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A protective layer approach to solvatochromic
sensors
Jung Lee1, Hyun Taek Chang1, Hyosung An1, Sora Ahn1, Jina Shim1 & Jong-Man Kim1,2

As they have been designed to undergo colorimetric changes that are dependent on the

polarity of solvents, the majority of conventional solvatochromic molecule based sensor

systems inevitably display broad overlaps in their absorption and emission bands. As a result,

colorimetric differentiation of solvents of similar polarity has been extremely difficult. Here

we present a tailor-made colorimetric and fluorescence turn-on type solvatochromic sensor

that enables facile identification of a specific solvent. The sensor system displays a colori-

metric transition only when a thin protective layer, which protects the solvatochromic

materials, is destroyed or disrupted by a specific solvent. The versatility of the strategy is

demonstrated by designing a sensor that differentiates chloroform and dichloromethane

colorimetrically and one that performs sequence selective colorimetric sensing. In addition,

the approach is employed to construct a solvatochromic molecular AND logic gate. The new

strategy could open new avenues for the development of novel solvatochromic sensors.
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A
challenging task in chemistry has been the development

of a solvatochromic sensor that is responsive to a specific
solvent. Various organic1–10, organometallic11,12, metal

organic framework13,14 and hybrid15,16 materials have been
investigated to determine their solvatochromic properties in
diverse solvents. Conventional colorimetric sensors, however,
inevitably display changes in absorption and emission peaks that
are in indiscriminant in their response to organic solvents. This
phenomenon is a consequence of the fact that the probe
molecules are designed to undergo spectral shifts that depend
solely on the polarity of surrounding medium. Because of this
limitation, visual differentiation of solvents that have similar
polarities has been very difficult.

In this study, we devise a new approach to designing a system
for colorimetric differentiation of common organic solvents. The
new tailor-made colorimetric and fluorescence turn-on type
solvent sensor system enables facile naked eye identification of
one among several solvents. The key strategy employed for the
sensor system is schematically described in Fig. 1a. A solvato-
chromic material is first coated on a solid substrate and then
covered with a thin protective layer. As a result, the solvato-
chromic sensor molecules are protected from direct exposure to
organic solvents unless the solvent disrupts the protective layer by
either dissolution or swelling. In the latter event, the solvato-
chromic molecules are exposed to the solvent and undergo an
observable colorimetric transition. As the colorimetric transition
of the sensor system is dependent on the properties of the
protective layer and the solvent, it does not require that the
solvatochromic substance respond in a specific manner to a
certain solvent. By using the new approach, we devise a system
that is able to distinguish between dichloromethane and chloro-
form, two solvents that are very difficult to differentiate

colorimetrically. In addition, the new solvatochromic strategy
is used to fabricate a sequence selective solvatochromic sensor as
well as a colorimetric AND logic gate17–24. The significant
features of the solvatochromic sensor system developed in this
study are as follows. First, the colorimetric signal generated
upon exposure of the system to a specific target solvent is easily
recognized by using the naked eye. Second, a single solvato-
chromic dye can be employed in systems that differentiate several
different solvents. Third, commercially available and inexpensive
polymers can be used as the protective layers. Fourth, the sensor
film can be readily fabricated by utilizing simple spin-coating or
drop-casting techniques. Fifth, colorimetric changes of the sensor
film occur in most cases within 1 min of exposure to the solvent.
Finally, the strategy can be employed in the preparation of a
variety of tailor-made sensors that are comprised of properly
selected dyes and protective layers.

Results
Colorimetric and fluorescence turn-on sensor. In order to
determine the feasibility of the turn-on solvatochromic sensor
strategy described above, studies were carried out using the
conjugated polydiacetylene (PDA) polymer25–39 derived from
10,12-pentacosadiynoic acid (PCDA, CH3(CH2)11C�C�C�
C(CH2)8COOH), which is a well-known solvatochromic
material (Supplementary Fig. S1). A thin film (ca. 1.0 mm) was
prepared on a glass substrate by first spin-coating a viscous
solution PCDA (40 mg ml� 1) and polystyrene (PS, Mw:
280,000 g mol� 1) (Fig. 1b) followed by irradiation with UV light
(254 nm, 1 mW cm� 2, 3 min) to induce polymerization. As a
photomask was used in the irradiation step, blue-phase PDAs are
generated only in UV-exposed areas. Finally, the generated PDA
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Figure 1 | Fabrication of the solvatochromic sensor system. (a) Schematic representation of the colorimetric sensor system. (b) Fabrication of polyacrylic

acid (PAA)-protected polydiacetylene (PDA) film on a glass substrate.
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film was coated to a thickness of ca. 1.5 mm using a methanol
solution of poly(acrylic acid) (PAA, Mw: 450,000 g mol� 1). As
neither PS nor PDA is soluble in water, the PS film containing
PDA is stable during the PAA coating process. Implementation of
this simple procedure led to fabrication of a PAA-protected blue-
phase PDA film on a glass substrate.

Very interesting observations were made when pipette drops
(ca. 100ml) of common organic solvents were applied to the tops of
unprotected and PAA-protected PDA films (Fig. 2a). As expected,
unprotected PS films containing PDAs undergo an observable
colour changes when exposed to most of the tested solvents, except
for methyl alcohol (MeOH), isopropyl alcohol (IPA), hexane and
acetonitrile (ACN) (Fig. 2a, top). In contrast, when the PAA-
protected PDA films were exposed to the solvents, only the one
treated with tetrahydrofuran (THF) undergoes a blue-to-red
colorimetric transition (Fig. 2a, middle) (see also Supplementary
Movie 1). As the red coloured form of the PDA is fluorescent
while the blue counterpart is virtually nonfluorescent40,41, only
the THF-exposed film emits red fluorescence (Fig. 2a, bottom).

Visible absorption spectra of the PAA-coated PDA films were also
recorded after exposure to the solvents. A significant spectral shift
associated with the blue-to-red transition was observed to take
place only with the film that was treated with THF (Fig. 2b). The
chemical nature of the colour change process was also probed by
using Raman spectroscopy (Supplementary Fig. S2). The con-
jugated alkyne–alkene groups in the Raman spectrum of the blue-
phase PDA appear at 2081 (C�C) and 1,451 cm� 1 (C¼C)42.
Inspection of the Raman spectrum of the red-phase PDA, obtained
by exposure of the film to THF, shows that the alkyne–alkene
bands at 2,081 and 1,451 cm� 1 are shifted to higher frequencies
(2,121 and 1,515 cm� 1, respectively). This finding demonstrates
that most of the blue-phase PDAs are transformed to red-phase
counterparts upon THF treatment.

Two critical factors must be considered when deciphering the
solvatochromic behaviour of the PAA-protected PDA film
described above. The film disrupting power of the solvent caused
by dissolution and/or swelling is one important parameter,
because these processes must occur in order for solvent molecules
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Figure 2 | THF-specific solvatochromism. (a) Photographs of solvent-exposed unprotected (top) and PAA-protected (middle) PCDA-derived PDA films.

Fluorescence microscope images of the solvent-treated PAA-protected PDA film are also displayed (bottom). Photographs were taken 1 min after adding a

drop (ca. 100ml) of each solvent to the top of the film. (b) Absorption spectra of PAA-protected PDA film upon exposure to various solvents. (c) Film

thickness as a function of distance before (blue line) and after (black line) PAA protection. The fluctuating red line is obtained after exposure of the PAA-

protected PDA film to THF. (d) Plots of PDA chromic power versus PAA penetrating power for various solvents tested. (e) Plots of colorimetric response

time and film thickness as a function of concentration of protective PAA.
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to reach and interact with the PDAs. PAA layer disruption was
demonstrated by determining the thickness profile of the film
before and after exposure to solvents. The results show that
a significant disruption of the sensor film occurs when it is
placed in contact with THF (Fig. 2c) but that this phenomenon
does not take place when other solvents, except MeOH, are used
(Supplementary Fig. S3).

The layer disrupting power of a solvent can also be evaluated
by measuring the weights of a PAA-coated film before and after
incubation in a solvent (Supplementary Fig. S4). The results of
these measurements show that no significant change in weight
takes place for films treated with all tested solvents except
MeOH and THF. In the presence of MeOH, PAA layer is nearly
completely removed while the weight of THF-treated PAA film
increases by 16.4% after incubation in THF. The latter
observation indicates that immobilization of THF molecules
occurs in the film.

The other critical factor responsible for promoting the
colorimetric transition is the ability of the solvent to induce the
blue-to-red associated phase transition of the PDA molecules
(Supplementary Fig. S5). The colorimetric change inducing ability
of each solvent, displayed in Supplementary Fig. S5, was
determined by measuring the intensity of the red colour
developed when the unprotected PDA film is exposed to each
solvent. The results show that not all solvents, which penetrate
the protective PAA layer, are capable of inducing the blue-to-red
colour transition. For instance, MeOH readily dissolves the
hydrophilic PAA layer but it is ineffective in promoting the phase
change of the PDA supramolecules in the film state. It should be
noted that incubation of the PDA powder alone in MeOH causes
a blue-to-purple colour change (Supplementary Fig. S1), a finding
that indicates that the hydrophobic PS matrix used for the
fabrication of PDA film serves as a protective layer repelling
hydrophilic MeOH. Inspection of Fig. 2d, in which a plot
correlating the two important parameters related to colorimetric
response and penetrating ability is given, demonstrates that these
parameters are well related to the solvent specific colorimetric
changes depicted in Fig. 2a. Specifically, because THF has both
strong colorimetric and film penetrating (by swelling) properties
in contrast to other solvents, it can be selectively identified by
using a properly designed colorimetric and fluorescence turn-on
type THF selective solvatochromic sensor system.

The protective layer strategy also enables manipulation of the
colorimetric response time of the sensor film. For instance, the
thickness of the protective layer can be readily controlled by
varying either the concentration of the protective polymer
solution or the number of spin-coating using a fixed concentra-
tion of the polymer solution (Supplementary Figs S6 and S7).
This expectation is confirmed by the results displayed in Fig. 2e,
which show that the thickness of the protective layer increases as
the concentration of PAA increases. Importantly, as time is
required for the THF molecule to disrupt the PAA layer and
reach the solvatochromic PDA layer, the response time for
promotion of the blue-to-red colour transition increases as the
thickness of the protective layer increases.

In order to address important sensitivity related issues with
regard to the solvatochromic sensor system, additional experi-
ments were carried out. It is obvious that if the diameter of the
sensor spot exposed to the organic solvent is smaller, a lower
amount of the solvent would be required to promote the
colorimetric transition. Interestingly, additional studies showed
that only one microliter of THF is sufficient to cause the blue-to-
red colour change of the polymer when a sensor spot of 2 mm
diameter is employed (Supplementary Fig. S8). In addition, the
solvatochromic sensor system is also applicable to systems in
which the solvent of interest is diluted with other solvent. To

demonstrate this feature, solvatochromic tests were carried out on
mixtures of THF and ACN. ACN was selected as a diluting
solvent because it does not induce the colorimetric transition of
the PDA and it is completely miscible with THF. We observed
that the sensor system functions well for solutions up to a 50 vol%
THF-ACN (Supplementary Fig. S9). Regarding the detection limit
in terms of time, we observed that the time required for the
colorimetric response decreases as the thickness of the protective
layer decreases (Fig. 2e). In addition, if the protective layer is too
thin (below a micrometre), no colorimetric selectivity is achieved
for the THF sensor due to the loss of the function of the
protective layer. Thus, minimum contact time required for good
solvatochromic discrimination is ca. 20 s.

Differentiation between chloroform and dichloromethane. We
next investigated the design of a more challenging sensor system
that is capable of distinguishing between the very closely related
solvents, chloroform and dichloromethane. Supplementary
Fig. S1 shows that both chloroform and dichloromethane bring
about an indistinguishable blue-to-red colour change when they
are individually applied to the PCDA-derived PDA powder. Thus,
we anticipated that the protective layer approach could be used to
carry out the challenging visual differentiation between these two
solvents. Among various commercially available polymers,
poly(vinylchloride) (PVC) has a strikingly different solubility in
the two solvents, being highly soluble in dichloromethane and
only poorly soluble in chloroform (Fig. 3d, Supplementary
Fig. S10). Consequently, these two solvents should be colori-
metrically distinguishable when PVC is used as the protective
layer. In order to test this proposal, a sensor system, created by
using a modified double-layer protection approach, was prepared
(Fig. 3a). First, a thin PS film containing the PDA was applied to a
glass substrate (as described in Fig. 1b). Second, spin-coating a
MeOH solution containing polyvinylpyrrolidone (PVP, Mw:
360,000 g mol� 1, 12 wt%) afforded a thin PVP layer on the top of
the PDA film. The coating of PVP, which is highly soluble in both
chloroform and dichloromethane (Supplementary Fig. S11), is
required as a ‘dummy’ layer in this case because direct coating of
PVC on the top of the PDA causes disruption the PDA supra-
molecules and a premature blue-to-red colorimetric change of the
polymer film. Finally, the solvent distinguishable PVC layer was
introduced on top of the PVP film by spin-coating a THF solu-
tion (12 wt%) containing this polymer (Mw: 620,000 g mol� 1).

When individually applied, both chloroform and dichloro-
methane induce an immediate blue-to-red colour change of a
polymer film comprised of the upper ‘dummy’ PVP and lower
sensing PDA layer (Fig. 3b, top). In contrast, individual
application of the two solvents to the PVC-protected film results
in completely different outcomes. The dichloromethane-treated
film undergoes a colour transition to red while the chloroform-
treated sample does not experience a colour change (Fig. 3b,
bottom) (see also Supplementary Movie 2). Absorption spectro-
scopic monitoring of these processes (Fig. 3c) has also been used
to follow the changes occurring in the solvent and protective layer
dependent processes. Consequently, because both chloroform and
dichloromethane have a strong colorimetric transition power for
PDA, their different abilities to solubilize PVC can be utilized as
the basis for a dichloromethane-selective colorimetric sensor
system.

IPA selective solvatochromic sensor. During the course of this
study, we observed that an unprotected PDA film derived from
10,12-tricosadiynoic acid (TCDA, CH3(CH2)9C�C–C�C(CH2)8

COOH) undergoes a blue-to-red colorimetric transition when
treated with alcoholic solvents such as MeOH and IPA
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(Supplementary Fig. S12). TCDA contains a two carbon shorter
alkyl chain than PCDA, which makes the colour transition of the
TCDA-derived polymer more sensitive to alcoholic solvents than
the polymer derived from PCDA, which does not undergo a
MeOH or IPA promoted colorimetric transition when a incor-
porated in a PS film (Fig. 2a, top).

These observations led to the design an IPA selective
solvatochromic sensor. A double-layer protected sensor film,
comprised of (PVP/PAA/PDA), was constructed for this purpose.
As expected, the unprotected TCDA-derived PDA film undergoes a
colour transition when treated with all of the tested solvents except
hexane and ACN (Fig. 4a). In contrast, the single-layer (PAA)
protected film is only highly colorimetrically responsive to IPA and
THF and to a lesser extent MeOH and acetone, owing to the polar
nature of the PAA matrix (Fig. 4b). Finally, only IPA is able to

penetrate the double-layer protected sensor film and cause a blue-
to-red colour change of the burried PDA supramolecules (Fig. 4c).

Solvatochtomic logic circuits. One unique advantage of the
protective layer approach to solvent identification not found in
conventional film or solution-based sensors is that it enables
construction of a sequence selective sensor system. We observed
that a poly(methyl methacrylate) (PMMA) and PVP-protected
PCDA-derived PDA film (Fig. 5a) responds to two solvents in a
sequence selective manner. Accordingly, a blue-to-red colour
transition occurs when this film is exposed sequentially to IPA
and toluene (Fig. 5b) but a colour change does not take place
when the sensor film is treated in a reverse sequential manner
(that is, toluene first) with these solvents. The solubility
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double-layer protected (PVP/PAA/PDA) (c) TCDA-derived PDA films. Photographs were taken 1 min after dropping each solvent on the top of the film.
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differences of the two protective polymers, PVP and PMMA, in
IPA versus toluene is responsible for this sequence selective sol-
vatochromic behaviour. Application of IPA to the sensor film
results in removal of the PVP layer owing to the solubility of this
polymer in alcoholic solvents (Supplementary Fig. S11). The
thickness profile data presented in Fig. 5d demonstrate this
property. In the initial constructing stage, the thickness of the
sensor film increases sequentially as PMMA (1st layer) (blue line)
and PVP (2nd layer) (green line) layers are coated on the top
of the PDA polymer film (black line). Exposure of the resulting
film to IPA causes a decrease in the thickness of the PMMA
layer (red line), but toluene is ineffective in disrupting/dissolving
the PVP layer. However, owing to its solubilizing properties
toluene easily penetrates the PMMA layer so that it can
induce colorimetric transition of the polymeric PDA molecules
(Supplementary Fig. S13).

These observations demonstrate that the protective layer
approach can be used to fabricate a sensor system that displays
the general mechanistic features of a keypad lock logic circuit43

(Fig. 5c), in which UV irradiation, IPA and toluene inputs need to
be applied in an ordered sequence in order to turn on the system
(Table 1). Another salient feature of the protective layer strategy
is that it enables the design of solvatochromic molecular AND
logic gates. For example, the sensor system displayed in Fig. 6a
functions only when water and THF are present as input signals.

No colour change occurs if the sensor film is exposed to water
alone because the hydrophobic PVC layer is not soluble in this
solvent (Fig. 6b, top). In addition, even though it disrupts the top
PVC layer, THF does not reach the sensor layer owing to poor
penetrability through the poly(vinyl alcohol) (PVA) layer. As a
result, no apparent colour change of the PCDA-derived PDA
occurs (Fig. 6b, middle). However, a blue-to-red colorimetric
transition does take place when the sensor system is exposed to
aqueous THF (Fig. 6b, bottom) and, consequently, the sensor
system serves as a two-input (H2O and THF) solvatochromic
AND logic gate (Fig. 6c, Table 2). It is significant to note that this
sensor system functions well even when a 2 vol% H2O-THF
solution is used (Fig. 6d), suggesting that it can be applied as
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Figure 5 | Sequence selective logic gates. (a) Schematic of a double-layer protected PCDA-derived PDA film for a sequence-specific colorimetric
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Table 1 | Truth table for the solvatochromic keypad lock
system upon varying the order of the input signals.

Input 1 Input 2 Input 3 Output

A B C 1
A C B 0
B A C 0
B C A 0
C A B 0
C B A 0
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sensitive colorimetric system to determine the anhydrous nature
of solvents if more water sensitive protective layers are employed.

Fluorescence turn-on sensor system. The flexible nature of the
protective layer strategy enables it to be applied to the design of
turn-on sensors that contain target and response guided sensor
matrixes. For example, the formation of a fluorescamine-primary
amine adduct can be utilized for the fabrication of a solvent
responsive fluorescence turn-on sensor (Fig. 7). Fluorescamine is
virtually nonfluorescent but it reacts with primary amines to
generate strongly fluorescent adducts44. By taking advantage of
this property, we have designed a novel layered fluorescence
sensor system (Fig. 7a). A thin PS film containing fluorescamine,
prepared on a glass substrate, was sequentially coated with a PVP
layer and then a PMMA layer containing the primary amine,
octadecylamine. Octadecylamine was selected for this purpose
because its low volatility avoids losses that could occur during
sensor preparation. In this device, the primary amine and fluor-
escamine are separated by the intervening PVP layer. We
expected that disruption of the PVP layer by solvents would
remove the barrier between two reactants and, thus, allow free
diffusion and reaction between fluorescamine and amine. In
Fig. 7b are shown vials containing fluorescamine and octadecy-
lamine in the selected organic solvents toluene, chloroform, THF,
ethyl acetate and methanol. Each vial emits blue adduct derived
fluorescence upon irradiation with 365 nm UV light. To
demonstrate the importance of the protective layer, a polymer
film containing a PS-fluorescamine and PMMA-octadecylamine
layer and not possessing an intervening PVP layer was prepared
by using spin-coating. As can be seen in Fig. 7c, this film emits
blue fluorescence under UV light (see also Supplementary Fig.

S14). In contrast, the corresponding polymer film containing the
intervening PVP protective layer displays no fluorescence emis-
sion (see also Supplementary Fig. S14). Exposure to chloroform
results in the generation of a circled fluorescence pattern owing to
the coffee ring effect that is generally observed with a liquid drop
(Fig. 7e)45. The results obtained in this study of the
fluorescamine- and octadecylamine-based film demonstrate that
unique solvatochromic turn-on fluorescence sensor systems can
be devised by simply choosing appropriate stimuli responsive
molecules and protective layers.

Discussion
PDAs undergo a distinct colour change (typically blue-to-red)
when their arrayed p-orbitals are distorted under the influence of
environmental perturbations and the observed change in colour is
dependent on the degree of the distortion. As PDAs are formed
from self-assembled diacetylene monomers, individual PDA
chain interacts strongly with neighbouring PDAs, a feature that
makes most PDAs insoluble in most solvents. When solvent
molecules disrupt the densely packed PDA chains that cause an
increase in the interchain distance, a colorimetric transition
occurs as a result of the partial distortion of the p-orbital overlap.
If individual PDA chains are separated by their individual
interactions with a good solvent, the resulting severe distortion of
the conjugated p-orbital array results in a blue-to-yellow colour
transition. But the poor solubility of PDAs in most organic
solvents leads to a lower degree of distortion and, consequently, a
blue-to-red (or purple) colour change.

PDA supramolecules derived from a single chain diacetylene
that contains a terminal carboxylic acid (for example, PCDA)
display a solvent nonspecific colour change when they are exposed
to common organic solvents. The study described above has
demonstrated the viability and generality of a new solvatochromic
sensor strategy. By taking advantage of the protective layer
approach, we were able to devise unprecedented colorimetric and
fluorescence turn-on type solvatochromic film sensors that carry
out the demanding task of visual differentiation of solvents.
The source of the selectivity of this type of sensor resides in
a colorimetric transition of solvatochromic molecules that only
occur when a target solvent disrupts a properly selected protecting
layer. The PAA-protected PDA system clearly demonstrates that a
tailor-made THF-specific colorimetric sensor can be fabricated. In
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film after exposure to various volume compositions of water in THF.

Table 2 | Truth table for the two-input (H2O and THF) AND
gate.

2 Input AND gate

Input 1 (H2O) Input 2 (THF) Output (Color response)

0 0 0
0 1 0
1 0 0
1 1 1
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addition, by taking advantage of the protective layer approach, we
were able to devise a sensor that carries out the demanding task of
colorimtrically distinguishing between dichloromethane and
chloroform. Facile fabrication of a sensor system that has solvent
sequence selectivity as well as ready construction of a solvato-
chromic molecular AND logic gate are additional meritorious
features of employing the protective layer-based sensor strategy.
Finally, the flexibility of the protective layer approach was further
demonstrated by constructing a system, which relies on a
fluorescamine-amine adduct forming reaction, for solvent-selec-
tive fluorescence turn-on sensing. It is believed that the new
strategy developed in this effort will find wide application in the
design of tailor-made solvatochromic chemosensors.

Methods
Materials and instruments. 10,12-Pentacosadiynoic acid (PCDA) and TCDA
were purchased from GFS Chemicals, Ohio, USA. PAA (Mw: 450,000 g mol� 1),
PVP (Mw: 360,000 g mol� 1), PVC (Mw: 620,000 g mol� 1), PMMA (Mw:
120,000 g mol� 1), poly(ethylene oxide) (Mw: 200,000 g mol� 1) and poly(vinyl
alcohol) (PVA, Mw: 89,000–98,000 g mol� 1), used as protective layers, were
obtained from Aldrich Co. Fluorescamine and octadecylamine were purchased
from Aldrich Co. Spectroscopic and HPLC grade solvents (Burdick and Jackson)
were used for the solvatochromic studies. Film thicknesses were measured using an

alpha step instrument. Raman spectra were obtained using excitation at 785 nm
laser and a Raman microscope (Kaiser Optical Systems).

Fabrication of a polymer-layer protected PDA film. A typical procedure for the
preparation of a protected sensor film is as follows. A thin polymer film (ca. 1.0mm)
was prepared on a glass substrate by spin-coating a viscous polymer solution
containing 10,12-pentacosadiynoic acid (PCDA, 40 mg ml� 1) and PS (Mw:
280,000 g mol� 1, 5 wt%). The polymer film was then irradiated with a hand-held
UV lamp (254 nm, 1 mW cm� 2, 3 min) to induce photopolymerization of PCDA
molecules. A readily available photomask, printed on a transparent polymer film,
was used to generate PDAs only in the UV-exposed areas. On to the photoirradiated
PS film was spin-coated a methanol solution of PAA (Mw: 450,000 g mol� 1,
8 wt%). The thickness of the PAA-protected film was found to be ca. 2.5mm.

Solubility test of a polymer film in an organic solvent. A thin polymer film used
as a protective layer was prepared on a glass substrate (2.5� 2.5 cm2) by spin-
coating a polymer (PAA, PVC, PVP, PMMA and so on) solution. The polymer-
coated glass substrate was incubated in the test solvent for 10 min and placed in a
fume hood for 5 min. The weight of the glass substrate was determined before and
after incubation in the solvent. Three independent measurements were made and
the average value was used.

Measurement of colorimetric transition power. A thin PS film (ca. 1.0 mm
thickness) containing PCDA (40 mg ml� 1) was prepared and UV irradiated
(254 nm, 1 mW cm� 2, 3 min) to generate a blue coloured PDA film. The film was

Toluene EA MeOHTHFCHCl3

Fluorescamine
(non-fluorescent)

Fluorophore
(blue fluorescence)

R-NH2

a

b

c

d

e

PMMA+Amine

PVP

PS+fluorescamine

Glass substrate

O

O O

O O

O

O
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Figure 7 | A fluorescence turn-on solvatochromic sensor system. (a) Schematic representation of a fluorogenic sensor system based on fluorescamine-

amine adduct formation. (b) Photographs of vials containing solutions of fluorescamine (2 mg ml� 1) and amine (2 mg ml� 1) under 365 nm UV light.

(c) Photographs of unprotected films (without PVP layer) under 365 nm UV light. (d) Photographs of PVP-protected films under 365 nm UV light.

(e) Photographs of PVP-protected films under 365 nm UV light after exposure to various solvents.
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exposed to a test solvent and the red intensity values of 10 different spots on the
solvent-treated film were extracted using the Adobe Photoshop program.
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