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Abstract

Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are
not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These
are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the
potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary
infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in
Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide
transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We
have optimized methods for large scale production and purification of spores. The germination characteristics of purified
spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic
during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray
approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p#0.01).
A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and
secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes
its metabolism, re-builds the basic structures of the vegetative cell and resumes growth.
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Introduction

Clostridium difficile is a Gram-positive, anaerobic bacterium and a

leading cause of antibiotic-associated diarrhoea in industrialised

countries [1]. Infection typically occurs among hospitalized

patients, whose natural intestinal microflora has been disrupted

by prolonged treatment with broad-spectrum antibiotics, allowing

the pathogen to colonize the compromised gastro-intestinal tract

[2]. The resulting, toxin-mediated disease can range from mild,

self-limiting diarrhoea through severe diarrhoea to the potentially

lethal pseudomembraneus colitis and can progress to toxic

megacolon and sepsis syndrome causing significant morbidity

and mortality [3].

Under conditions that are not favourable for growth, C. difficile

exits the vegetative growth cycle and triggers sporulation,

producing metabolically dormant endospores (spores). These are

thought to be the primary infectious agent as recent studies have

shown that a mutant strain of C. difficile unable to produce SpoOA,

a regulatory protein essential for spore formation, is unable to

efficiently persist and transmit the disease [4]. Due to their multi-

layered structure, spores are extremely robust and resistant to both

chemical and physical insult, providing the mechanism by which

C. difficile can evade the potentially fatal consequences of exposure

to heat, oxygen, alcohol, and certain disinfectants [reviewed in

5,6]. Spores shed in faeces are therefore difficult to eradicate and

can persist in healthcare facilities for extended periods of time

leading to infection or re-infection of individuals through

inadvertent ingestion of contaminated material [7,8].

In order to cause disease, spores need to return to vegetative

growth through a process termed germination. In Bacillus,

Clostridium and related species, spore germination is initiated upon

binding of small molecules called germinants (often nutrients such

as sugars and/or amino acids) to specific germination receptors

(GRs). This triggers a series of irreversible biophysical events that

lead to rehydration of the spore core and degradation of its

protective layers. Once the constraints of spore outer layers are

lifted, the cell enters a period of longitudinal growth, accompanied

by re-establishment of cell metabolism during which DNA, RNA

and protein synthesis resume [reviewed in 9]. While spore

germination in Bacillus is well understood, and genes involved in

this process have recently been identified in Clostridium perfringens

[10–12], little is known about C. difficile germination and

outgrowth. Even though many components of the spore germi-

nation machinery are conserved between spore forming members

of Bacillales and Clostridiales, recent studies have revealed significant

differences both in the proteins and in the signal transduction

pathways involved [reviewed in 13]. Bioinformatic analysis of C.

difficile genome has failed to reveal genes encoding known

germination receptor subunits [14–16] even though a number of

such genes were identified in other Clostridia. Furthermore, while
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the C. difficile 630 spore proteome has recently been described [17],

little homology has been found between C. difficile spore proteins

and those present in other spore-formers. This would suggest that

the aspects of germination in C. difficile are unique, a notion

supported by the limited numbers of studies published so far [18–

21].

We now know that bile salts (cholate, taurocholate, glycocholate

and deoxycholate) stimulate C. difficile spore germination [21].

More recently glycine and histidine were shown to act as a co-

germinants with these cholate derivatives [18,22,23], and kinetic

studies suggest that there are distinct germination receptors for

taurocholate and glycine [24]. Neither of these compounds has

been previously described as a germinant for spores of Bacillus or

Clostridium species, supporting the notion of a novel mode of

germinant recognition in C. difficile spores. Furthermore, cheno-

deoxycholate, another bile salt, has been shown to inhibit C. difficile

spore germination [19], adding a new level of regulation to the

current model of C. difficile colonisation of the gut.

As limited as our insight into the mechanism of germination in

C. difficile might be, even less is known about the events that follow

initiation of germination and while transcriptomic analysis of gene

expression during germination has been carried out in B. subtilis

[25] and more recently C. novyi-NT [26] and C. sporogenes [27], no

such data is available for C. difficile. To address this issue we use a

combination of standard microbiology, microscopy and genome-

wide transcriptome analysis to explore the morphological,

physiological and transcriptional changes that occur during

germination and subsequent outgrowth of C. difficile 630 spores

and try to elucidate some of the processes that occur during the

transformation of a metabolically dormant spore into an actively

growing vegetative cell.

Results and Discussion

Characterization of Germination and Outgrowth
Dynamics
C. difficile 630, an epidemic, virulent and multi-drug-resistant

strain was selected for this analysis, as its complete genome

sequence has been determined [15]. In order to obtain sufficient

quantities of spores, free from vegetative cells and cell debris, a

protocol for producing and purifying spores was developed.

Growth of C. difficile 630 on solid SMC sporulation medium for 7

days ensured the highest sporulation rates (data not shown). Using

these growth conditions, 107 - 108 endospores could be

reproducibly obtained per ml of initial culture. Phase contrast

microscopy confirmed the high purity of the purified spore

suspensions, revealing fully developed, phase-bright endospores,

free of vegetative cells and noticeable cell debris (Figure 1).

To ensure that the purification process does not detrimentally

affect the spores, the viability and germination dynamics of the

isolated spores were assessed. Spore germination is classically

measured as a decrease in optical density (OD) of a spore

suspension occurring concomitantly with the release of dipicolinic

acid (DPA) from the spore core, rehydration of the core, and

degradation of the cortex [9]. This is followed by an increase in

OD600 correlated with outgrowth and cell division as the cells

enter logarithmic growth phase. OD600 measurement of liquid

cultures containing germinating spores combined with colony

forming unit (CFU) counts and microscopy showed that

.99.9999% of spores undergo germination when grown in

nutrient medium (BHIS) supplemented with the germinant,

sodium taurocholate (Tch) as indicated by a rapid decrease in

OD600 (approx. 50% of initial value within 5 minutes of induction)

and a 5-log drop in the number of spore CFUs (Figure 2A, 2B and

2C). Importantly, based on phase contrast and fluorescence

microscopy analysis, spore germination in nutrient medium

supplemented with an excess of Tch was synchronous and

appeared to be complete within 180 min. This would be critical

in subsequent transcriptomic analysis of gene expression during

germination as it ensured that all spores were in the same phase of

germination. Immediately upon induction of germination, the

dormant spores lost their phase-bright appearance becoming

susceptible to Hoechst 33258 DNA staining, presumably due to

Ca2+-DPA release and subsequent rehydration of the spore core

resulting in a gradual increase in spore volume (0 - 30 min). This

was followed by hydrolysis of cortex peptidoglycan and shedding

of spore outer layers (45–60 min). Once these physical constraints

were removed, germinating cells entered a phase of longitudinal

growth which coincided with DNA replication followed by

symmetric cell division (60–180 min) (Figure 3A and 3B). In

contrast, no germination was observed among spores grown in

medium devoid of the germinant as no changes in OD600, spore

CFU count or spore morphology could be observed throughout

the 6 h incubation period (Figure 2A and 2D; Figure 3D). Unlike

in Bacillus, where pre-treating spores with high temperature

increases germination rates, we found that heat activation had

no effect on germination dynamics of the isolated C. difficile

endospores (data not shown). Interestingly, germination was not

observed when liquid cultures were incubated aerobically,

presumably due to the inhibitory presence of oxygen. Even

though a decrease in OD600 and spore CFUs was observed

immediately after induction with Tch and the spores lost their

phase-bright appearance becoming susceptible to DNA staining

(indicative of Ca2+-DPA release and core rehydration), spores

failed to progress fully to outgrowth and eventually were killed as

indicated by the gradual drop in total CFUs (Figure 2A and 2C;

Figure 3C). This is consistent with recent findings [28] and

suggests that oxygen is a negative regulator of C. difficile endospore

germination acting downstream of any signalling events that

induce germination.

Optimization of RNA Extraction
RNA quality is of paramount importance in any transcriptional

analysis of gene expression. It was therefore critical to develop a

method for extracting RNA that would not only provide high

yields, but would also ensure that the integrity of RNA was

maintained. Mechanical disruption with silica beads followed by

acid phenol-based extraction was shown to give the highest quality

RNA. Using this method, between 2 and 10 mg of total RNA

could be reproducibly isolated per 108 spores. The quantity of

extracted RNA depended on the status of the spores and increased

gradually as the spores went from dormancy through germination

to outgrowth (Figure S1A). This could be attributed to the

increasing susceptibility of the spore envelope to lysis during

germination and/or the initiation of RNA synthesis [9]. All

preparations were of high purity and integrity as indicated by a

260/280 nm absorption ratio in the range of 2.05 to 2.18 and

Bioanalyzer electropherograms showing sharp and undegraded

peaks (Figure S1B). Interestingly, we found that the ribosomal

RNA (rRNA) of spores differed from that present in vegetative

cells. In addition to the 16S and 23S rRNA species, two smaller

rRNA species were identified in dormant spores, represented by

small peaks on Bioanalyzer spectra (Figure S1C). These could only

be discerned in dormant spores and reduced in intensity as

germination progressed. A similar phenomenon has previously

been reported in Bacillus [25] as well as the more closely related

Clostridium novyi [26] and Clostridium sporogenes [27], although its

significance remains unknown. These smaller species might

Transcription during C. difficile Germination

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64011



Figure 1. C. difficile spore purification. C. difficile was sporulated on SMC solid medium, washed extensively and purified via density gradient
centrifugation. Samples taken before and after purification were analysed using phase contrast microscopy A) Crude spore preparation before
purification. Phase-bright endospores (white arrow), vegetative cells and significant amount of cell debris (black arrows) are visible. B) Spore
preparation after purification. Phase-bright endospores are visible, free of vegetative cells and cell debris.
doi:10.1371/journal.pone.0064011.g001

Figure 2. Growth characteristics during spore germination and outgrowth. Purified C. difficile 630 endospores were resuspended in BHIS
60.5% sodium taurocholate (Tch) to an OD600 of 0.1 and incubated either aerobically or anaerobically for 6 h at 37uC. Growth was monitored via
OD600 measurements and CFU counts. A) C. difficile 630 germination dynamics growth curve. Spores incubated in the presence of 0.5% Tch showed a
rapid decrease in OD600 immediately after resuspension, in both aerobic and anaerobic conditions. No decrease in OD600 was observed for spores
incubated in the absence of Tch. B) CFU counts for spores germinated anaerobically in BHIS +0.5% Tch. C) CFU counts for spores germinated
aerobically in BHIS +0.5% Tch. D) CFU counts for spores germinated anaerobically in BHIS. Data reported as means and standard deviations from
three independent experiments.
doi:10.1371/journal.pone.0064011.g002
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represent rRNA fragments or be indicative of RNA maturation

within the germinating spore [29].

Microarray Analysis of Temporal Gene Expression during
Spore Germination – General Observations
Total RNA extracted from germinating spores at eight time

points representing dormancy (0 min), germination (15, 30, 45,

60 min) and outgrowth (90, 120, 180 min) was analysed by

competitive RNA/DNA hybridisation using the BmG@S

CDv2.0.1 microarray. Gene expression was highly dynamic

during germination and outgrowth and was found to involve a

large part of the genome. Relatively few transcripts were identified

in dormant spores (see below), consistent with their metabolically

silent state. In contrast, a significant up-regulation of gene

expression was observed immediately after induction of germina-

tion, peaking at 30 min (Figure 4). In order to validate these

results, semi-quantitative RT PCR was used to confirm the

temporal expression pattern for a number of selected genes

showing a wide range of distinct expression profiles being either

significantly up- or down-regulated in the early or late stage of

Figure 3. Morphological changes during spore germination and outgrowth. Purified C. difficile 630 endospores were resuspended in BHIS
60.5% sodium taurocholate (Tch) to an OD600 of 0.1 and incubated either aerobically or anaerobically for 6 h at 37uC. At the given time points
samples were formaldehyde-fixed and analysed using phase contrast microscopy and fluorescence microscopy following DNA staining with Hoechst
33258. A and B) Spores germinated anaerobically in BHIS +0.5% Tch. Upon induction of germination, dormant spores lose their phase-bright
appearance and become susceptible to DNA staining. This is followed by a gradual increase in volume and shedding of spore outer layers which
remain visible as empty ‘shells’. Once the physical constraints of the outer spore layers are removed, the spore enters a phase of longitudinal growth
coinciding with DNA replication followed by symmetric cell division. C) Spores germinated aerobically in BHIS +0.5% Tch. Following induction of
germination, spores lose their phase-bright appearance and become susceptible to DNA staining but fail to progress to outgrowth. D) Spores
germinated anaerobically in BHIS. No changes in spore appearance and no DNA staining could be observed.
doi:10.1371/journal.pone.0064011.g003
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germination. In all cases the expression profiles obtained matched

those seen in the microarray experiment (Figure 5).

We investigated in detail two time points: 30 min and 180 min

post germination. At 30 min all spores are actively germinating in

contrast to 180 min when normal vegetative growth has

commenced. In total, 263 genes were up-regulated and 248 genes

down-regulated at 30 min when compared to the 180 min time

point (p#0.01) (Figure 4A). The magnitude of change of the

statistically up-regulated genes ranged from 1.3-fold to 80-fold,

and that of down-regulated genes ranged from 1.3- to 100-fold.

Many gene clusters encoding enzyme complexes or biochemical

pathways appeared to be co-ordinately regulated. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) database was used

to identify significantly differentially regulated pathways. Selected

examples have been listed below and summarised in Table 1.

Where appropriate, genes that marginally failed the stringent

statistical cut-off (0.01#p#0.05) are also mentioned. Full lists of

genes generated through this experiment are shown in supple-

mentary data (Table S1).

Spore Transcripts
Despite early research hinting at the presence of mRNA in

spores [30,31], for a long time it has been generally assumed that

dormant spores do not contain functional transcripts. This view

Figure 4. Temporal gene expression profiles in germinating C. difficile spores. A) All significantly, differentially regulated genes, B) two-
component systems, C) ABC-transporters, D) phosphotransferase system, E) ribosomal proteins, F) transcriptional regulators, G) flagellar assembly and
chemotaxis, H) type IV pili, I) peptidoglycan biosynthesis, J) secondary cell wall polymer (SCWP) biosynthesis are shown. Microarray gene expression
data represented as normalised intensity with respect to control conditions. Analysed using 1-way ANOVA (A p#0.01, B-J p#0.05) and Benjamini-
Hochberg multiple testing correction. Each line represents data for one gene. All graphs were generated using GeneSpring GX7.3.1.
doi:10.1371/journal.pone.0064011.g004

Figure 5. RT-PCR validation of microarray results. cDNA was prepared from total RNA using reverse transcription. Primers internal to five
selected genes were used to amplify fragments of,150 bp: (CD2782 - cell wall binding protein, CD2796 - cell wall binding protein, CD0663 - toxin A,
CD0660 - toxin B, CD2625 - putative membrane protein). gDNA was used as template in a positive control reaction. 25 reaction cycles were carried
out to ensure non-saturating conditions. A) microarray expression profile (normalised to 180 minutes), B) gel electrophoresis of the PCR amplicons.
doi:10.1371/journal.pone.0064011.g005

Table 1. Numbers of genes differentially regulated during
germination.

Functional group Up-regulated Down-regulated

Two-component systems 26 5

ABC-transporters 71 34

Phosphotransferase system 11 30

Ribosomal proteins 12 1

Transcriptional regulators 45 24

Flagellum and chemotaxis 0 34

Type IV pili 0 7

Peptidoglycan biosynthesis 9 1

Secondary cell wall
polymers

12 0

The total number of genes within specific functional groups up-regulated or
down-regulated at 30 min into germination was determined using microarray
analysis (p#0.05).pone.0064011.g006.tif.
doi:10.1371/journal.pone.0064011.t001
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has now changed as recent studies conducted in B. subtilis [25], C.

novyi-NT [26] and C. sporogenes [27] have shown that mRNA is

abundant in spores and that its composition is dramatically

different from that observed in vegetative cells. A number of

explanations for this phenomenon have been proposed. Spore

transcripts might represent mRNA that has been entrapped during

the late phases of sporulation and is later degraded to act as a

reservoir of nucleotides during germination. Indeed, five out of

fifteen most abundant spore transcripts identified in this study

represented late-sporulation genes such as those encoding small

acid-soluble proteins A and B (CD2688 and CD3249 respectively)

a putative spore coat protein (CD0213) and a stage IV sporulation

protein (CD0783) (Table S2). Alternatively, transcripts might be

stored to equip the spore with proteins that will become necessary

during the transformation into a vegetative cell such as those

involved in growth, protein synthesis, detoxification, metabolism,

transport, secretion etc. Interestingly, the second most abundant

transcript we have identified encodes a putative Mn-superoxide

dismutase (CD1631). Other genes with redox activity whose

transcripts were present at relatively high levels in dormant spores

included two putative oxidoreductase complexes with ferrodoxin

activity (CD2197-CD2199A and CD2427-CD2429A), a NADH

oxidase (CD2540) and a NADH-dependent flavin oxidoreductase

(CD2709). The inclusion of such a large number of redox genes

within the spore transcriptome is intriguing, particularly in the

light of the anaerobic life cycle of C. difficile. While C. difficile spores

are resistant to ambient oxygen concentrations, vegetative cells can

be killed by relatively short exposure to oxygen. It would thus be

tempting to speculate that at least a subset of these genes might

play a role in detoxification by scavenging reactive oxygen species

(ROS). Finally, consistent with previous reports [26], we found

that a large proportion of spore transcripts encode proteins with an

unknown function (nine out of top fifteen hits). This not only

underlines the difference in mRNA composition between spores

and vegetative cells but also the need for more research into the

spore transcriptome of major spore-forming bacteria.

Two-component Signal Transduction Systems
Two-component regulatory systems serve as a basic stimulus-

response coupling mechanism to allow organisms to sense and

respond to changes in many different environmental conditions.

They typically consist of a membrane-bound histidine kinase that

senses a specific environmental stimulus and a corresponding

response regulator that mediates the cellular response, mostly

through differential expression of target genes [reviewed in 32]. C.

difficile 630 has fifty-one two-component sensor histidine kinases

and fifty-four response regulators. Nine kinase genes and seventeen

response regulator genes were up-regulated in germinating spores.

Only five genes (three kinases and two response regulators) were

down-regulated (Figure 4B).

Transport of Metabolites and Sugars
The germinating spore requires a large supply of metabolites

and cofactors to facilitate re-establishment of cell metabolism.

Consistent with this requirement, we found 100 out of 229 ABC-

transporter genes were differentially regulated during germination.

A majority of these (70 genes) were up-regulated during

germination when compared to the vegetative state, including

the entire potABCD locus (spermine/putrescine ABC-transporter).

The spermidine/putrescine transporter is involved in polyamine

trafficking, which in turn plays a crucial role in DNA replication,

cell division and stress response. Interestingly, polyamines have

previously been implicated in the shift from a quiescent to a

proliferating state in bacteria, plants, fungi and other eukaryotic

systems [reviewed in 33,34]. Similarly, the appABC operon

(peptide/nickel ABC-transporter) and the ssuABC operon (sulfo-

nate/nitrate/taurine ABC-transporter) were up-regulated. The

latter is of particular interest as taurine conjugated with cholate

yields taurocholate, the primary germinant for C. difficile spores.

One could speculate that the up-regulation of this transporter

might be a part of a positive feedback loop providing a constant

supply of the germinant and the basis for commitment in

germinating spores. Other ABC-transporters that had at least

one significantly up-regulated gene included maltose/maltodextrin

ABC-transporter (9.5-fold), lactose/L-arabinose ABC-transporter

(13.6-fold) and iron complex ABC-transporter (2.6-fold). In

contrast, two ABC-transporter complexes involved in cobalt and

nickel transport and encoded by the cbiMNOQ operon were down-

regulated (Figure 4C).

The PTS system is a complex phosphate translocation

mechanism involved in the transport of sugars such as glucose,

mannose and mannitol. As such it plays a key role in cell

metabolism driving glycolysis. Unlike ABC-transporters, sugar

transport was largely inactive during germination with the entire

branch of the system responsible for glucose trafficking signifi-

cantly down-regulated (from 1.9- to 23.8-fold) in germinating

spores when compared to vegetative cells, including members of

the pstG-ABC operon. In contrast, a number of genes involved in

fructose and lactose metabolism were up-regulated in germinating

spores. These included fruABC (fructose-specific phosphotransfer-

ase; 75.2-fold), CD2270 (putative 1-phosphofructokinase; 79.8-

fold) and CD1806 (putative fructokinase; 2.8-fold) (Figure 4D).

While this could simply reflect the composition of the culture

medium, it could also indicate the preference for fructose as the

main carbon source in early germination.

Ribosomal Proteins and Transcriptional Regulators
Exit from dormancy requires the bacterium to rebuild most of

the structures found in a vegetative cell, necessitating large

amounts of protein synthesis. It is not surprising then that a

significant up-regulation of genes involved in transport, coincided

with up-regulation of transcription and translation. In general, all

genes encoding ribosomal proteins were up-regulated during

germination. These included three genes encoding 30S subunit

proteins and eight genes encoding 50S subunit proteins (Figure 4E).

Similarly, genes encoding DNA-directed RNA polymerase were

up-regulated, although only the genes encoding the b and b9
subunits of the polymerase had a p value #0.05. Furthermore,

sixty-eight genes encoding transcriptional regulators were up-

regulated (from 1.3- to 10.9-fold) while twenty-four genes were

down-regulated (from 1.3- to 21.2-fold) in germinating spores

(Figure 4F). These included members of the gntR, tetR araC, marR,

merR, rpiR, copR, deoR and lysR gene families. On the whole, genes

encoding tRNA synthetases were down regulated in germinating

spores when compared to a vegetative cell. Similarly, enzymes

involved in amino acid metabolism were largely down-regulated

during germination, possibly reflecting the preferential catabolism

of endogenous nutrients as a means for obtaining the necessary

‘building blocks’ for protein synthesis in early germination.

Secretion and Cell Wall Components
The Sec machinery provides a major pathway of protein

translocation from the cytosol across the cytoplasmic membrane in

bacteria [35]. A number of components of the sec secretory

pathway can be identified in C. difficile 630 including secA1, secA2,

secE and secY [27]. In general, all genes within the secAYEG operon

were up-regulated in germinating spores, although only secA2 (3.4-

fold) and secE (3.8-fold) significantly so. The lipoprotein signal-

Transcription during C. difficile Germination
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peptidase lspA was also up-regulated (2.6-fold) as was the signal

recognition particle encoded by ffh (4.16-fold) and prolipoprotein

diacylglyceryl transferase encoded by lgt (3-fold).

The C. difficile flagellar assembly is encoded by thirty-five genes

located within a single cluster. A vast majority of flagellar genes

were inactive in germinating spores when compared to vegetative

cells. In addition, five genes encoding components of the bacterial

chemotaxis machinery including motA, motB, cheY, cheD and cheW

were also found to be down-regulated in germinating spores

(Table 2; Figure 4G) as were seven genes within two gene clusters

encoding putative type IV pilus proteins (Table 3; Figure 4H). As

cell motility is typically initiated upon nutrient deprivation in

stationary phase, the overall inactivity of genes involved in motility

during germination is in accordance with expectations, in that

flagellar genes are dormant during germination and are tran-

scribed in vegetative cells.

As a hallmark of cell expansion during germination and

outgrowth, genes involved in cell wall biosynthesis were found to

be significantly up-regulated in germinating spores. Peptidoglycan

is produced from N-acetylglucosamine (GluNAc) and N-acetyle-

muramic acid (MurNAc) in a series of reactions involving

incorporation of D-glutamine and D-alanyl-D-alanine. Genes

encoding the enzymatic components of this pathway are largely

located within the mur-mra cluster. Ten enzymes involved in

peptidoglycan biosynthesis were up-regulated in germinating

spores, including ddl (D-Ala D-Ala ligase B; 7.3-fold) glnA

(glutamine synthase; 2.6-fold) and murF (UDP-MurNAc-pentapep-

tide synthase; 2.4-fold) as well as other members of the mur-mra

cluster: murGDE and mraYW (Table 4; Figure 4I). In addition to

peptidoglycan, the Gram-positive cell wall can also contain

secondary cell wall polymers (SCWP) such as teichoic, teichuronic

acids and lipoteichoic acids which can make up between 10 and

Table 2. List of differentially regulated flagellar assembly and chemotaxis genes.

Systematic name Gene product p-value Fold change

CD0228 flagellar motor switch protein 0.0248 21.9

CD0230 putative flagellar biosynthesis protein 0.0151 23.7

CD0231 putative flagellar hook-associated protein 0.0204 23.6

CD0232 flagellar hook-associated protein 0.0167 25.0

CD0235 flagellar protein FliS 0.0106 23.7

CD0236 flagellar protein 0.0161 24.0

CD0237 flagellar cap protein 0.0165 23.1

CD0239 flagellin subunit 0.0282 22.0

CD0246 flagellar basal-body rod protein 0.0271 23.1

CD0247 flagellar hook-basal body complex protein 0.0117 23.8

CD0248 flagellar M-ring protein 0.0177 23.9

CD0249 flagellar motor switch protein 0.0187 24.8

CD0250 flagellar assembly protein 0.0115 25.6

CD0251 flagellum-specific ATP synthase 0.0139 25.7

CD0252 flagellar protein 0.0172 26.1

CD0253 putative flagellar hook-length control protein 0.0177 25.7

CD0255 flagellar hook protein 0.00833 26.0

CD0255A putative flagellar protein 0.0154 26.2

CD0256 chemotaxis protein 0.0164 26.4

CD0257 chemotaxis protein 0.0236 26.0

CD0258 flagellar basal body-associated protein 0.00927 25.3

CD0259 putative flagellar protein 0.0297 24.9

CD0260 flagellar biosynthetic protein 0.0394 24.4

CD0261 flagellar export protein 0.0393 24.9

CD0262 flagellar export protein 0.0364 25.4

CD0263 flagellar export protein 0.0232 25.5

CD0265 flagellar number regulator 0.0284 26.3

CD0268 flagellar basal-body rod protein FlgG 0.0078 26.6

CD0269 putative flagellar basal-body rod protein 0.00932 26.5

CD0270 putative flagellar motor switch protein 0.00953 26.7

CD0271 putative flagellar motor switch protein 0.0475 24.6

CD0533 chemotaxis protein 0.017 21.8

CD0535 chemotaxis protein 0.0329 21.9

CD0540 chemotaxis protein 0.0257 21.6

doi:10.1371/journal.pone.0064011.t002
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60% of its structure. Although the genes specifying these

components have not been identified in C. difficile, it might be

relevant that a cluster of genes (CD2769-80) specifying glyco-

transferases and related enzymes was found to be significantly up-

regulated in germinating spores (Table 5; Figure 4J).

Toxins
Of central importance in C. difficile is the pathogenicity locus

(PaLoc) containing five genes encoding two large clostridial toxins:

TcdA and TcdB as well as their regulators (tcdC, tcdR) and export

machinery (tcdE) [36]. Both toxin A and B are represented by

multiple probes on the microarray. tcdA was down-regulated

during germination when compared to the vegetative cell. No

transcripts for tcdB could be detected in either state, consistent with

the observation that toxins are expressed in stationary phase.

Concluding Remarks
This study aims to give a genome-wide overview of the temporal

gene expression during germination and outgrowth of C. difficile

spores. We decided to focus on the events that follow initiation of

germination and are critical in the transformation of a metabol-

ically dormant spore into an actively growing vegetative cell. Our

analysis was possible as we initially demonstrated the synchronous

nature of germination in C. difficile. This is intriguing as

germination in Bacillus species and even the more closely related

C. perfringens and C. botulinum has been shown to be heterogenous

[37–40]. While the vast majority of a spore population will enter

germination upon exposure to germinants, a small proportion may

not germinate for many hours or even days. This ‘superdormancy’

has been correlated with a low level of specific germination

receptors in individual spores [41] and is thought to be an example

of ‘bet hedging’, ensuring the survival of a given population in a

rapidly changing environment. Under the conditions tested,

99.9999% of the C. difficile 630 spore population germinated

synchronously. This might be a reflection of the unique

germination mechanism present in C. difficile and/or the fact that

the human gut is a relatively stable environment eliminating the

need for super-dormancy.

Our results will give insight into how a dormant organism re-

establishes its metabolism, re-builds the basic structures of the

vegetative cell and resumes growth. Around 14% of genes (511

genes out of 3679) were found to be significantly differentially

regulated at 30 min of germination when compared to the

vegetative cell and a number of functional groups of genes

appeared to be co-regulated. Further analysis of the genes and

biochemical pathways identified here as important in germination

will enable a more targeted investigation of germination in C.

difficile endospores.

Experimental Procedures

Bacterial Strains and Culture Conditions
C. difficile 630 (tcdA+ tcdB+; epidemic strain isolated in 1985 from

Zurich, Switzerland; PCR ribotype 012) was routinely cultured on

Table 3. List of differentially regulated type IV pilin genes.

Systematic name Gene product p-value Fold change

CD3295 putative type IV pilus-assembly protein 0.0211 +1.3

CD3504 putative type IV prepilin leader peptidase 0.00385 22.4

CD3505 putative type IV pilus retraction protein 0.0186 22.5

CD3507 putative type IV pilin 0.00579 22.5

CD3508 putative type IV pilin 0.0141 22.3

CD3509 putative type IV pilus assembly protein 0.0191 22.3

CD3511 type IV pilus assembly protein 0.0245 23.4

CD3512 type IV pilus assembly protein 0.0091 22.9

doi:10.1371/journal.pone.0064011.t003

Table 4. List of differentially regulated peptidoglycan biosynthesis genes.

Systematic name Gene product p-value Fold change

CD0784 putative N-acetylmuramoyl-L-alanine amidase 0.0195 +2.0

CD1343 glutamine synthetase 0.0081 +2.6

CD1408 D-alanine–D-alanine ligase B 0.00843 +7.3

CD2651 UDP-N-acetylglucosamine–N-acetylmuramyl-(penta peptide) pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase

0.022 +1.4

CD2653 UDP-N-acetylmuramoylalanine–D-glutamate ligase 0.0105 +1.5

CD2654 phospho-N-acetylmuramoyl-pentapeptide-transferase 0.0145 +1.7

CD2655 UDP-N-acetylmuramoyl-tripeptide–D-alanyl-D-alan ine ligase 0.00508 +2.4

CD2664 putative UDP-N-acetylmuramoylalanyl-D-glutamate–2,6-diaminopimelate ligase 0.0344 +2.4

CD3563 putative spore cortex-lytic enzyme 0.0245 +2.2

CD1898 putative phage-related cell wall hydrolase (endolysin) 0.0174 26.1

doi:10.1371/journal.pone.0064011.t004
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blood agar base II (Oxoid) supplemented with 7% horse blood

(TCS Biosciences), brain-heart infusion (BHI) agar (Oxoid) or in

BHI broth (Oxoid). Cultures were grown statically in an anaerobic

cabinet (Don Whitley Scientific) at 37uC in an anaerobic

atmosphere (10% CO2, 10% H2 and 80% N2). The strain has

been fully sequenced [15] and its genome sequence is available at

http://www.sanger.ac.uk/resources/downloads/bacteria/

clostridium-difficile.html).

Genomic DNA Extraction
C. difficile 630 was collected from 10 ml late-log-phase culture by

centrifugation at 5,0006g for 10 min. Genomic DNA was purified

through subsequent incubations with lysozyme (1 h at 37uC),
pronase (1 h at 55uC), 10% N-lauroylsarcosine (1 h at 37uC) and
RNase (1 h at 37uC) followed by phenol/chloroform extraction

and ethanol precipitation.

Sporulation
C. difficile 630 sporulation was induced as described previously

[42]. Briefly, 10 ml of TGY broth (3% tryptic soy broth; 2%

glucose; 1% yeast extract; 0.1% L-cysteine) was inoculated with a

single colony of C. difficile 630 grown on BHIS agar (brain heart

infusion agar supplemented with 0.1% L-cysteine and 5 mg/ml

yeast extract). Following over-night static incubation, bacteria

were sub-cultured 1:10 in SMC broth (9% Bacto peptone, 0.5%

proteose peptone, 0.15% Tris base, 0.1% ammonium sulphate),

incubated until the culture reached OD600 of 0.6 and spread out

on SMC agar plates. After 7 days of anaerobic incubation at 37uC,
spores were harvested in 2 ml of ice-cold sterile water.

Spore Purification
Crude spore suspensions were washed five times with ice-cold

sterile water and vortexed for 10 min in between washes. The

resulting pellets were re-suspended in 500 ml of 20% HistoDenz

(Sigma) and layered over 1 ml of 50% HistoDenz in a 1.5 ml tube.

Tubes were centrifuged at 14,0006g for 15 min. The spore pellet

was recovered and washed three times with ice-cold sterile water

to remove residual HistoDenz. Spore purity was assessed via phase

contrast microscopy. Spore yields in individual preparations were

estimated by counting colony forming units (CFU) on BHI agar

plates supplemented with 0.1% sodium taurocholate (Tch).

Purified spores were stored in water at 4uC until further analysis.

Germination Assay
Purified C. difficile 630 spores were re-suspended to and OD600

of 0.1 in BHIS 60.5% Tch and incubated under aerobic or

anaerobic conditions for 6 h at 37uC. Growth was monitored via

OD600 measurements. CFU enumeration was carried out by

plating 10-fold dilutions of the germinating cultures on BHIS

+0.1% Tch. For spore enumeration, samples were heated at 70uC
for 30 min prior to plating.

Phase Contrast and Fluorescence Microscopy
Samples were spun down (5,0006g; 10 min; 4uC), washed with

1 ml of PBS and fixed with 3.7% formaldehyde for 15 min at RT.

Following fixation, samples were washed with PBS once more and

dried onto glass slides. DNA staining was carried out by adding

Hoechst 33258 dye to the mounting medium to a final concen-

tration of 20 mg/ml. Phase contrast and fluorescence microscopy

were carried out according to standard procedures on an Eclipse

E600 microscope (Nikon) using a 1006oil immersion lens. Images

were captured using a Retiga-400R Charge Coupled Device (Q-

Imaging).

RNA Extraction and RT-PCR
RNA was extracted using the FastRNA Pro Blue Kit (MP

Biosciences). Briefly, 5 ml cultures containing 56109 endospores

(OD600 10) at various stages of germination were mixed with

10 ml of RNA Protect (Qiagen) and incubated for 5 min at RT.

Samples were centrifuged (5,0006g; 10 min; 4uC), resuspended in

1 ml of RNA Pro solution and transferred to a lysing matrix tube

containing 0.1 mm silica beads. Tubes were processed in a

FastPrep-24 instrument (MP Biosciences) (3645 s at 6.5 ms21

with 2 min of cooling on ice between cycles). The efficiency of

spore rupture was evaluated via phase contrast microscopy as well

as by plating spore samples prior to and post processing, indicating

that only 0.0001% of the spore population remains intact.

Following disruption, samples were centrifuged to remove spore

debris and silica beads from suspension (16,0006g; 10 min; 4uC).
Approx. 700 ml of liquid was transferred to an RNase-free tube

and incubated at RT for 5 min. 300 ml of chloroform was added.

The sample was vortexed for 10 s and centrifuged (16,0006g;

15 min; 4uC) to separate the phases. The aqueous phase was

transferred to a fresh tube containing 200 ml of 95% EtOH and

placed on ice. The mixture was transferred to a spin column

Table 5. List of differentially regulated putative secondary cell wall polymer (SCWP) biosynthesis genes.

Systematic name Gene product p-value Fold change

CD2769 capsular polysaccharide biosynthesis protein 0.0201 +2.9

CD2770 putative capsular polysaccharide biosynthesis glycosyl transferase 0.00656 +2.7

CD2771 putative UDP-glucose 6-dehydrogenase 0.00681 +2.4

CD2772 putative teichuronic acid biosynthesis glycosyl transferase 0.016 +2.2

CD2773 putative beta-glycosyltransferase 0.0115 +2.3

CD2774 putative teichuronic acid biosynthesis glycosyl transferase 0.019 +2.2

CD2775 putative minor teichoic acid biosynthesis protein 0.016 +2.3

CD2776 putative glycosyl transferase 0.0408 +2.4

CD2777 putative polysaccharide polymerase 0.0182 +2.5

CD2778 putative polysaccharide biosynthesis protein 0.0311 +2.5

CD2779 putative mannose-1-phosphate guanylyltransferase 0.0116 +2.2

CD2780 putative phosphomannomutase/phosphoglycerate mutase 0.00636 +2.7

doi:10.1371/journal.pone.0064011.t005
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assembly (SV Total RNA isolation system; Promega) and

centrifuged (16,0006g; 1 min). Columns were washed twice with

600 ml and 250 ml of RNA wash solution. RNA was eluted in

45 ml of RNase-free water. DNase treatment was carried out using

the Turbo DNase kit (Ambion) according to manufacturers

protocol. The enzymatic reaction was cleaned-up using the

RNeasy Mini Kit (Qiagen) RNA purity and quantity was

determined by nanodrop UV spectroscopy. RNA integrity was

confirmed on a RNA 6000 nano lab-Chip using a Bioanalyzer

2100 instrument (Agilent). Samples were stored at 280uC until

further analysis.

Reverse Transcriptase PCR
For conventional RT-PCR, first strand cDNA was synthesized

from total RNA using random decamers as primers and the

RETROscript Kit (Ambion) according to manufacturer’s instruc-

tions and then used in standard Taq (Sigma) PCR reactions using

gene specific primers (Table S3).

Microarray Analysis
The microarray was constructed by determining all unique

genes from the predicted coding sequences of C. difficile strains 630,

QCD-32g58, 196, R20291 plasmid pCD630. Multiple optimal

hybridisation 60-mer oligonucleotide sequences were designed

(Oxford Gene Technologies), from which a minimal non-

redundant subset of oligonucleotides were selected with a target

coverage of three 60-mers per gene. Arrays were manufactured on

the Inkjet in situ synthesized platform (Agilent) using the 8615 k

format.

Competitive genomic DNA/RNA hybridizations were carried

out according to standard Agilent protocols. Briefly, 5 mg of total

RNA was labelled with Cy3 via reverse transcription using

SuperScript II (Invitrogen). 1 mg of gDNA was labelled with

Cy5 using Exo-Klenow fragment. Both labelling reactions were

cleaned-up using the PCR Purification MiniElute Kit (Qiagen).

Cy3-labeled cDNA and Cy5-labeled gDNA were mixed with 106
blocking agent and hybridization buffer and incubated for 3 min

at 95uC and 30 min at 37uC. Samples were then applied to a C.

difficile OGT array CDv2.0.1 (BmG@S) and incubated for 24 h in

a hybridization oven set to 65uC. The microarray slide was

washed, fixed in acetonitryl, dried and scanned using an Agilent

G2565CA Scanner. Microarray data extraction was performed

using ImaGene software (BioDiscovery), and further processed

using MAVI Pro software (MWG Biotech). Normalization and

statistical analysis were performed using GeneSpring v7.3.1

software (Agilent Technologies). Briefly, gene specific data was

derived from average intensity of between 1 and 5 oligonucleotide

reporters. Gene values below 0.01 were set to 0.01. Each gene’s

measured intensity was divided by its control channel value in

each sample; if the control channel was below 10 then 10 was used

instead. If the control channel and the signal channel were both

below 10 then no data was reported. Each measurement was

divided by the 50th percentile of all measurements in that sample.

Replicate time points were normalized to the 180 minute time

point: each measurement for each gene was divided by the median

of that gene’s measurements in the corresponding control samples.

Following the initial experiment covering eight time points (09,

159, 309, 459, 609, 909, 1209 and 1809), two additional biological

replicates were carried out for time points 309, 609, 909 and 1809.

Each time point was independently tested versus 180 min using 1-

way ANOVA using Benjamini-Hochberg multiple testing correc-

tion and p= 0.01 or 0.05.

Accession Numbers
The array design (CDv2.0.1) is deposited in BmG@Sbase

(Accession No. A-BUGS-49; http://bugs.sgul.ac.uk/A-BUGS-49)

and ArrayExpress (Accession No. A-BUGS-49). Fully annotated

microarray data have been deposited in BmG@Sbase (accession

number E-BUGS-145; http://bugs.sgul.ac.uk/E-BUGS-145) and

also ArrayExpress (accession number E-BUGS-145).

Supporting Information

Figure S1 RNA quality control. A) Gradual increase in RNA

yield observed during spore germination. B) Bioanalyzer pseudogel

with RNA Integrity (RIN) values C) Bioanalyzer electrophero-

grams showing two distinct peaks corresponding to 16S and 23S

rRNA. In addition, two smaller rRNA species were identified in

dormant spores and in early germination, represented by small

peaks on Bioanalyzer spectra. 5S rRNA peak visible at retention

time 23 seconds.

(DOCX)

Table S1 List of genes up and down regulated during
germination.

(XLS)

Table S2 Abundant spore transcripts.

(XLS)

Table S3 Primers used in this study.

(DOCX)
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