GFAP-immunoreactivity

(arrowhead) was present 24 h post-injury. Scale bar = 50mm. (H) Brisk reactive astrocytosis at 3 days post-injury. Clusters of hypertrophied

GFAP-immunopositive reactive astrocytes (arrowheads) with ramified processes and perivascular astrocytes (arrow) with hydropic end-feet

terminating on small blood vessels (dashed lines) were present 3 days post-injury. Overlapping astrocytic processes (black circle) indicate

disruption of domain restriction. Scale bars = 50 mm. (I) Reactive astrocytes (arrowheads) were present 2 weeks post-injury. Haemosiderin-laden

macrophages (darts), representing microhaemorrhage residua, were scattered throughout the affected region. Scale bar = 50 mm. Contralateral

(right) perirhinal cortex was histopathologically normal by GFAP immunostaining (Supplementary Fig. 2G–I). (J–L) Immunostaining for the

myeloid cell marker Iba1 (arrowheads) in ipsilateral (left) perirhinal cortex revealed minimal microgliosis at 24 h (J), brisk microgliosis at 3 days

(K), resolved microgliosis at 2 weeks (L) post-injury. Scale bars = 50 mm. (K) Peak microgliosis at 3 days post-injury revealed clusters of intensely

Iba1-immunoreactive, ramified myeloid cells (arrowheads) and less abundant amoeboid and rodlike Iba1-immunoreactive microglia (open and half-

filled arrowheads, respectively). Iba1-immunoreactive perivascular myeloid cells were associated with the parenchymal (abluminal) surface of a

small blood vessel (between dashed lines). Scale bar = 50 mm. (L) Microgliosis was largely resolved by 2 weeks post-injury. Haemosiderin-laden

macrophage (darts) were observed throughout the affected region. Scale bar = 50 mm. Contralateral (right) perirhinal cortex was histopatho-

logically normal by Iba1 immunostaining (Supplementary Fig. 2J–L). (M–O) Phosphorylated tau protein immunostaining with monoclonal antibody

CP13 (pS202) was negative throughout the brain at 24 h (M), 3 days (N), and 2 weeks (O) post-injury. Haemosiderin-laden macrophage (darts)

were observed throughout the affected region by 2 weeks post-injury (O). Scale bars = 50mm. The contralateral (right) perirhinal cortex did not

demonstrate CP13 immunostaining (Supplementary Fig. 2M–O). (P–W) Immunohistofluorescence staining for cis-p-tau (cis-motif, pThr231-Pro),

a highly pathogenic early phosphorylated tau proteoform, was present at 24 h (P), 3 days (Q), 2 weeks (R), and 5.5 months (S) post-injury in

ipsilateral (left) perirhinal cortex. Faint cis-p-tau immunoreactivity was observed in axons (arrowheads) in the ipsilateral (left, P) but not

contralateral (right, T) perirhinal cortex 24 h post-injury. By 3 days post-injury, cis-p-tau immunoreactivity in the ipsilateral perirhinal cortex (Q)

was intense, not only in axons (arrowheads), but also as dot-like inclusions in neuronal soma and dendrites (arrow). Cis-p-tau immunoreactivity in

the contralateral perirhinal cortex (U) was present but faint at this time point. By 2 weeks post-injury, cis-p-tau immunoreactivity was observed in

axons (arrowheads) and as dot-like inclusions in neuronal soma and dendrites (arrow) in both hemispheres. Cis-p-tau immunoreactivity was more

pronounced in the ipsilateral (left, R) than contralateral (right, V) perirhinal cortex. Surprisingly, we detected cis-p-tau immunoreactivity 5.5

months post-injury (the longest time point measured) in axons (arrowheads) and as dot-like inclusions in neuronal soma and dendrites (arrow) in

perirhinal cortex of both hemispheres (left, S; right, W). Scale bars = 20mm. Sham (no-injury) control mice did not show evidence of cis-p-tau

immunoreactivity in either hemisphere at any of the analysed time points (Supplementary Fig. 2P–W). (X–AA) Ultrastructural evidence of

persistent traumatic microvascular injury revealed by electron microscopy 2 weeks post-injury. (X) Low-power electron micrograph of CA1

region of the left hippocampus shows abnormal capillary (c) and nearby neuron (n). A capillary endothelial cell (e) and adjacent pericyte (p) are

encircled by hydropic astrocytic end-feet (ae). Perivascular astrocyte processes exhibit pale oedematous cytoplasm with few mitochondria (m),

subcellular organelles, or cytoskeletal elements. The capillary basal lamina is thickened, highly branched, and tortuous. Electron-dense inclusion

bodies (open arrowheads) and lipofuscin granules with lipid droplets (partially-filled arrowhead) are evident. These ultrastructural pathologies are

inconsistent with processing artefact. Magnification �1500. Scale bar = 2 mm. (Y) Low-power electron micrograph of left medial prefrontal

cortex 2 weeks after injury shows an abnormal capillary (c) and two nearby neurons, one with normal ultrastructure (n1) and the other

undergoing cellular involution (n2). Endothelial cell (e), perivascular pericyte (p), and hydropic astrocytic end-feet (ae) are present. Magnification

�1200. Scale bar = 2 mm. (Z) Electron micrograph of the CA1 region of the left hippocampus shows a hydropic astrocytic end-foot (ae) and

pericyte (p) of an involuting capillary. The basal laminae are thickened and tortuous (arrowheads). Electron-dense inclusion body (i), swollen

mitochondria (m), and autophagosomic vacuoles (v, dashed ellipse) are present. Magnification �3000. Scale bar = 2mm. (AA) High magnification

electron micrograph of the same CA1 region of the left hippocampus showing ultrastructural details of the hydropic astrocytic end-foot (ae) and

pericyte (p). Thickened, tortuous basal lamina (arrowheads), inclusion body (i), swollen mitochondrion (m), and degenerating mitochondrion

(asterisk) are present. Magnification �10 000. Scale bar = 500 nm. n = 4 mice per group.

Early CTE brain pathology after closed-head impact injury BRAIN 2018: 141; 422–458 | 435

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awx350#supplementary-data


irregularly shaped nuclei and thickened, tortuous basal

laminae; and perivascular astrocytes with grossly enlarged,

highly-vacuolated, hydropic end-feet (Fig. 3X–AA).

Perivascular astrocytes and pericytes in the perirhinal

cortex, hippocampus, and frontal cortex were also notable

for electron-dense inclusion bodies, lipofuscin granules,

myelin figures, and autophagosomic vesicles. Pericytes,

microglial cells, dystrophic nerve fibres, and dark neurons

were observed in proximity to small blood vessels in brains

from impact-injured mice but not uninjured controls. These

findings provide direct evidence that experimental closed-

head impact injury damages small blood vessels and in-

duces persistent focal traumatic microvascular injury

(Goldstein et al., 2012; Huber et al., 2013; Hay et al.,

2015; Doherty et al., 2016; Kenney et al., 2016).

Closed-head impact injury triggers differential

expression of phosphorylated tau proteoforms

Given the effects of closed-head impact on the microvascu-

lature and induction of cis-p-tauopathy, we were surprised

by the absence of mature tau protein neuropathology in

impact-injured mice (Fig. 3M–O). We hypothesized that

epitopes detected by cis-p-tau (cis-pThr231) and CP13

(pSer202) antibodies represent earlier and later stage tauo-

pathy, respectively. To investigate the possible presence of

CP13-immunoreactive molecular pathology, we performed

quantitative tau protein immunoblot analysis of brains

from impact-injured mice (n = 16) compared to sham (un-

injured) control mice (n = 14) (Fig. 4). We detected a sig-

nificant increase in both the intensity and mobility range

of CP13-immunoreactive phosphorylated tau protein in

brains from impact-injured mice compared to controls

(Bonferroni-corrected two-tailed Student’s t-test,

P = 0.006). This effect was accompanied by a significant

increase in total tau protein (Tau5) (P = 0.001), indicating

accumulation of both phosphorylated and non-phosphory-

lated tau protein species. Increased brain levels of tau pro-

tein were detected bilaterally. Also notable was the increase

in higher apparent molecular weight tau protein species in

the contralateral compared to ipsilateral hemispheres of

impact-injured mice. This finding may indicate differences

in tau protein phosphorylation or proteoform composition

at sites of traumatic injury compared to brain regions af-

fected by latent tau propagation or spread.

Relationship of traumatic microvascular injury to

early CTE tau pathology

Neuropathological examination of teenage athlete brains in

the acute-subacute period after closed-head impact injuries

(Fig. 1) and histopathological and ultrastructural analyses

of brains from impact-injured mice (Fig. 3) suggested trau-

matic microvascular injury and blood–brain barrier disrup-

tion as candidate mechanisms linking closed-head impact to

acute brain injury and chronic post-traumatic sequelae

(Martland, 1928; Hay et al., 2015; Doherty et al., 2016;

Kenney et al., 2016), including CTE (Goldstein et al., 2012;

McKee et al., 2013, 2016). To investigate this hypothesis,

we injected mice with Evans blue, an albumin-binding sul-

phonated diazo dye (960 Da) that is normally excluded

from the brain by an intact blood–brain barrier (Rawson,

1943; Povlishock, 1998). Examination of post-mortem

brains from Evans blue-injected mice sacrificed 24 h after

left-lateral impact injury (n = 12) or the uninjured sham

control condition (n = 7) revealed a spectrum of macro-

scopic pathologies (Fig. 5A). Brains from �50% of

impact-injured mice were grossly normal and showed no

evidence of Evans blue extravasation, contusion, necrosis,

haematoma, haemorrhage, or other gross brain pathologies

(Grade 0; Fig. 5A). Brains from �40% of impact-injured

mice demonstrated faint Evans blue extravasation without

evidence of frank haemorrhage, haematoma, or contusion

(Grade I; Fig. 5A). These focal lesions localized exclusively

to the lateral surface of the ipsilateral perirhinal cortex

subjacent to the impact contact zone. Together, these two

classes of normal or minor brain pathology (Grades 0 and

I, respectively) constituted �90% of the experimentally

head-injured mice. By contrast, brains from �10% of

impact-injured mice exhibited focal contusions with petech-

ial haemorrhages surrounded by a penumbra of extrava-

sated Evans blue dye (Grade II; Fig. 5A). These complex

lesions localized exclusively to surface cortex ipsilateral to

impact. Evidence of gross neuropathology (Grades I, II) in

�50% of impact-injured mice contrasts with the absence of

gross pathology in all mice exposed to experimental blast

under conditions of comparable head kinematics (Goldstein

et al., 2012).

We confirmed blood–brain barrier disruption by quanti-

tative Evans blue fluorescence brain imaging (Fig. 5B–D).

Evans blue-specific fluorescence signal intensity was deter-

mined after spectral unmixing to remove background

autofluorescence. Cluster analysis using a Gaussian mixture

model (Fig. 5D) identified three distinct injury classes based

on fluorescence signal intensity: Grade 0, intact blood–

brain barrier (411.4 � 83.3 counts/pixel, 2.9 � 1.7%

suprathreshold pixels); Grade I, minor blood–brain barrier

disruption (707.5 � 191.2 counts/pixel, 18.8 � 6.2%

suprathreshold pixels); Grade II, severe blood–brain barrier

disruption (1203.6 � 210.5 counts/pixel, 58.4 � 8.2%

suprathreshold pixels). In the control group (n = 7), six

mice (86%) were classified as Grade 0, one mouse (14%)

as Grade I, and none (0%) as Grade II. In the impact group

(n = 12), five mice were classified as Grade 0 (42%), five

mice (42%) as Grade I, and two mice (17%) as Grade II.

The three injury classes mirrored the groups identified by

gross pathology (Fig. 5A). Inclusion of all groups revealed a

statistically significant effect of impact on ipsilateral blood–

brain barrier disruption when compared to control (linear

mixed-effects regression analysis, P = 0.0004; Fig. 5C).

Consistent with the post-injury neuropathology (Fig. 3),

blood–brain barrier disruption was not detected in the

contralateral hemisphere of brains from impact-injured

mice.
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These results suggested mechanistic links between impact-

induced traumatic microvascular injury and pathological

and functional sequelae associated with closed-head

impact injury. Since impact injury was associated with ip-

silateral blood–brain barrier disruption, we investigated the

possibility that mild TBI may promote non-haemorrhagic

accumulation of extravasated serum albumin in the brain.

Mice subjected to unilateral impact demonstrated robust

evidence of ipsilateral serum albumin extravasation and

co-localizing reactive astrocytosis (Fig. 5H–P; cf. 5E–G).

Focal albumin deposition and co-localizing reactive astro-

cytosis were detected exclusively in ipsilateral (left) peri-

rhinal cortex in impact-injured mice (Fig. 5H–J) but not

in any brain region in control mice (Fig. 5E–G and

Supplementary Fig. 2). Peak signals for extravasated

serum albumin and astrocytosis co-localized at 3 days

post-injury in impact-injured mice. Extravasated albumin

also co-localized with TGF-b1-associated astrocytosis and

downstream markers of transforming growth factor beta

signalling, in ipsilateral (Fig. 5K–P; Supplementary Fig.

4A and D) but not in contralateral perirhinal cortex of

impact-injured mice (Supplementary Fig. 4B and E) or in

any brain region of uninjured control mice (Supplementary

Fig. 4C and F).

In vivo detection of traumatic microvascular injury by

dynamic brain imaging

We reasoned that the blood–brain barrier disruption we

detected ex vivo (Fig. 5A–P) would be detectable in vivo

using a modified dynamic contrast-enhanced MRI strategy

(Weissberg et al., 2014) combined with systemically admin-

istered gadofosveset trisodium, a gadolinium-based contrast

agent that binds albumin (Lauffer et al., 1998). We per-

formed a proof-of-concept feasibility study to validate this

strategy for in vivo diagnostic evaluation of traumatic

microvascular injury. In vivo dynamic neuroimaging com-

bined with systemic administration of gadofosveset triso-

dium confirmed acute and persistent blood–brain barrier

disruption in left but not right perirhinal cortex (ipsilateral

and contralateral to impact, respectively) in impact-injured

mice but not control mice (Fig. 5S–T). The ipsilateral

blood–brain barrier permeability defect in impact-injured

mice co-localized with T1-weighted hyperintensities in the

affected cortical field (Fig. 5Q–R). Blood–brain barrier

Figure 4 Unilateral closed-head impact injury induces persistent bilateral phosphorylated tau proteinopathy in awake, an-

aesthesia-naı̈ve mice. (A–H) Phosphorylated tau protein immunoblot analysis of brain homogenates from left and right hemispheres from mice

exposed to experimental left-lateral closed-head impact injury (IMP) or sham (no injury) control exposure (CON) probed for total tau protein

(Tau 5; A, C, E and G), phosphorylated tau protein (CP-13, pSer202; B, D, F and H), and b-actin (A–H) 2 weeks after CON (lanes 1–4, 9–12) or

IMP (lanes 5–8, 13–16) exposure. Immunoblot analysis revealed a broad band of CP-13-immunoreactive phosphorylated tau protein that migrated

with an apparent molecular mass of 53 kD (arrows). (I–L) Densitometric quantitation of total tau protein (I and K) and CP-13 phosphorylated tau

protein (J and L) in brain homogenates from mice 2 weeks after IMP or CON exposure. n = 8 mice per group, mean values � SEM in arbitrary

densitometric units (a.u.) normalized to control values. ***P5 0.001, **P5 0.01 (unpaired two-tailed Student’s t-test).
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Figure 5 Unilateral, closed-head impact injury induces focal blood–brain barrier disruption, serum albumin extravasation,

astrocytosis, myeloid inflammatory cell infiltration, and TREM2 + microglial activation in cerebral cortex ipsilateral and sub-

jacent to impact. (A) Gross pathology in representative brains from a control mouse (CON) exposed to sham (no injury) control condition

compared to brains from mice subjected to experimental closed-head impact injury (IMP) with varying degrees of gross brain pathology (Grade 0,

I, II, respectively) 24 h post-injury. Grade 0: absence of gross brain pathology with no evidence of macroscopic tissue damage (contusion, necrosis,

hematoma, haemorrhage, or extravasated Evans blue) was observed in 100% of brains from CON mice and �50% of brains from IMP mice. Grade

I: minimal brain pathology marked only by focal Evans blue extravasation (indicative of disruption of the blood–brain barrier, BBB) was observed in

�40% of IMP mice but none (0%) of the CON mice. Grade II: relatively rare brains marked by complex lesions that included Evans blue

extravasation and contusion observed in �10% of IMP mice but none (0%) in CON mice. (B) Evans blue-specific fluorescence imaging of

representative mouse brain sections showing blood–brain barrier disruption 24 h post-injury. Arrows, left-lateral fluorescence signal indicating

area of blood–brain barrier disruption (in Evans blue-specific fluorescence intensity counts) in cerebral cortex ipsilateral and subjacent to

experimental impact injury (IMP) but not sham (no-injury) control condition (CON). Serial brain sections (anterior to caudal, S1–S4, respectively)

and gross pathology injury grade (0, I, II) as indicated. (C) Quantitative analysis of blood–brain barrier disruption by coronal section Evans blue-

specific fluorescence brain imaging 24 h after IMP or CON exposure. Blood–brain barrier disruption localized to the perirhinal, insular, entorhinal,

and piriform cortices and basolateral amygdala of the left hemisphere ipsilateral and subjacent to the impact contact zone. Inset: rostral-to-caudal

brain sections, S1–S4. ***P5 0.001; NS = not statistically different. (D) Gaussian mixed model analysis of Evans blue fluorescence brain imaging

yielded three groups that corresponded to gross pathology classification (Grades 0, I, II). (E–J) Anatomical localization of extravasated serum

albumin (SALB; E, G, H and J) and co-localizing reactive astrocytosis (GFAP; F, G, I and J) in left perirhinal cortex ipsilateral to impact 3 days post-

injury (H–J) but not in corresponding cortex from CON mice (E–G). DAPI (blue channel: F, G, I and J), cell nuclei. Hashed lines (H–J) demarcate

cortical region with maximal post-injury serum albumin extravasation (H and J) and co-localization with reactive astrocytosis (I and J).

Arrowheads, GFAP-immunopositive processes of activated astrocytes. Scale bars = 100 mm. (K–P) Left perirhinal cortex at peak of reactive

astrocytosis 3 days post-injury. Composite fluorescence microscopic images showing co-localization of extravasated serum albumin (SALB, red: K,

L, M and O) with reactive astrocytosis (GFAP, green: K, L, M and P); TGFb expression (TGFb, violet: K) and phosphorylated-SMAD2, a marker

downstream of TGF-b signalling (pSMAD2, violet: L, M and N). Cell nuclei (DAPI, blue: K, L and M). Yellow-white areas indicate overlapping

SALB and GFAP immunoreactivity (K, L and M). High magnification (�40) composite fluorescence image (M) and fluorescence channels (N,

pSMAD2; O, SALB; P, GFAP). Magnification: K and L = �20; M–P = �40. Scale bars in K and L = 100 mm; M–P = 50mm. Serum albumin

extravasation, GFAP-immunoreactive astrocytosis, and pSMAD2-TGFb upregulation were not observed in the contralateral perirhinal cortex of

IMP mice nor in perirhinal cortex of either hemisphere in CON mice (Supplementary Fig. 4A–F). (Q–V) Focal blood–brain barrier disruption and

co-localizing serum albumin extravasation detected in the brains of living mice by dynamic contrast-enhanced MRI (DCE-MRI) neuroimaging with
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permeability defects were not detected by neuroimaging in

the contralateral cortex of impact-injured mice or either

hemisphere in uninjured control mice. Post-mortem neuro-

pathological examination did not reveal evidence of haem-

orrhagic contusion, suggesting that the permeability defect

resulted from blood–brain barrier dysfunction rather than

intraparenchymal haemorrhage.

To confirm that the detected neuroimaging abnormalities

represented true blood–brain barrier permeability disrup-

tion, we used laser ablation-assisted metallomic imaging

mass spectrometry to map tissue concentrations and spatial

distribution of gadolinium in coronal sections of brains

harvested from impact-injured and control mice. Mice in

both groups received intravenous gadofosveset trisodium

during dynamic neuroimaging (Fig. 5Q–V). Metallomic

imaging mass spectrometry maps of brains obtained from

impact-injured mice revealed enhanced gadolinium accumu-

lation in left perirhinal cortex (Fig. 5V) that co-localized

with the neuroimaging abnormalities (Fig. 5Q–T).

Enhanced gadolinium accumulation was not detected in

contralateral perirhinal cortex of impact-injured mice or

control mice. These results confirm that impact injury

was associated with ipsilateral traumatic microvascular

injury and focal blood–brain barrier disruption in mice

exposed to unilateral closed-head impact injury. Our results

provide ‘proof of concept’ validation of dynamic brain ima-

ging with gadofosveset trisodium for diagnostic evaluation

of blood–brain barrier dysfunction in the acute-subacute

period after closed-head impact injury.

Relationship of neuroinflammation to traumatic

microvascular injury and early CTE tau pathology

Given the co-localization of three CTE-associated brain

pathologies—phosphorylated tauopathy, traumatic micro-

vascular injury, and blood–brain barrier disruption—after

impact neurotrauma and the known involvement of mye-

loid-derived cells in tau processing (Asai et al., 2015) and

association with CTE (Cherry et al., 2016), we hypothe-

sized that focal neuroinflammatory responses would be

triggered by impact injury. To test this hypothesis, we

used flow cytometry to characterize inflammatory cell

phenotypes and time course of neuroinflammatory

responses triggered by experimental closed-head impact

injury (Fig. 5W–BB; Supplementary Fig. 4G–I).

We observed a significant increase in the number of infil-

trating peripheral myeloid cells 3 days post-injury in brains

from impact-injured mice (n = 7) compared to controls

(n = 8) [one-way ANOVA, F(5,38) = 3.74, P = 0.0076;

Bonferroni-corrected two-tailed Student’s t-test, P =

0.0054] (Fig. 5W). The Day 3 leucocyte peak coincided

with peak astrocytosis and microgliosis detected by histo-

pathology (Fig. 3H and K). Immunophenotyping analysis

revealed co-expression of molecular markers that identify

these cells as presumptive inflammatory monocytes and

brain macrophage derived from inflammatory monocytes

(Fig. 5Y) (Murray and Wynn, 2011). Sub-phenotyping

based on monocyte surface antigen expression in impact-

injured mouse brains at Day 3 post-injury revealed a sig-

nificant increase in all three functional classes (Fig. 5Z):

Figure 5 Continued

gadofosveset trisodium, an FDA-approved gadolinium-based contrast agent that binds serum albumin. High-field (11.7 T) T1-weighted MRI (Q and

R) and DCE-MRI (S and T) with systemically administered gadofosveset trisodium. T1-weighted MRI and DCE-MRI were conducted 3 h (Q, T1-

weighted MRI (T1W-MRI); S, DCE-MRI) and 3 days (R, T1-weighted MRI; T, DCE-MRI) after IMP or CON exposure. T1-weighted hyperintensity

(Q and R) co-localized with blood–brain barrier permeability defect detected by DCE-MRI (S and T) in the left perirhinal cortex (arrows) 3 h and

3 days after IMP but not CON exposure. Non-specific signal was observed in the ventricles and sagittal sinus. D = dorsal, V = ventral; L = left,

R = right. (U and V) Confirmation of serum albumin extravasation indicating blood–brain barrier disruption by gadolinium metallomic imaging

mass spectrometry (Gd-MIMS) in perfused post-mortem brains from the same mice imaged by T1-weighted MRI (Q and R) and DCE-MRI (S and

T). Enhanced gadolinium accumulation was observed in the left lateral perirhinal and piriform cortices (arrow) 2 weeks after IMP (V) but not

CON (U) exposure. Gadolinium accumulation detected by Gd-MIMS co-localized with T1-weighted hyperintensity and blood–brain barrier

permeability defect detected by DCE-MRI, thus confirming intracerebral blood–brain barrier disruption. (W–BB) Flow cytometry analysis

showed that IMP triggers increased number of CD45 + inflammatory cells and activation of TREM2 + microglia in the brain post-injury. CD45 +

inflammatory cells (W) and CD45loCD11b + microglia (X) were significantly increased 3 days after IMP compared to CON exposure. (Y)

CD45hiCD11b + Ly–6G– inflammatory cells accumulated in the brain 3 days after IMP compared to CON exposure. (Z) All three major

subpopulations (Ly-6Chi, Ly-6Cmid, Ly-6Clo) were represented in CD45hiCD11b + Ly–6G– inflammatory cells detected 3 days post-injury. (AA and

BB) Upregulation of TREM2 expression in microglia (AA) but not CD45 + inflammatory cells (BB) at 1 and 14 days after IMP compared to CON

exposure. For flow cytometry experiments, n = 6–8 mice per group per time point. ***P5 0.001; **P5 0.01; *P5 0.05. See Supplementary Fig.

4G–I for flow cytometry population dot plots. (CC–HH) Brain accumulation of Ccr2RFP-expressing inflammatory cells (red-labelled cells) and

activation of brain-resident Cx3cr1GFP-expressing microglia (green-labelled cells) were confirmed by fluorescence microscopy in perirhinal cortex

ipsilateral and subjacent to experimental impact injury in Ccr2RFP/Cx3cr1GFP mice at 3 days post-injury (IMP: CC, DD, GG and HH) or control

(CON: EE and FF). Representative fluorescence microscopy images show red-labelled Ccr2RFP-expressing inflammatory cells (arrows, CC)

throughout the ipsilateral (left) perirhinal and adjacent cortex, basolateral amygdala, and overlying dura and leptomeninges (CC and HH) 3 days

post-injury. The affected cortex was also notable for large numbers of ameboid Cx3cr1GFP-expressing microglia (arrowheads; CC and GG) that

were also present, but to a lesser degree, in the contralateral (right) hemisphere (DD). Note clustering of Ccr2RFP-expressing inflammatory cells

and Cx3cr1GFP-expressing microglia in the left perirhinal cortex (dashed circles, CC), the primary locus of post-traumatic brain pathology

ipsilateral and subjacent to the impact. By contrast, Ccr2RFP-expressing inflammatory cells were minimally present and amoeboid Cx3cr1GFP-

expressing microglia were absent in brains from Ccr2RFP/Cx3cr1GFP mice 3 days after CON exposure (EE and FF). Bars (CC–FF), 40 microns;

(GG, HH), 20 microns.
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short-lived inflammatory monocytes [one-way ANOVA,

F(1,13) = 17.15, P = 0.0012] (Geissmann et al., 2003); im-

mature monocytes [one-way ANOVA, F(1,12) = 17.73,

P = 0.0005] (Sunderkötter et al., 2004); and patrolling

monocytes [one-way ANOVA, F(1,13) = 16.29, P =

0.0014] (Auffray et al., 2007). Flow cytometry also re-

vealed an apparent expansion of microglia on Day 3

post-injury in brains from impact-injured mice but not con-

trol mice [one-way ANOVA, F(5,38) = 4.207, P = 0.0039;

Bonferroni-corrected two-tailed Student’s t-test, P = 0.043]

(Fig. 5X).

We hypothesized that neuroinflammatory reactions to

closed-head impact injury would be accompanied by

trauma-stimulated microglial phenotype transformation.

To evaluate this hypothesis, we investigated microglial ex-

pression of TREM2 (triggering receptor expressed on mye-

loid cells 2 protein), an immunoglobulin superfamily cell

surface receptor and homeostatic regulator of cytokine pro-

duction, phagocytic clearance, innate immunity responses,

and tissue repair (Bhaskar et al., 2010; Kokiko-Cochran

et al., 2016; Ulrich and Holtzman, 2016). TREM2 expres-

sion is upregulated in activated microglia (Schmid et al.,

2002; Kawabori et al., 2015; Wang et al., 2015).

Moreover, TREM2 gene variants in human populations

are associated with increased risk of age-related neurode-

generative diseases, including Alzheimer’s disease

(Guerreiro et al., 2013; Jonsson et al., 2013; Phimister

and Tanzi, 2015; Ulrich and Holtzman, 2016). Flow cyto-

metry immunophenotyping revealed a significant increase

in the percentage of microglia expressing TREM2 [one-

way ANOVA, F(5,38) = 13.14, P50.0001; Bonferroni-

corrected two-tailed Student’s t-tests: 24 h, P = 0.0072,

Impact n = 8, Control n = 8; 2 weeks, P = 0.0348, Impact

n = 7, Control n = 6] compared to controls (Fig. 5AA).

Notably, activation of microglial TREM2 expression tem-

porally preceded peripheral monocyte infiltration in brains

of impact-injured mice. By contrast, we did not detect a

significant change in TREM2-expressing infiltrating mye-

loid cells in brains from impact-injured mice compared to

controls at any of the three time points (Fig. 5BB).

To confirm cellular phenotype localization and trans-

formation of brain-resident microglia and presumptive

brain-infiltrating monocytes, we crossed genetically-

modified mice that produce red fluorescent protein-labelled

inflammatory monocytes (Ccr2RFP mice) with genetically-

modified mice that produce green fluorescent protein-

labelled brain-resident microglia and perivascular

macrophages (Cx3cr1GFP mice). F1 progeny expressed red

fluorescent protein-labelled monocytes (red cells) and green

fluorescent protein-labelled brain-resident microglia and

perivascular macrophages (green cells). We subjected

crossed mice to impact injury under the same experimental

conditions used in the preceding experiments. Fluorescence

microscopic analysis of brain sections obtained from these

mice at Day 3 post-injury revealed large numbers of red-

labelled monocytes throughout the ipsilateral perirhinal, in-

sular, and piriform cortices and overlying leptomeninges

subjacent to impact (Fig. 5CC and HH). Presumptive infil-

trating monocytes co-localized with large ameboid-shaped

microglia and perivascular macrophages (Nayak et al.,

2014) (Fig. 5CC and GG). Presumptive red-labelled infil-

trating monocytes and green-labelled ameboid-shaped

microglia and macrophages were also present but far

more scarce in the contralateral (right) hemisphere at Day

3 post-injury (Fig. 5DD). By contrast, presumptive infiltrat-

ing monocytes were minimally present and co-localizing

ameboid-shaped microglia and macrophages were absent

in brains from uninjured control mice (Fig. 5EE–FF).

Unilateral impact injury induces bilateral

electrophysiological deficits in hippocampus and

prefrontal cortex

Given the known clinical association of mild TBI with cog-

nitive impairment and executive dysfunction (Evans, 2006;

Ropper and Gorson, 2007; Alosco et al., 2017), and recent

recognition of concordant abnormalities in early-stage CTE

(i.e. traumatic encephalopathy syndrome; Montenigro

et al., 2014, 2017), we hypothesized that experimental

head injury could disrupt neurophysiological function in

two critical brain regions subserving these functions,

namely, the hippocampus and medial prefrontal cortex

(McDonald et al., 2002; Sigurdsson and Duvarci, 2015;

Place et al., 2016). To test this hypothesis, we evaluated

axonal conduction velocity of hippocampal pyramidal cell

compound action potentials in the stratum alveus (Fig. 6A–

D and Supplementary Fig. 5A) and activity-dependent LTP

of synaptic transmission at excitatory inputs to pyramidal

neurons in the medial prefrontal cortex (Fig. 6E–J and

Supplementary Fig. 5B–D). Analysis of hippocampal pyr-

amidal cell compound action potentials (Fig. 6A) revealed

significant and persistent decrements in axonal conduction

velocity in the ipsilateral (left) hippocampus at 24 h, 3 days,

and 2 weeks post-injury (Fig. 6B–D). Three-way ANOVA

[main factors: injury (levels: TBI and control), post-injury

interval (levels: 24 h, 3 days, and 2 weeks), and side (levels:

ipsilateral and contralateral to impact)] revealed a signifi-

cant effect for injury [F(1,119) = 71.431; P50.0001] on

axonal conductance, with comparable decrements in hippo-

campus ipsilateral and contralateral to impact 24 h, 3 days,

and 2 weeks post-injury (Fig. 6B and C). There was no

significant effect for either post-TBI interval

[F(2,119) = 0.212; P = 0.8094] or brain hemisphere

[F(1,119) = 0.033; P = 0.8554]. While axonal conduction

velocity in the right (contralateral) hippocampus returned

to baseline levels by 2 weeks post-injury, axonal conduc-

tion velocity in the left (ipsilateral) hippocampus remained

impaired at this time point (Fig. 6D).

Given the impact-induced functional impairments in hip-

pocampal axonal conduction velocity, we examined the

effect of impact injury on synaptic transmission and stimu-

lus-evoked LTP of synaptic strength at excitatory inputs to

pyramidal neurons in the medial prefrontal cortex

(Supplementary Fig. 5B and C). The rationale for this in-

vestigation is based on neuroanatomical and functional
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connections between the hippocampus and medial pre-

frontal cortex, and additionally, the prominence of execu-

tive dysfunction (mediated, in part, by the medial

prefrontal cortex) that commonly accompanies closed-

head impact injuries in humans (see ‘Discussion’ section).

Analysis of white matter-evoked postsynaptic field potential

input-output relations indicated that impact injury did not

alter baseline synaptic transmission (Supplementary Fig.

5D). However, left-lateral impact induced significant and

persistent bilateral decrements in stimulus-evoked LTP in

the medial prefrontal cortex at 24 h, 3 days, and 2 weeks

post-injury (Figs. 6E–J). Three-way ANOVA (main factors

and levels as above) determined that only injury had a

significant effect on LTP in the medial prefrontal cortex

[F(1,60) = 60.227; P50.0001], with no effect of either

post-TBI interval [F(2,60) = 0.029; P = 0.9761] or recording

side [F(1,60) = 0.949; P = 0.3340], and no interaction of

main factors. Moreover, the magnitude of post-tetanic po-

tentiation immediately after application of theta-burst

stimulation was also reduced at all three time points.

Together, these results indicate that exposure to unilateral

closed-head impact injury induces acute, persistent, and

bilateral impairments in hippocampal axonal conduction

velocity and disruption of short- and long-term activity-

dependent synaptic plasticity in the medial prefrontal

cortex.

Acute neurobehavioural responses to closed-head

impact injury do not correlate with TBI and CTE

endpoints

Recent clinical findings suggest that cumulative concussion

exposure correlates poorly with post-traumatic brain

pathologies and functional sequelae (Breedlove et al.,

2012; Davenport et al., 2014; Talavage et al., 2014;

Abbas et al., 2015; Montenigro et al., 2017). Moreover,

post-mortem studies have confirmed that a subset (�20%)

of former athletes with neuropathologically-verified CTE

did not have a history of concussion (Bieniek et al.,

2015; Stein et al., 2015a). Our experimental results

allowed us to evaluate the putative relationship between

concussion and CTE brain pathology by testing for pos-

sible correlations between composite scores on the acute

neurobehavioural response test battery and quantitative

endpoints associated with TBI and early CTE

(Supplementary Table 3). Target metrics included blood–

brain barrier disruption by Evans blue-specific fluores-

cence, neuroinflammation assessed by myeloid cell flow

cytometry, phosphorylated tau proteinopathy by quantita-

tive immunoblot analysis, impaired hippocampal axonal

conduction velocity, and defective LTP in the medial pre-

frontal cortex. Time point selection was based on peak

post-injury responses for each TBI and CTE metric.

Consistent with clinical (Breedlove et al., 2012;

Davenport et al., 2014; Talavage et al., 2014; Abbas

et al., 2015; Montenigro et al., 2017) and pathological

findings in humans (Bieniek et al., 2015; Stein et al.,

2015a), we did not detect any statistically significant cor-

relation between test battery composite scores and quanti-

tative endpoints associated with TBI and early CTE

(Supplementary Table 3).

Based on these results, we hypothesized that the mechan-

isms underpinning concussion-like deficits after experimen-

tal impact injury may be independent of the mechanisms

that drive TBI and CTE brain pathologies. We investigated

the mechanistic underpinnings of this hypothesis in the fol-

lowing section.

Head impact and blast exposure
induce different force loading, shear
stress, and concussion-like deficits

The brain pathologies and functional sequelae observed

after experimental impact injury are generally consistent

with corresponding responses following blast exposure

(Goldstein et al., 2012; Huber et al., 2013; Kondo et al.,

2015). While the manner in which kinetic energy is trans-

ferred to the head is different in the two types of insult, the

brain pathologies associated with each are similar in la-

boratory animals and humans (Omalu et al., 2011;

Goldstein et al., 2012; Huber et al., 2013; McKee et al.,

2013; Kondo et al., 2015; Shively et al., 2016; Mez et al.,

2017). Concordance of head motion in our impact and

blast mouse models enabled comparative evaluation of

acute neurobehavioural responses, structural brain pathol-

ogies, and functional sequelae produced by these two bio-

mechanically different neurotrauma mechanisms under

exposure conditions matched for head kinematics

(Supplementary Table 2).

We subjected awake, anaesthesia-naı̈ve C57BL/6 male

mice to experimental closed-head impact injury (n = 203)

or blast exposure (n = 24) under conditions that produce

comparable head kinematics and evaluated mice after ex-

posure using the acute neurobehavioural responses test bat-

tery (Fig. 7A). Baseline (pre-injury) testing showed that

mice in both groups exhibited indistinguishable mean com-

posite test battery scores (mean � SEM: impact, 14.9 � 0.0;

blast, 14.8 � 0.1; linear mixed-effects regression analysis,

P4 0.05). While impact-injured mice demonstrated the ex-

pected significant decrement in post-injury composite scores

(mean � SEM: 11.6 � 0.2; linear mixed-effects regression

analysis, P50.0001; Supplementary Video 1), blast-

exposed mice did not (mean � SEM: 14.5 � 0.1; linear

mixed-effects regression analysis, P4 0.05; Supplementary

Video 1). This result was robust, reliable, and entirely un-

expected, especially given comparable head kinematics in

the two models. It is worth noting that the absence of

acute neurobehavioural deficits following blast exposure

comports with the low incidence of concussion after pure

blast exposure in the absence of concomitant contact injury

(Barrow and Rhoads, 1944; Luethcke et al., 2011). After 3-

h recovery, both experimental groups again demonstrated
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Figure 6 Unilateral closed-head impact injury induces early, persistent, bilateral impairments in hippocampal axonal con-

duction velocity and medial prefrontal cortical long-term potentiation of synaptic neurotransmission. (A–D) Time course of

impaired axonal conduction velocity in the hippocampus (HIPP) CA1 subregion of mice exposed to unilateral (left-sided) closed-head impact

injury (IMP, red) or sham (no injury) control (CON, black). Time points: 24 h, 3 days, 2 weeks post-exposure. Experimental testing arrangement in

relation to neuroanatomy and circuitry is shown in Supplementary Fig. 5A. (A) Representative stimulus-evoked compound action potentials at

proximal (solid lines) and distal (dashed lines) recording sites in the CA1 subregion of hippocampus slices obtained from mice exposed to
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indistinguishable mean composite test battery scores that

were also indistinguishable from baseline scores

(mean � SEM: impact, 14.7 � 0.0; blast, 14.5 � 0.1;

linear mixed-effects regression analysis, P40.05). Given

that head motion in the two experimental models was kine-

matically comparable, our observation of decrements in test

battery composite scores after impact injury but not after

blast exposure argues against head motion per se as a pri-

mary causative mechanism that differentiates concussion-

like neurobehavioural responses after these insults.

To investigate the origins of this unexpected difference,

we constructed mouse headforms to which we attached

pressure-sensitive film on the lateral surface. Impact and

blast exposures were conducted as above. Force loading

was assessed by determining total pixel intensity registered

by the pressure-sensitive film (Fig. 7B). Total pixel intensity

on film exposed to impact was significantly greater than for

blast (mean � SEM, n = 5: impact, 6.49 � 0.43 � 106 a.u.;

blast, 0.28 � 0.04 � 106 a.u.; Bonferroni-corrected one-

tailed Student’s t-test, P = 0.0002) while both impact and

blast generated significantly greater pixel intensities than

respective controls (mean � SEM, n = 5: impact control,

1.58 � 0.66 � 104 a.u.; blast control, 2.67 � 0.51 �

104 a.u.; Bonferroni-corrected one-tailed Student’s t-tests:

impact versus impact control, P = 0.0002; blast versus

blast control, P = 0.0089). Moreover, impact produced

high pressure loading that was restricted to the contact

zone, whereas blast generated far lower pressure that was

evenly distributed within the measurement area (Fig. 7B).

These results point to fundamentally different energy load-

ing regimes at the moment of traumatic contact.

Experimental methods are not currently available to

measure stresses in discrete regions of the living mouse

brain at microsecond time resolution. Thus, we investigated

how these results relate to the observed differences in acute

neurobehavioural responses to impact injury and blast ex-

posure by using dynamic computational simulations of our

two experimental mouse models. We used the Arbitrary-

Lagrangian-Eulerian hydrostructural finite element code

ALE3D (Noble et al., 2017) developed at the Lawrence

Livermore National Laboratory to simulate the experimen-

tal impact instrument described above and blast tube used

here and in previous studies (Goldstein et al., 2012; Kondo

et al., 2015). We simplified the computational analysis by

assuming a spherical mouse head consisting of a 0.2 mm

thick skull, 0.2 mm subdural layer (with CSF), and a

10 mm diameter brain (Fig. 7C). Initial conditions were

set such that the resulting centre-of-geometry motions

were similar to each other and representative of empiric-

ally-derived experimental data in both animal models. Since

the spherical mouse head model excluded mass external to

the skull, it was necessary to proportionally scale the

impact rod velocity to produce head motion that matched

peak head acceleration calculated for blast. Skull deflection

during impact was 19.8 mm (50.2% of the skull diameter)

consistent with an absence of skull fracture or significant

skull deformation in our closed-head impact injury mouse

model. The close agreement of the simulation results with

empirically-derived head kinematic data obtained in living

mice provided validation for the computational methods

used in the computational comparisons below. Peak accel-

erations and calculated head injury criterion (HIC) pro-

vided further confirmation of the kinematic similarity of

the impact and blast simulations (Fig. 7C and D).

While head accelerations were closely approximated in

the two simulations (Fig. 7D), calculated overpressures in

the brain were larger at each of three intracerebral

Lagrangian tracer locations during blast exposure than

during impact injury (Supplementary Fig. 6A and B). If

increased pressure were the dominant factor responsible

Figure 6 Continued

unilateral impact (IMP, red) versus sham (no-injury) control mice (CON, black). Arrows indicate peak negativities used to calculate conduction

velocity. (B) Conduction velocity measurements from first peak compound action potential delay as a function of distance between recording

electrodes in CA1 pyramidal cell axons in the stratum alveus of hippocampus slices from mice subjected to unilateral left-sided IMP (red bars: left,

n = 9, right n = 10) compared to CON (black bars: left, n = 10; right, n = 7) 24 h post-exposure. Each bar is mean axonal conduction

velocity � SEM of n slices. **P5 0.01. (C) Conduction velocity measurements in CA1 pyramidal cell axons in stratum alveus of hippocampus

slices from mice subjected to unilateral left-sided IMP (red bars: left, n = 14; right, n = 16) compared to CON (black bars: left n = 7; right, n = 9) 3

days post-exposure. **P5 0.01; *P5 0.05. (D) Axonal conduction velocity measurements in CA1 pyramidal cell axons in the stratum alveus of

hippocampus slices from mice subjected to unilateral IMP (red bars: left, n = 16; right, n = 12) compared to CON (black bars; left, n = 7; right,

n = 8) 2 weeks post-exposure. *P5 0.05. (E–J) Impaired theta burst-evoked long-term potentiation (LTP) of mixed excitatory inputs to the

medial prefrontal cortex (mPFC) in slices from mice after unilateral (left-sided) closed-head impact injury (IMP, filled red circle) compared to sham

(no injury) control condition (CON, filled black circle). LTP calculated as ratio of field excitatory postsynaptic potential (fEPSP) slope at time

points T1/T2 (vertical grey bands). Theta burst high-frequency stimulation, arrows. Each point is mean � SEM of fEPSP slope in N slices. (E) Time

course of LTP in left (ipsilateral) mPFC from mice 24 h after exposure to left-lateral IMP (filled red circle, n = 7) or CON (filled black circle, n = 7).

(F) Time course of LTP in right (contralateral) mPFC from mice 24 h after exposure to left-lateral IMP (filled red circle, n = 8) or CON (filled black

circles, n = 6). (G) Time course of LTP in left (ipsilateral) mPFC from mice 3 days after exposure to left-lateral IMP (filled red circles, n = 11) or

CON (filled black circles, n = 8). (H) Time course of LTP in right (contralateral) mPFC from mice 3 day after exposure to left-lateral IMP (filled

red circles, n = 10) or CON (filled black circles, n = 8). (I) Time course of LTP in left (ipsilateral) mPFC from mice 2 weeks day after exposure to

left-lateral IMP (filled red circles, n = 9) or CON (filled black circles, n = 6). (J) Time course of LTP in right (contralateral) mPFC from mice 2

weeks day after exposure to left-lateral IMP (filled red circles, n = 10) or CON (filled black circles, n = 6). White matter-evoked synaptic field

potential input-output relations were not affected by experimental impact injury (Supplementary Fig. 5D).
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Figure 7 Differential force loading on the head and ipsilateral shear stress in the brain differentiate the presence or absence of

acute concussion-like neurobehavioural deficits after unilateral closed-head impact injury or blast exposure. (A) Mean composite

scores on the acute neurobehavioural response test battery in awake, unanaesthetized (anaesthesia-naı̈ve) mice 2 min after unilateral closed-head

impact injury (red bars; n = 203) or blast exposure (blue bars; n = 24) under experimental conditions matched for comparable head kinematics

(Supplementary Table 2). Unilateral closed-head impact triggered abrupt onset of transient neurobehavioural deficits (Supplementary Video 1).

Impact-induced decrements in mean test battery composite scores recovered to baseline when tested after 3-h recovery period. By contrast,

blast exposure under conditions that produce comparable head motion did not induce decrements in mean composite scores on the post-

exposure test battery. Mean composite scores � SEM. ***P5 0.001, linear mixed-effects regression analysis. (B) Evaluation of force loading

regimes during impact injury (red bar) compared to blast exposure (blue bar) at the surface of a mouse headform. Experimental conditions were

identical to those utilized in the live animal experiments. Representative images of pressure-sensitive film strips (black boxes, above) after

exposure to impact (left) or blast (right) with corresponding pixel intensity histograms (below). Large green boxes indicate pressure signal

summation areas. Inset boxes show magnified view of the summation area and reveal differences in the spatial distribution of the pressure signals.

Mean sum of pixel values � SEM in arbitrary units (a.u.). ***P5 0.001, one-tailed Student’s t-test. (C) Material densities and head geometry used

in the computational simulation analyses and resulting kinematics. (D) Computational simulations showing comparable head kinematics and peak

acceleration at the centre of the brain in the impact and blast simulation models. Arrows, corresponding peak head x-acceleration for impact (red)

and blast (blue) models. Kinematic results for the models were statistically indistinguishable. The small initial negative deflection on the blast

simulation is a filtering artefact. (E and F) Simulation results showing intracranial shear (von Mises) stress and extracranial overpressure during

impact (E, slice of three-dimensional simulation) and blast (F, slice of two-dimensional simulation) exposure at peak head x-acceleration time
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for the observed differences in acute neurobehavioural re-

sponses to impact injury compared to blast exposure, then

we would expect blast-exposed mice to preferentially ex-

hibit greater impairment than impact-injured mice. Our ex-

perimental results indicated the opposite effect (Fig. 7A).

This result indicates that intracranial pressure is not likely

to be a primary physical driver of differential concussion-

like responses that occur after impact injury but not after

blast exposure. As an alternative hypothesis, we postulated

that intraparenchymal shear stress could differentiate

impact and blast with respect to the observed differences

in acute neurobehavioural responses. Selected computa-

tional solutions at peak head acceleration are shown as

spatially-mapped numerical values of the von Mises stress

(a measure of shear stress) in the skull, CSF, and brain

along with coincident overpressure in the padding for

impact and overpressure in the air surrounding the head

for blast (Fig. 7E and F). The magnitude and temporal

evolution of shear stress in the head (skull, CSF, brain) is

shown at time of contact, at peak head acceleration, and

150ms after peak head acceleration in both simulations

(Fig. 7G and H) and as time histories at each of the

three selected intracerebral Lagrangian tracer locations

(Fig. 7I and J). The temporal history of stress dynamics

in the impact and blast simulation models are shown in

Supplementary Video 2.

The impact simulation model revealed a large area of

relatively sustained high peak shear stress that localized

within a discrete brain region ipsilateral and subjacent to

the impact contact zone (Fig. 7E). By contrast, the blast

simulation demonstrated modest and relatively brief peak

shear stress that was limited to a small area in the contra-

lateral region of the brain on the leeward side of head

(Fig. 7F). The relatively minor shear stress resulting from

blast coalesced �25 ms after the blast reached the skull and

dissipated �85 ms later (total duration, �60 ms).

Representative time histories of the von Mises stress at se-

lected tracer points in the model head showed that impact

produced 7-fold greater peak shear stress compared to blast

(Figs. 7I–J). Moreover, impact-induced shear stress

exhibited strong spatial dependence with peak magnitude

in the ipsilateral brain subjacent to the impact contact zone.

Importantly, peak shear stress triggered by impact occurred

�0.25 ms after contact (centre of mass motion 4 300 mm)

and before onset of gross head motion. These simulations

(Fig. 7E–J) show that spatially and temporally localized

shear stress in impact and absence in blast result from dif-

ferences in focal loading and the low shear modulus of the

brain.

These computational results are consistent with our ob-

servation of acute onset of transient neurobehavioural def-

icits across multiple functional domains in mice subjected

to experimental impact injury but not after blast exposure

under conditions matched for head kinematics (Fig. 7A).

The impact simulation results are also consistent with ex-

perimental observations of abrupt onset of right-sided

motor weakness and incoordination after left-sided impact

injury. These results are also concordant with neuropatho-

logical evidence demonstrating that unilateral closed-head

impact injury in our mouse model produces acute-subacute

brain pathology that localizes predominantly in cerebral

cortex and neighbouring brain regions (e.g. basolateral

amygdala) ipsilateral and subjacent to the head impact con-

tact zone.

Discussion
We examined post-mortem brains obtained from teenage con-

tact sport athletes who died in the acute-subacute period

(1 day–4 months) after closed-head impact injuries and com-

pared results to control brains from an age-matched control

cohort of contact sport athletes without recent head injuries.

Neuropathological analysis revealed a spectrum of post-trau-

matic pathologies, including astrocytosis, axonopathy, micro-

vasculopathy, neuroinflammation, and phosphorylated

tauopathy. The presence of haemosiderin-laden macro-

phage, reactive astrogliosis, and perivascular microgliosis is

consistent with traumatic microvascular injury, blood–brain

barrier disruption, and secondary neuroinflammation

(Cherry et al., 2016; Jullienne et al., 2016; Kenney et al.,

Figure 7 Continued

points indicated by arrows in D. Computed extracranial overpressure measurements at peak head acceleration are shown calibrated to scale

(light-dark blue scale; kPa) for the foam padding (impact model) and ambient air (blast model). Computed shear (von Mises) stresses in the skull,

CSF, and brain parenchyma at peak head x-acceleration are shown calibrated to scale (yellow–red scale; Pa) for both simulation models.

Intracranial Lagrangian tracers: C = contralateral with respect to impact or blast contact surface on the head; I = ipsilateral; M = midline. Insets:

relationship of intracranial compartments in the mouse head simulation models. (G and H) Representative time sequence frames (t1: contact, t2:

peak head x-acceleration, t3: 150 ms after peak head x-acceleration) for intracranial shear (von Mises) stress and extracranial overpressure

(padding, ambient air) in the impact (G) and blast (H) simulations. Impact induces focal point loading on the head and 7-fold greater magnitude

shear stress in the brain that localizes to (and persists in) a discrete region of brain ipsilateral and subjacent to the impact contact zone. Sustained

asymmetric shear stress in the simulation recapitulates the ipsilateral locus of post-traumatic brain pathology observed in the animal experiments.

Note that impact produces peak shear stress in the brain before onset of gross motion of the head. By contrast, blast exposure under conditions

that induces comparable head kinematics results in distributed loading on the head and lower magnitude shear stress in the brain. (I and J) Time

dependence of the intracranial shear stress for impact (I) and blast (J) simulation models at the ipsilateral, midline, and contralateral Lagrangian

tracer locations. Full-sequence computational simulation time histories for impact and blast are available for viewing (Supplementary Video 2).
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2016; McKee et al., 2016). Notably, two of four brains

showed evidence of phosphorylated tauopathy and one case

qualified for neuropathological diagnosis of early stage CTE

(McKee et al., 2016). Clinicopathological correlation sug-

gested mechanistically causal linkage between early CTE

brain pathologies, including phosphorylated tauopathy, and

antecedent closed-head impact injury (Goldstein et al., 2012;

McKee et al., 2013; Kondo et al., 2015; Kenney et al., 2016).

Few published case series have investigated brain path-

ology in individuals who have sustained mild forms of

closed-head impact injury and died in the acute-subacute

period post-injury (Oppenheimer, 1968; Blumbergs et al.,

1994; McKee et al., 2014). Limitations pertinent to these

studies and ours include: (i) small number of cases; (ii) vari-

ation in mechanics, severity, and timing of head injury; (iii)

potential confounds associated with comorbidities, history

of prior neurotrauma, and genetic and medical risk factors;

(iv) duration and circumstances of the agonal period and

post-mortem interval; (v) incomplete case information; (vi)

adequacy of control brains; (vii) methodological and tech-

nical issues; (viii) exclusive male sex bias (this study); and

(ix) inherent limitations of clinicopathological correlation

to establish mechanistic causality (Goldstein et al., 2014;

Wojnarowicz et al., 2017).

Caveats notwithstanding, these case reports are highly

informative. Oppenheimer (1968) observed perivascular

microglia and astrocytes in proximity to petechial and

capillary haemorrhages as early as 15 h post-injury

(Oppenheimer, 1968). Blumbergs et al. (1994) reported

post-traumatic axonopathy 2–99 days after mild concussive

head injury. The neuropathologies that we observed in

young athletes in the acute-subacute period after closed-

head impact injury included axonopathy, microvascular

disruption, and perivascular neuroinflammation are consist-

ent with the earlier reports. To this triad we highlight a

fourth element, phosphorylated tauopathy (Goldstein et al.,

2012; McKee et al., 2014). In the cases reported here, we

detected pathogenic accumulation of phosphorylated tau

protein accumulation in brains of two of four acute-sub-

acute head injury cases, one of which met diagnostic cri-

teria for early-stage CTE.

Clearly, not every individual who sustains a head injury,

even if repeated, will develop CTE brain pathology. While

clinicopathological correlation in our case series suggests

that closed-head impact injury can trigger early brain

pathologies associated with CTE, the causal mechanisms,

temporal relationships, and contextual circumstances that

link specific brain pathology to a particular antemortem

insult are impossible to ascertain with certainty based

solely on post-mortem neuropathology. This point is ger-

mane to the findings reported here given the documented

head injury exposure histories of the decedents. Rather, the

critical question addressed in this study is whether or not

antecedent head injury per se is sufficient to causally induce

(mechanistically determine) early CTE brain pathologies.

To investigate hypothesized causal connections between

impact injury and early CTE pathology, we developed a

mouse model of closed-head impact injury that uses mo-

mentum transfer to produce traumatic head acceleration

without gross skull deformation. The developed impact

mouse model is notable for matching head kinematics in

our previously published blast neurotrauma mouse model

(Goldstein et al., 2012; Kondo et al., 2015).

Unanaesthetized (anaesthesia-naı̈ve) mice subjected to uni-

lateral closed-head impact, but not experimental blast

exposure, exhibited abrupt onset of transient neurobeha-

vioural deficits with rapid and complete spontaneous reso-

lution. The observed deficits, temporal course, and rapid

recovery constitute an experimental concussion-like syn-

drome with phenomenological resemblance to human con-

cussion (Supplementary Video 1). We used the acute

neurobehavioural response test battery to objectively evalu-

ate these transient neurobehavioural deficits. It is important

to note that test battery composite and subtest scores cap-

ture integrated neurobehavioural performance that includes

neuromotor function (strength and coordination of prox-

imal, distal, and axial muscle groups), gait and balance,

locomotion, exploratory drive, arousal level, responsivity

to environmental stimuli, orientation behaviour, thigmo-

taxis, anxiety-neophobia, and habituation, amongst others

(Walsh and Cummins, 1976; Brooks and Dunnett, 2009;

Sukoff Rizzo and Crawley, 2017). Interestingly, we

noted variation in the sensitivity of the subtests to discrim-

inate neurobehavioural impairment post-injury (i.e. open

field� inverted mesh4beam walk). This finding may

prove useful in teasing out specific substrates, mechanisms,

and pathways underpinning particular concussive signs. We

also noted that left-lateral impact invariably produced

transient right-sided (contralateral) neuromotor deficits,

a finding consistent with hemispheric cross-lateralization

of cortical motor control. Furthermore, abrupt onset of

deficits was invariably followed by rapid and complete

neurological recovery that began within minutes after

injury. We did not observe persistent gross neurological

impairment, post-traumatic apnoea, skull fracture, status

epilepticus, cervical trauma, or spinal cord injury in any

of the more than 200 impact-injured mice used in this

study.

Given the absence of correlation between composite

scores on the test battery and TBI and CTE endpoints,

our results point to a disturbance of brain function (as

opposed to structural lesions) as the aetiological origin of

the concussion-like neurobehavioural deficits that we

observed after impact injury. Our findings indicate that,

while impact injury and blast exposure elicit similar long-

term neuropathology and sequelae, these insults starkly dif-

ferentiate the concussion-like syndrome produced by the

former (impact), but not the latter (blast).

Several points deserve emphasis. First, the test battery

provides gross assessment of integrated neurobehavioural

performance across functional domains, including arousal,

anxiety-neophobia, stimulus responsivity, exploratory

drive, locomotion, gait and balance, muscle strength, and

neuromotor coordination (Walsh and Cummins, 1976;
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Suarez and Gallup, 1981; Crawley, 1999; Brooks and

Dunnett, 2009). When deployed with repeated testing as

here, the test battery reliably elicits habituation, a simple

learning response that relies on recent memory (Walsh and

Cummins, 1976; Crawley, 1999). Second, the neurological

deficits that we observed post-injury model clinical features

of concussion in humans (Supplementary Video 1). This

similarity was underscored by phenomenological similari-

ties with respect to the abrupt onset, temporal progression,

transient course, and rapid resolution of acute deficits fol-

lowing impact. Third, despite tight control of the experi-

mental injury (Supplementary Table 2), we observed wide

individual variation in test battery scores. Moreover, vari-

ation in the severity of acute responses did not correlate

with impact intensity. Thus, sled velocity (between 3.75 m/s

and 6.25 m/s) did not significantly correlate with test bat-

tery composite scores (Spearman r = �0.16, P = 0.025,

n = 203). This finding supports findings in human athletes

that show wide variation in acute neurological responses

following sports-related head injuries (McCaffrey et al.,
2007; Broglio et al., 2010; Guskiewicz and Mihalik,

2011; Post and Hoshizaki, 2012). Fourth, we observed fur-

ther significant decrement in composite scores after second

impact (Fig. 2D) that showed significant positive correl-

ation with composite scores after first impact (Spearman

r = 0.52, P5 0.0001, n = 203). These results are consistent

with reports in human athletes that show increased injury

susceptibility, severity, and sequelae after an index head

injury (Laurer et al., 2001; Prins et al., 2013; Terwilliger

et al., 2016).

Microscopic examination of brains from impact-injured

mice revealed evidence of focal microvasculopathy, blood–

brain barrier disruption, serum albumin extravasation,

astrocytosis, and reactive microgliosis. Flow cytometry

showed that post-traumatic neuroinflammation featured ac-

tivation of TREM2 + expression in brain-resident microglia

and presumptive infiltration of monocytes consistent with

recent experimental evidence of similar TREM2 activation

after open-skull cavitating TBI (Saber et al., 2016). That we

detected a similar pattern of neuroinflammation stimulated

by far milder closed-head impact injury suggests that

common and persistent response pathways may be trig-

gered across the brain injury spectrum. This point is under-

scored by a recent case study of repetitive head injuries on

the mild end of the spectrum (Cherry et al., 2016) and

comparison to more severe brain injury cases reported by

Strich (1956, 1961, 1970) and others (Gentleman et al.,

2004; Johnson et al., 2013a; Smith et al., 2013a; Cherry

et al., 2016).

Our results point to possible involvement of TREM2-

mediated microglial activation. TREM2 binds apolipopro-

tein E (Atagi et al., 2015) and also membrane lipids (Wang

et al., 2015), suggesting that this microglial receptor may

act as a surface sensor of damaged cell membranes

(Kleinberger et al., 2014; Phimister and Tanzi, 2015;

Ulrich and Holtzman, 2016). Significantly, the R47H

mutant TREM2 protein shows reduced binding to both

ligands (Atagi et al., 2015; Wang et al., 2015) and is asso-

ciated with elevated risk of Alzheimer’s disease (Guerreiro

et al., 2013; Jonsson et al., 2013). In our study, mice sub-

jected to experimental impact showed dramatic microglia

phenotypic transformation and co-localizing accumulation

of inflammatory cells in the ipsilateral perirhinal cortex and

adjacent brain regions subjacent to the impact contact zone

(cf. Russo and McGavern, 2016). Recent evidence indicates

that microglial activation and exosomal processing are crit-

ical for spreading tauopathy (Asai et al., 2015). Moreover,

activated microglia induce a subset of reactive astrocytes

that promote neurodegeneration (Liddelow et al., 2017).

Consistent with these findings, we observed early, persist-

ent, and progressive cis-p-tauopathy that was initially de-

tectable only in axons of the ipsilateral perirhinal cortex

and later in axons, soma, and dendrites in cerebral cortex

in both hemispheres, including sites distant from the pri-

mary injury.

Our results comport with recent experiments that point

to somatodendritic miscompartmentalization as a driver

of extracellular tau release and transynaptic propagation

(Wu et al., 2016). Remarkably, we detected cis-p-

tauopathy bilaterally in cerebral cortex 5.5 months after

unilateral impact. Moreover, tau proteinopathy detected

at this remote time point was present not only at the

primary locus of acute brain injury, but also at distant

sites in both hemispheres of the brain. The origin and

evolution of this tau pathology and relationship to the

inciting injury are as yet undetermined, but may in-

clude nucleation-dependent aggregation, seed-dependent

aggregation, and prion-like transcellular spread

(Clavaguera et al., 2009; Jucker and Walker, 2013;

Goedert, 2015; Woerman et al., 2016; Goedert et al.,

2017).

It is notable that we did not observe mature neurofibril-

lary tangles in brains from impact-injured mice at any time

point post-injury. This finding is consistent with other stu-

dies conducted in non-transgenic mice that express murine

tau protein (Goldstein et al., 2012; Huber et al., 2013;

Mannix et al., 2013; Petraglia et al., 2014; Kondo et al.,

2015). This discordance may reflect incomplete phenotypic

expression (forme fruste) resulting from the high solubility

and aggregation resistance of native murine tau protein, or

alternatively, protracted time dependencies beyond the ex-

perimental design of the present studies. Nevertheless, phos-

phorylated tau proteoforms, especially cis-p-tau as reported

here, are potent drivers of microtubule disruption, mito-

chondrial dysfunction, spreading tauopathy, and neurode-

generation in laboratory animals and humans (Nakamura

et al., 2012; Kondo et al., 2015; Lu et al., 2016). Early

accumulation, somatodendritic miscompartmentalization,

and persistence of cis-p-tau suggest that aberrant accumula-

tion of this (and likely other) pathogenic phosphorylated tau

species may represent the earliest antecedent pathology of

CTE.

CTE neuropathology is defined by perivascular accumu-

lation of phosphorylated tau protein in the depths of
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cortical sulci (McKee et al., 2016). The perivascular local-

ization of these pathognomonic lesions suggests micro-

vascular dysfunction as a likely contributor to CTE

pathogenesis (Fig. 8). Extravasated serum albumin in the

brain is a known activator of inflammatory TGFb signal-

ling, reactive astrocytosis, and neuronal dysfunction

(Heinemann et al., 2012; Weissberg et al., 2015).

Traumatic microvasculopathy in this study was accompa-

nied by blood–brain barrier dysfunction and serum albu-

min extravasation (Fig. 8B). Serum albumin potently

stimulates astrocytic uptake and phosphorylation of

Smad2/3, a transcriptional co-regulator of inflammatory

TGFb signalling (Bar-Klein et al., 2014; Cheslow and

Alvarez, 2016), aberrant neuroglial communication

(David et al., 2009), abnormal dendritic branching

(Tomkins et al., 2007), reduced GABAergic inhibition,

and impaired neuronal plasticity (Lippmann et al., 2017).

That extravasated serum albumin co-localized with reactive

astrocytosis is consistent with activation of this injury re-

sponse pathway and suggests plausible targets for thera-

peutic intervention that are now under investigation.

This same pathway affords potential as a diagnostic neu-

roimaging marker for traumatic microvascular injury, an

understudied TBI endophenotype. We combined dynamic

contrast-enhanced brain imaging (Veksler et al., 2014;

Weissberg et al., 2014) with systemic administration of

gadofosveset trisodium, a gadolinium-containing contrast

agent that binds serum albumin (Richardson et al., 2015),

to detect blood–brain barrier disruption in living mice. TBI-

induced gadofosveset accumulated in ipsilateral perirhinal

cortex and co-localized with T1-weighted hyperintensities

and blood–brain barrier permeability defects that we con-

firmed by metallomic imaging mass spectrometry brain

mapping.

Collectively, our neuropathological and ultrastructural

findings are consistent with impact-induced microvascular

dysfunction rather than traumatic intraparenchymal haem-

orrhage. Blood–brain barrier disruption is associated with

neuronal glutamate release (Vazana et al., 2016), pericyte

degeneration (Bell et al., 2010), astrocytic end-feet swelling

and capillary retraction (Ito et al., 2011; Goldstein et al.,

2012). These factors promote blood–brain barrier com-

promise, local hypoxia, perivascular neuroinflammation,

synaptic dysfunction, and neurodegeneration (Barkhou-

darian et al., 2016) (Fig. 8B). Our results not only provide

supportive evidence for blood–brain barrier disruption as a

clinically-relevant post-traumatic endophenotype (Hay

et al., 2015; Doherty et al., 2016; Kenney et al., 2016),

but also serve as justification for clinical evaluation of dy-

namic neuroimaging with gadofosveset as a novel diagnos-

tic test for traumatic microvascular injury and presumptive

risk factor test for CTE.

We were surprised that unilateral impact was accompa-

nied by persistent bilateral impairments in hippocampal

axonal conduction and medial prefrontal cortical synaptic

plasticity. These findings represent post-traumatic func-

tional sequelae that comport with experimental and clinical

evidence indicating neurophysiological abnormalities in

athletes and laboratory animals in the acute-subacute

period after closed-head impact injuries (Goldstein et al.,
2012; De Beaumont et al., 2013; Namjoshi et al., 2014;

Kondo et al., 2015; Major et al., 2015). Loss of white

matter structural and functional integrity has been reported

in patients following closed-head impact injury (Blennow

et al., 2012; Shenton et al., 2012; Johnson et al., 2013a).

These effects may be mediated by direct axonal injury

(Strich, 1961; Adams et al., 1982; Gennarelli et al., 1982;

Povlishock and Christman, 1995), Wallerian degeneration,

axonal transport dysfunction, post-traumatic demyelin-

ation, microvascular injury, pathogenic phosphorylated

tau protein aggregation, or a combination of these and

other factors (Fig. 8B and C).

Our observation that closed-head impact injury also dis-

rupts prefrontal cortical projection neuron synaptic plasti-

city suggests that acute neurotrauma may interfere with

N-methyl D-aspartate glutamate receptor activation, intra-

cellular second messengers, gene expression, protein synthe-

sis, and/or post-translational modifications that are

required for LTP-dependent memory mechanisms (Sweatt

et al., 2016). Aberrant neurophysiological responses in

the hippocampal-prefrontal cortex network (Xu and

Südhof, 2013; Sigurdsson and Duvarci, 2015; Place et al.,

2016) are plausible substrates for cognitive, affective, atten-

tional, and executive disturbances associated with post-con-

cussive syndrome (Evans, 2006), traumatic encephalopathy

syndrome (Montenigro et al., 2014), and post-traumatic

stress disorder (Mahan and Ressler, 2012). Bilateral elec-

trophysiological deficits detected in our study are notable

for the anatomical distance of the hippocampus and medial

prefrontal cortex from the primary locus of injury path-

ology. In our previous blast TBI study (Goldstein et al.,

2012) we observed similar impairments in hippocampal

axonal conduction velocity and hippocampal LTP.

Intriguingly, we detected ultrastructural evidence of persist-

ent microvascular injury in both the hippocampus and

medial prefrontal cortex. Recent evidence also indicates

that neurophysiological deficits, including impaired LTP

in vitro and memory dysfunction in vivo, may be precipi-

tated by pathogenic accumulation of phosphorylated tau

protein (Sydow et al., 2011; Kondo et al., 2015; Fá

et al., 2016). The relationship of tau proteinopathy to

post-traumatic neurophysiological sequelae awaits further

investigation.

Experimental closed-head impact injury in this study

involved contact with the temporomandibular region of

the head and force loading across the zygomatic arch of

the skull. In the mouse, the zygomatic process and squas-

mosal converge over the lateral perirhinal cortex. Gross

pathology observed in impact-injured mice comports with

classical coup injury biomechanics as documented in analo-

gous brain pathology after impact injuries in humans

(Graham et al., 2002; Blennow et al., 2012; Johnson

et al., 2013b; Jordan, 2013; Leestma and Thibault, 2014;

Kenney et al., 2016; Sharp et al., 2016; Ghajari et al.,
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Figure 8 Model of traumatic microvascular injury, blood–brain barrier disruption, microglial activation, perivascular neu-

roinflammation, myelinated axonopathy, and phosphorylated tauopathy after closed-head impact injury. (A) Brain capillary with

intact blood–brain barrier and neurovascular unit. The contents within the capillary lumen include blood plasma, blood proteins (including serum

albumin, salb) and formed elements (red blood cells, rbc; circulating monocytes, mono; other white blood cells and platelets, not shown). The

capillary luminal wall is a structurally continuous sheath formed by endothelial cell membranes that are joined at intercellular clefts by tight

junction complexes (tjc). The basal lamina separates endothelial cells from pericytes, multifunctional mural cells that support microvascular and

neurovascular unit function. Astrocyte endfeet ensheath the abluminal capillary wall. The neurovascular unit comprises endothelial cells, astro-

cytes, pericytes, neurons, and extracellular matrix components that regulate blood–brain barrier function, gas exchange, and bidirectional transit

of fluid, metabolites, nutrients, and signalling molecules between the blood and brain. (B) Injured brain capillary after neurotrauma. (1)

Intraparenchymal shearing forces initiated by focal mechanical injury disrupt local microvascular structure and blood–brain barrier functional

integrity. (2) Compensatory changes in the extracellular matrix, elaboration and expansion of the basal lamina, formation of stress granules,

inclusion bodies, and autophagosomic vacuoles are indicative of traumatic microvascular injury and post-traumatic repair and remodelling. (3)

Astrocytic endfoot engorgement (astrocytic hydrops), organelle degradation (autophagy, mitophagy), and vacuolization are prominent ultra-

structural features of capillaries damaged by neurotrauma. Perivascular astrocytes assume a reactive phenotype with concomitant loss of endfoot

organellar integrity and secondary fluid accumulation (presumably from vascular fluid transit and pump failure or endfoot membrane loss).

Together these processes lead to loss of cellular polarity and astrocyte endfoot retraction (involution) along the abluminal capillary wall. (4)

Post-traumatic alterations in microvascular structure further compromise blood–brain barrier integrity and promote extravasation of pro-

inflammatory plasma proteins (e.g. serum albumin, salb) into the brain parenchyma. Damaged capillaries may also facilitate inflammatory cell

diapedesis and red blood cell transit (microhaemorrhage) into the brain parenchymal. (5) Serum albumin and other blood proteins (e.g.

fibrinogen) are highly stimulatory to astrocytes, microglia, and CNS-resident macrophage and drive cellular transformation from resting to

reactive phenotypes. These and other molecular triggers induce local activation and phenotypic transformation of brain-resident microglia,

including increased expression of the triggering receptor expressed on myeloid cells 2 (TREM2), an innate immune receptor expressed on the

surface of activated microglia. Microglial TREM2 expression may be accompanied by endoproteolytic cleavage of the TREM2 ectodomain and

shedding of the resulting cleavage product (sTREM2). Our results indicate that post-traumatic microglial activation and phenotypic transformation

precede infiltration and accumulation of peripheral inflammatory cells at sites of focal brain injury. Localized clusters of hemosiderin-laden

macrophage represent chronic residua of prior microhaemorrhage. (6) Secondary changes in neurons triggered by neurotrauma lead to axo-

nopathy (e.g. demyelination, blebbing, axonal transport dysfunction, phosphorylated tau protein aggregation), dendritic denuding, hyperexcitability,

synaptic dysfunction, and neurodegeneration. (7) Tau protein dissociates from microtubules, undergoes pathogenic phosphorylation (p-tau),

aggregates abnormally within axons, and stimulates pathogenic transport to and miscompartmentalization within the soma and dendrites of
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2017). Virtually all mice subjected to experimental impact

in this study demonstrated transient neurobehavioural def-

icits that bear striking resemblance to the spectrum of con-

cussion-related responses in humans. By contrast, and to

our surprise, mice exposed to blast under conditions

matched for head kinematics did not exhibit acute neuro-

behavioural deficits post-injury (Goldstein et al., 2012).

This unexpected observation argues against the concept

that kinematic variables are primary determinants of con-

cussive phenomena (Denny-Brown and Russell, 1941;

Shaw, 2002). Rather, our experimental and computational

results suggest that the observed acute neurobehavioural

responses to closed-head impact injury are triggered by

force point loading and intraparenchymal shear stress foci

in the cerebral cortex that occur before onset of gross head

motion.

These observations are consistent with the following pos-

tulated mechanistic sequence based on reported experimen-

tal findings. Cortical shear stresses triggered by impact elicit

rapid neuronal membrane depolarization, massive glutam-

ate release, and metabolic dyshomeostasis (Faden et al.,

1989; Katayama et al., 1990; Yoshino et al., 1991) in cere-

bral cortex ipsilateral to injury. Released glutamate acti-

vates excitatory amino acids receptors that elicit further

depolarization by altering Na + and Ca2 + gating properties

and opening voltage-sensitive ion channels that amplify

transmembrane cation fluxes (Hemphill et al., 2015).

These responses interfere with synaptic neurotransmission,

thereby inducing transient loss of contralateral motor

strength, tone, and coordination as well as impairing vege-

tative brain functions controlling attention, arousal, and

affect. Neurophysiological function is restored following

neurotransmitter reuptake and synaptic recovery, consistent

with our observations of abrupt onset and rapid recovery

of neurobehavioural deficits post-injury. Mechanical mem-

brane deformation can directly open stretch-sensitive chan-

nels that produce aberrant ion fluxes (Hemphill et al.,

2015) and intracellular Ca2 + dyshomeostasis (Gurkoff

et al., 2012; Barkhoudarian et al., 2016). Sudden changes

in local ion concentrations can trigger spreading depolar-

ization (Dreier, 2011; Lippmann et al., 2017) and post-

traumatic seizure (Annegers et al., 1998). While post-trau-

matic seizure was rare in our animal experiments (51% of

impact-injured mice), when present these events invariably

evolved as a classical Jacksonian march noted first on the

right side contralateral to left-sided impact with progression

to generalized tonic-clonic seizure followed by post-ictal

immobility. This pattern is consistent with a left-sided

motor cortex seizure focus. Taken together, our results in-

dicate that the transient neurobehavioural impairments trig-

gered by impact result from disruption of cortical function

rather than damage to cortical structures, and as such,

agree with neuronal excitation theories of concussion

(Denny-Brown and Russell, 1941; Walker et al., 1944;

Shaw, 2002).

Interactions between the functional and structural effects

of neurotrauma are complex, dynamic, bidirectional, and

dependent on a variety of injury-related factors, including

type, rate, intensity, geometry, location, and biomechanics

of the inciting insult. Specifically, we found that different

types of neurotrauma produce varying levels of concussive

functional effects. Furthermore, we observed wide variation

in acute neurological responses within a single mode of

head injury (i.e. impact) (Fig. 2E and F). Moreover, we

found that variation in acute functional responses in our

experimental animal model did not correlate with any of

the measured quantitative indices that we used to assess

brain injury and CTE-related sequelae (Supplementary

Table 3). We interpret these findings as evidence supporting

interactive linkage rather than dissociation between func-

tional and structural consequences of neurotrauma. This

point is underscored by the fact that functional effects of

head injury, including neurophysiological responses under-

pinning concussion, are capable of potentiating structural

changes and secondary alterations that lead to further brain

injury and neurological sequelae. For example, sudden re-

lease of glutamate in the brain, intracellular calcium dysre-

gulation, and spreading depolarization triggered by

neurotrauma are all known precipitants of metabolic dys-

homeostasis, neurotoxicity, neuronal dysfunction, and neu-

rodegeneration (Dreier et al., 2006; Lau and Tymianski,

2010; Dreier, 2011; Hartings et al., 2011; Prins et al.,

2013; Giza and Hovda, 2014; Pietrobon and Moskowitz,

2014; Lewerenz and Maher, 2015; Østergaard et al., 2015;

Barkhoudarian et al., 2016; Rogers et al., 2017). From this

perspective, concussion can be viewed as an observable

clinical manifestation that reflects a spectrum of altered

neurological functional states that may or may not be asso-

ciated with antecedent structural brain injury. Moreover, the

neurobiological conditions underpinning these concussive

Figure 8 Continued

traumatized neurons. (8) P-tau also accumulates in activated microglia, reactive astrocytes, and possibly other brain cells. P-tau propagation and

spread may proceed via extracellular, paracellular, transcellular, and/or glympathic mechanisms. (C) Schematic representation of the axonal

compartment of a healthy neuron (left) and traumatized neuron (right). In healthy neurons, tau protein associates with and stabilizes microtubules

in axons and dendrites. In traumatized neurons, tau protein dissociates from microtubules and undergoes aberrant phosphorylation. P-tau is

prone to pathogenic oligomerization, aggregation, and accumulation within axons, terminals, dendrites, spines, and soma of affected neurons.

Miscompartmentalization of abnormally processed phosphorylated tau promotes release and transmission of p-tau species that contribute to

progressive neurotoxicity and neurodegeneration. (D) Internal force lines (red) show increased stress concentration at structural dishomo-

geneities in the brain. Anatomical features such as capillaries (cap), depths of cortical sulci, and grey-white matter interfaces are subject to shear

stress amplification (stress concentration) and focal mechanical trauma (arrows). See text for details and discussion.
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states may, ipso facto, alter ongoing metabolic, homeostatic,

cellular, and electrophysiological responses, thereby modu-

lating post-traumatic brain function and neurological

sequelae.

We note several unexpected findings pertinent to the ori-

gins of concussion and relationships to TBI and CTE. First,

we did not detect a correlation between impact intensity

(sled velocity) and acute neurobehavioural responses to

mild closed-head impact injury. Second, acute responses

to experimental impact injury did not correlate with TBI

and CTE endpoints. Specifically, composite scores on the

test battery did not correlate with quantitative endpoints of

blood–brain barrier disruption, neuroinflammation, neuro-

physiological defects, or phosphorylated tauopathy. Finally,

we observed dissociation between the mechanism of experi-

mental neurotrauma (impact versus blast) and induction of

acute neurobehavioural deficits. Mice subjected to impact

injury reliably demonstrated transient concussion-like im-

pairments, whereas mice exposed to blast with comparable

head motion did not.

Computational simulations revealed dramatic differences

in the evolution of shear stress in the head and brain during

impact compared to blast. Specifically, our results point to

differences in shear (von Mises) stress as the primary driver

of acute neurobehavioural impairments triggered by impact

injury. Indeed, we found 7-fold larger intracerebral shear

(von Mises) stress during impact compared to blast under

conditions matched for head kinematics. The differences in

intracerebral shear stress (and differential propensity for

acute impairments) derived from distinct loading conditions

in the two types of neurotrauma. For blast, airflow around

the skull produces relatively uniform pressure on the head

(Fig. 7F) that does not generate significant shear stress in

the brain. By contrast, impact produces focally-concen-

trated point loading at the impact site. Non-uniform

point loading on the head creates significant shear stress

in the brain that persists in a focal region of the brain

ipsilateral and subjacent to the impact contact zone. Focal

shear persistence results from extremely low shear wave

velocity in the brain (Fig. 7G). Intracerebral shear stresses

predicted by impact simulation is in the order of hundreds

of Pascals, a value well above reported thresholds for dis-

ruption of brain cell homeostasis (Ravin et al., 2012;

Maneshi et al., 2015). Our results suggest that trauma-

induced disturbances in brain function may occur in the

absence of overt structural brain pathology. While focal

shear stresses in the brain may be important for produc-

tion of concussion-like neurobehavioural responses in an

animal model of closed-head impact injury, the neuro-

logical consequences of this biomechanical perturbation

may not be limited to acute brain dysfunction. Rather,

our data suggest that exposure to focal shear stress may

also be associated with structural brain injury and its

aftermath.

The differential biomechanical effects of impact and blast

suggest possible substrates and mechanisms that underpin

and link concussion, TBI, and sequelae. While experimental

impact injury and blast exposure both trigger TBI and

early CTE brain pathologies, only impact induced acute

concussion-like neurobehavioural deficits. Computational

simulations showed that impact induced point loading on

the head and asymmetric shear stress in the brain, whereas

blast exposure, under conditions matched for head kine-

matics, led to diffuse loading with 7-fold lower intracereb-

ral shear stress. Our results indicate that the primary

biomechanical determinant driving impact-induced acute

neurological deficits is focally-concentrated shear stress

that arises in the cerebral cortex before onset of gross

head motion. By contrast, structural brain injury, focal

pathologies, and functional sequelae correlate with

slower-acting inertial forces associated with head motion

(Holbourn, 1943; Goldstein et al., 2012; Ghajari et al.,

2017).

Shear stress within the brain is subject to localized

amplification (stress concentration) due to structural an-

isotropy and inhomogeneities (Ommaya and Gennarelli,

1974; Gennarelli et al., 1993; Cloots et al., 2008;

Ghajari et al., 2017). Specific anatomical features that

contribute to stress concentration (e.g. depths of cortical

sulci, grey–white matter interfaces, microvascular-brain

parenchyma junctures; Fig. 8D) also represent brain struc-

tures that exhibit the greatest burden of TBI- and CTE-

related neuropathology (McKee et al., 2016; Ghajari

et al., 2017; Holleran et al., 2017). These same structures

are also vulnerable to repeated injury, especially if subse-

quent neurotrauma is sustained during brain recovery

(Laurer et al., 2001; Prins et al., 2013). Prior brain

injury is well known to increase risk of subsequent

injury, slower recovery, poorer outcomes, and in rare

cases, second impact syndrome (Cantu, 1998;

Guskiewicz et al., 2003; Evans, 2006; Mannix et al.,

2013; Terwilliger et al., 2016).

Limitations of the animal experiments include use of

young adult male C57BL/6 mice subjected to a single-

repeat unilateral impact at one injury intensity and evalu-

ated exclusively in the acute-subacute period post-injury

(with exception of cis-p-tauopathy that was evaluated 5.5

months post-injury). While comparing murine and human

ages is fraught with complications (Spear, 2004; Flurkey

et al., 2007), the selected age range represents an informed

choice that balances age as a function of longevity

(Hedrich, 2012), maturational comparability to the

human cases and previous studies (Goldstein et al., 2012;

Kondo et al., 2015), cervical and facial muscle develop-

ment, skull thickness, and brain development (Kobayashi

et al., 1963; Flurkey et al., 2007; Counotte et al., 2010;

Hedrich, 2012; Smith et al., 2017). Importantly, white

matter microglia reached adult distribution and phenotype

at the selected mouse age, a factor of particular significance

for the neuroinflammation analyses. The selected murine

age range is consistent with sexual maturity, attainment

of adult body weight and skull thickness, and completion

of major brain development milestones. By these metrics,

mice in this study were roughly comparable in age to the
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human cases. Interpretation and generalizability of our

animal experiments are constrained by animal subject

homogeneity (strain, genotype, age, and sex) as well as

species differences in physiology, metabolism, and anatomy

(skull deformability, spine stability, cervical range of

motion).

Another limitation of the animal model centres on the

definition of concussion (Angoa-Pérez et al., 2014; Semple

et al., 2015; Giza et al., 2017; McCrory et al., 2017;

Wojnarowicz et al., 2017). Our working definition of con-

cussion is based on observable neurobehavioural signs that

are primarily, but not exclusively, related to neuromotor

function. Impaired balance and gait are considered part

of the constellation of signs associated with sports-related

concussion (McCrory et al., 2017), and accordingly, were

rigorously evaluated in this study. However, other promin-

ent clinical features of concussion—cognitive impairment,

amnestic deficits, disorientation, slowed reaction time,

headache, emotional lability, alterations in consciousness,

somnolence and sleep disturbances—were not amenable

to experimental evaluation using the current version of

the acute neurobehavioural response test battery. These

limitations warrant caution with respect to generalizing ex-

perimental findings in laboratory animals to clinical condi-

tions in humans. Future studies will benefit from inclusion

of test battery components that are sensitive to specific al-

terations in cognitive, affective, and behavioural domains

that are affected by concussion in humans.

Additional limitations apply to the computational simu-

lations. We considered effects on and within a computa-

tionally simplified headform, while neglecting contributions

of neck and torso tethering to the body. However, with

respect to the calculated timescales of interest, we observed

pronounced shear stresses prior to onset of gross head

motion when tethering effects would not be significant.

We also assumed a simplified spherical head with concen-

tric material layers of skull and CSF without dura or soft

tissues, as well as isotropic brain composition without in-

ternal structure. We note that a more complex anatomical

description would not have changed the conclusions

deduced from the simulations. In addition, we only con-

sidered a single set of initial conditions for the impact

and blast simulations. Future studies in which the magni-

tude of shear forces within a single model is systematically

varied may yield additional information germane to estab-

lishing causal links between loading conditions during

injury and its aftermath. Moreover, the temporal relation-

ships between initiation and propagation of shear stress

foci in the brain and onset of acute neurological responses

remain to be empirically validated in vivo. Despite these

caveats, the computational simulations closely agreed with

experimental head kinematics and support mechanistic ex-

planations that comport with simple biomechanical prin-

ciples and clinical observations.

Based on this evidence, we conclude that the mechanisms

underpinning the transient concussion-like deficits observed

in mice after experimental closed-head impact are triggered

by fast-acting, high-amplitude shear stress fields that arise

in the cerebral cortex before onset of gross head motion.

Our results also suggest that concussion, TBI, and CTE

represent distinct nosological entities subserved by different

pathobiological mechanisms. Specifically, our findings indi-

cate that closed-head impact injury, independent of concus-

sion, represents a potent insult with potential to induce

enduring neurophysiological dysfunction and persistent

(and possibly progressive) sequelae, including CTE brain

pathology. Furthermore, our findings from blast and

impact support the concept that disparate types of neuro-

trauma with distinct injury mechanisms and differing po-

tential for concussion can trigger convergent brain

pathologies and functional sequelae.

Collectively, these results raise concern that repetitive

neurotrauma, independent of concussion, may induce

early CTE brain pathologies, even in teenagers and young

adults. Cumulative exposure to such injuries may also in-

crease risk for other tau protein neurodegenerative diseases,

including Alzheimer’s disease (Stein et al., 2015b). These

considerations are important not only for understanding

and differentiating concussion, TBI, and CTE, but also to

inform clinical practice, return-to-play protocols, and

public health policy.

This study also raises many questions. How much tau

pathology is clinically significant? What is the relationship

of specific tau species and other molecular and cellular

pathologies to latent brain disease and chronic sequelae

triggered by brain injury? How do pathogenic tau proteo-

forms propagate through the brain and can this process be

prevented or reversed? Which clinical biomarkers are best

suited for diagnostic detection, endophenotype differenti-

ation, prognostic stratification, and longitudinal monitoring

of TBI and CTE? Animal models that recapitulate clinical

features of concussion, TBI, and CTE provide a powerful

platform to address these issues. We anticipate that answers

to these questions will facilitate development of new diag-

nostics, therapeutics, protective equipment, and preventive

measures for acute and chronic effects of impact

neurotrauma.
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Théoret H. Motor system alterations in retired former athletes: the

role of aging and concussion history. BMC Neurol 2013; 13: 109.

Denny-Brown D, Russell WR. Experimental cerebral concussion. Brain

1941; 64: 93–164.

Doherty CP, O’Keefe E, Wallace E, Loftus T, Keaney J, Kealy J, et al.

Blood-brain barrier dysfunction as a hallmark pathology in chronic trau-

matic encephalopathy. J Neuropathol Exp Neurol 2016; 75: 656–62.

Dreier JP. The role of spreading depression, spreading depolarization

and spreading ischemia in neurological disease. Nat Med 2011; 17:

439–47.
Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C,

et al. Delayed ischaemic neurological deficits after subarachnoid

haemorrhage are associated with clusters of spreading depolariza-

tions. Brain 2006; 129: 3224–37.

Evans RW. The postconcussion syndrome and the sequelae of mild

head injury. In: Evans RW, editor. Neurology and trauma, 2nd edn.

New York, NY: Oxford University Press; 2006. p. 95–128.
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Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E,

Cuyvers E, et al. TREM2 mutations implicated in neurodegeneration

impair cell surface transport and phagocytosis. Sci Transl Med

2014; 6: 243ra86.

Kobayashi T, Inman O, Buno W, Himwich HE. A multidisciplinary

study of changes in mouse brain with age. Recent Adv Biol Psychiat

1963; 5: 293–308.

Kokiko-Cochran O, Ransohoff L, Veenstra M, Lee S, Saber M, Sikora

M, et al. Altered neuroinflammation and behavior after traumatic

Early CTE brain pathology after closed-head impact injury BRAIN 2018: 141; 422–458 | 455



brain injury in a mouse model of Alzheimer’s disease.

J Neurotrauma 2016; 33: 625–40.

Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen C-H,

et al. Antibody against early driver of neurodegeneration cis P-tau

blocks brain injury and tauopathy. Nature 2015; 523: 431–6.

Kristman VL, Borg J, Godbolt AK, Salmi LR, Cancelliere C, Carroll

LJ, et al. Methodological issues and research recommendations for

prognosis after mild traumatic brain injury: results of the

International Collaboration on Mild Traumatic Brain Injury

Prognosis. Arch Phys Med Rehabil 2014; 95 (3 Suppl): S265–77.

Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and

impact of traumatic brain injury: a brief overview. J Head

Trauma Rehabil 2006; 21: 375–8.

Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neuro-
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