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Abstract

Identification of potential virus–host interactions is useful and vital to control the highly infectious virus-caused diseases.
This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically
and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been pub-
lished. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of
proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for
prediction of novel virus–host interactions for infectious diseases followed by a case study on EBOV–human interactions.
The assessment result shows that the predicted human host proteins are highly similar with known human interaction
partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways
and host–pathogen relationships.
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Introduction

Infectious diseases are still among the major and prevalent
death causes in human mostly because of the unknown patho-
genic mechanisms of viruses [1]. The eukaryotic hosts are dir-
ectly affected by the viral pathogens through complex
interaction mechanisms [2]. The molecular-level interactions
between the virus and their host play a key role here. Thus, the

virus–host protein–protein interactions (PPIs) are crucial for bet-
ter understanding of the infection mechanism and pathogen-
esis of infectious diseases [3, 4].

In proteomic studies, PPI prediction remains a hot topic for
decades. Owing to the limitation of proteomic data, most of the
previous studies were focused on predicting intra-species PPIs,
i.e. interactions within a single organism. In recent analysis,
several improvements have been reported in PPI predictions
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between different organisms, i.e. inter-species. These types of
PPI prediction methods offer important information for further
analysis of infection mechanisms between different species.
PPIs between virus and host proteins allow pathogenic
microorganisms to manipulate host mechanisms to use host
capabilities and to escape from host immune responses [5–8].
Therefore, a complete understanding of infection mechanisms
through PPIs is crucial for the development of new and more ef-
fective therapeutics.

The computational PPI prediction methods primarily use se-
quence information [9–14], domain-based [5, 15–17], protein struc-
ture [18–21], physiochemical properties [22], semantic analysis [23,
24] and known interactions between virus and host proteins [25].
Classical machine learning techniques are well-accepted tools for
PPI predictions when there are sufficient numbers of known inter-
actions. In contrast, prediction of inter-species (virus–host) PPI is
relatively young field of study, which requires new model-based
approaches. To tackle the problem of data scarcity, eliciting and
transferring data from related domains to a desired formulation
can be a promising solution [26, 27]. Multitask learning [28–30]
uses relationship among different domains and learns the prob-
lem simultaneously, which leads to a better performance rather
conducting learning task on individual domain.

In this article, we concentrate on the computational
approaches regarding the prediction of virus–host interactions,
followed by a case study on prediction of novel interactions be-
tween Ebola virus (EBOV) and human host proteins. We also
present a brief cluster analysis on the predicted host proteins.
This analysis includes the infection pathways and functional
annotations that can be valuable in prevention, diagnosis and
treatment of EBOV-infected diseases.

Computational approaches

Several computational approaches have been developed to predict
novel host–virus protein interactions. Depending on the availabil-
ity of the interaction information, different predictive models
have been proposed in novel host–virus interaction predictions.
Becerra et al. [31] have proposed short linear motifs-based predict-
ing method for PPIs between HIV-1 and human proteins. They
have implemented three filtering methods to obtain linear motif
sets: (i) conserved in viral proteins (C), (ii) located in disordered re-
gions (D) and (iii) rare or scarce in a set of randomized viral se-
quences (R). Finally, these three sets have used to find the
disordered protein regions among the HIV-1 sequences and host
sequences. Their study shows that the majority of conserved lin-
ear motifs in the virus are located in disordered regions. In [32],
Segura et al. proposed a method to model viral–human interaction
network using motif–domain interactions.

Kharrat et al. [33] used structure sequence to cluster human
viral proteomes. They analyzed the charged residue of amino
acid composition (AC) between the viral and target host proteins
and provided a better understanding of several pathological and
biological processes (BPs). The charged residues in protein se-
quences mediate the interactions and play an important role in
protein transport, localization and regulatory functions.

Mukhopadhyay et al. [34, 35] proposed a bi-clustering ap-
proach to predict HIV-1-infected human proteins applying
interaction-based analysis. A set of association rules was mined
by bi-clustering technique from the interaction between HIV-1
proteins. Finally, a set of high-confidence rule was extracted to
predict novel human protein interactions. As a further improve-
ment to their work, Mukhopadhyay et al. [36] introduced type
and direction (host-to-virus and virus-to-host)-based bi-

clustering to existing interactions to predict novel host proteins.
Mondal et al. [37] also proposed a HIV–human interaction pre-
diction method using hierarchical bi-clustering and minimal
covers of association rule mining.

An approach for predicting future dominant hemagglutinin
gene of influenza A virus was proposed by Plotkin et al. [38] and
antigenic evolution over the host genes were analyzed. The
spatiotemporal distribution of viral swarm and the evolution of
hemagglutinin structure were analyzed for clustering. Finally, a
critical length scaling in amino acid space was applied to cluster
the viral sequences.

A sequence-based hierarchical clustering approach over the
EBOV and influenza virus was introduced in [39]. In a study by
Spencer et al. [40], phosphorylation clustering was applied over
the infection of bronchitis virus protein. Sequence similarity-
based domain–domain interaction detection was proposed by
Schleker et al. [41]. Salmonella–human interaction was predicted
by this method. Several approaches proposed on Salmonella–
human interaction predictions [42, 43].

Support Vector Machine (SVM) based approaches were suc-
cessfully applied in virus–host protein interaction prediction
studies [44, 45]. Cui et al. [44] proposed a SVM-based approach,
where they used fixed-length feature vector indicating relative
frequency of consecutive amino acids in the protein sequence.

Doolittle et al. [46] proposed a method to predict the inter-
actions between HIV-1 and human proteins based on protein
structural similarity, where two crystal structures are compared
with compute the structural similarity between host and patho-
gen proteins. The assumption is that, human proteins that have
high structural similarity to a HIV protein are identified and
their known interacting partners are considered as targets.
They applied similar approach for developing interaction net-
work between Dengue virus and the host [47].

Cao et al. [48] proposed a network-based approach to predict
EBOV–human interaction. They introduced a principle called
‘guilt by association’ (GBA) for their prediction method. The GBA
principle was stated as proteins interacting with each other are
likely to function similarly or the same. Based on this assump-
tion, they predicted EBOV infection-related human genes from
a PPI network using Dijkstra algorithm.

In several works [49–52], it has been reported that, molecular
mimicry plays a key role in viral–host pathogen interactions,
where a viral protein mimics similar structural binding surface
similar to that of a host protein. As a result, viral protein com-
petitively binds to another host protein and spread over the
host. From available experimental data [53–56], it has been sug-
gested that pathogenic agents extensively use the molecular
mimicry to their advantages.

Mei et al. [57] proposed transfer learning-based technique with
three different classifier, where each individual classifier was exe-
cuted on three gene ontology (GO)-based features. Finally, the
classifier ensembling was applied to produce final result using
weighting probability outputs of individual classifiers.

In addition, to analyze the biological activity of proteins, GO-
based semantic similarity creates an evolutionary orientation in
PPI [58–63]. GO annotation-based semantic similarity has been
regarded as one of the most powerful indicators for interaction
[23, 64]. Thus, structural and semantic similarity becomes valu-
able features for interaction prediction involving in novel host
protein. Table 1 summarizes the list of methods that have been
successfully applied in virus–host (human) interaction predic-
tion in the literature.

In the following sections, a case study on prediction of novel
EBOV–human interaction is discussed. The structural and
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GO-based semantic assessment scores are considered as effective
features of these predictive models with four classifiers. Finally a
cluster of predicted EBOV host is extracted from the prediction re-
sult. The known host proteins are considered as seed for the pre-
dictions, where unknown human proteins are considered as
target; thus, seed and target creates the interaction pair. The pre-
dictive analysis on these EBOV–human protein pairs is discussed
in the following sections. This assessment will facilitate the diag-
nosis and treatment of EBOV infections.

The role of Ebola glycoprotein in virus–host
interaction

The Ebola hemorrhagic fever by EBOV infection causes pervasive
human fatality and mortality. EBOV, a member of the Filoviridae
family, is a negative-sense RNA virus [65]. The EBOV genome con-
sists of seven genes, namely, nucleoprotein (NP), viral polymer-
ase complex protein 35 (VP35), matrix protein (VP40),
glycoprotein (GP), minor NP (VP30), membrane-associated protein
(VP24) and polymerase (L-protein) [66]. Among the seven genes of
EBOV, GP is the only viral protein that is present on the EBOV sur-
face and is responsible for mediating attachment to host cell sur-
face receptors and entry of the virus into host cells. Mature GP is
a trimer of three disulfide-linked GP1-GP2 heterodimers [67–69].
GP1 mediates adhesion of the virus to host cells and regulates

GP2, which carries out membrane fusion [70–72]. The EBOV virus
initially targets specific cell types, including liver cells, immune
system cells and endothelial cells. EBOV GP can damage cell ad-
hesion, so that cells do not remain attached to each other and to
the extracellular matrix. By targeting liver cells, EBOV disrupts
the mechanism of removal toxins from the bloodstream. The in-
fection leads to organ failure, fever and severe internal bleeding,
which ultimately leads to death [73].

The first step in EBOV infection is attachment to host cell sur-
face receptors. Specifically, EBOV GP allows the virus to introduce
its contents into monocytes, macrophages, dendritic cells and/or
endothelial cells [74–77], which causes the release of cytokines
associated with inflammation and fever. EBOV GP has been found
to be the most important factor required for EBOV entry into a
host cell by binding to surface receptors on the host cell [78]. EBOV
binds to human cells through various receptors expressed on the
cell membrane surface—C-type lectins, which interact with gly-
cans on EBOV GP [79–84], phosphatidylserine receptors, which
interact with phosphatidylserine on EBOV GP [85–92], and integ-
rins [93–95]. The cholesterol transporter, Niemann–Pick C1 (NPC1),
facilitates EBOV entry into host cells and the release of the virus
from the vacuole into the cytoplasm of the host [96, 97]. EBOV
entry into endosomal compartments is primarily achieved
through macropinocytosis, as well as other entry mechanisms,
such as clathrin-dependent endocytosis [91, 98–100].

Table 1. Computational approaches on virus host (human) interaction prediction

Interactors Approaches/methods References

Ebola–human Graph-based multitask learning-based approach [26]
Network similarity-based approach [48]

Dengue virus–human Sequence- and structure-based method [42]
Structural motif–domain interaction-based approach [32]
Structural similarity of DENV proteins to human proteins having known interactions [47]

Human papillomavir-
use–human

Relative frequency of amino acid triplets (RFATs), frequency difference of amino acid triplets
(FDATs) and AC

[45]

Fixed-length feature vector of protein sequence [44]
Hepatitis C virus–

human
Graph-based multitask learning-based approach [26]
RFATs, FDATs and AC [45]
Sequence, network topology, domain, GO and pathway-based kernel method [12]
Topological and functional properties of interaction network and domain interaction-based

method
[25]

Fixed-length feature vector of protein sequence [44]
Salmonella–human Sequence- and structure-based method [42]

Multi-instance homolog transfer-based approach [43]
Virus–host domain interaction, gene expression, pathway sharing and sequence-based [26, 28]
Obtain host–pathogen interactome using sequence and interacting domain similarity to known

PPIs
[41]

Homology detection method using template PPI databases [17]
Plasmodium falciparum–

human
K-mer-based sequence homology and pathway-based approach [14]
GO annotation and sequence filtering-based approach [10]
Homology detection method using template PPI databases [11]
Domain–domain interaction probability-based approach [6]

Influenza A–human Graph-based multitask learning-based approach [26]
Structural homology-based approach [21

HIV-1–human Short linear motifs-based approach [31]
Bi-clustering with association rule mining [34–36]
Sequence-based classifier ensembling [13]
Differential gene expression between virus and host [24]
Hierarchical bi-clusters and minimal covers of association rule-based approach [37]
Supervised learning and prediction of physical interactions [5]

Escherichia coli–human Homology detection method using template PPI databases [17]
Mycobacterium tubercu-

losis (H37Rv)–human
Stringent homology which uses inter-species template PPI [4]
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As EBOV GP mediates the entry of the virus into host cells,
its role is important and essential to understand the inter-
actions between EBOV GP and human cell surface receptors.
The list of known interactions between EBOV GP and human
with domain annotations is given in Table 2.

Structure-based similarity assessment

In structure-based analysis, each residue on the surface is com-
pared with the target residue to extract the structural neighbors.
A variety of features derived in different analysis [101–110] from
the structural component of virus–host protein pairs. In this
analytic approach, three-dimensional structure-based protein
features are incorporated to find the structural neighbors. Five
scoring metrics, Template modeling-score (TM-score) [111],
RMSD [112], MaxSub-score [113], GDT_score [114] and Tm-Rm
score [Equation (1)], are used to quantify the structural similar-
ity of two proteins.

TM-score [111] gives a value in the range (0, 1), where 1 indi-
cates a perfect match in topological similarity of two protein
structures. Scores <0.17 indicates no structural similarity,
whereas a score >0.5 suggests that the two structures have
similar fold. We use the TM align algorithm [115] for comparing
the structures of two proteins. This algorithm identifies the best
structural alignment between two proteins.

After the optimal superposition, RMSD [112] represents the
root-mean-square deviation of all the equivalent atom pairs of
two protein structures. In general, lower RMSD indicates better
superposition. For similar structural domain identification, data
sets like SCOP and CATH set a RMSD threshold of 5 Å. An RMSD
value <3 Å indicates a high degree of structural similarity.
However, a lower RMSD and higher TM-score indicate a better
structural similarity; thus, they are inversely related. In add-
ition, RMSD value 0 and TM-score 1 represent optimal structural
similarity.

MaxSub-score method [113] identifies the largest subset of
Ca atom of a protein structure that superimposes well over an-
other structure and provides a single normalized score. MaxSub
score ranges from 0 to 1, where 0 indicates a wrong superimpos-
ing and 1 indicates perfect superimposition [113].

The global distance test (GDT) score [114] is calculated as the
largest set of residue-based Ca atoms in a structure falling
within a defined distance cutoff of their position with respect to
other structure. An increase in GDT may indicate an extreme

divergence between a structure pair, such that no additional
atoms are included in any cutoff of a reasonable distance [116].

Finally, a new structural similarity-based property is defined
using both TM-score and RMSD.

Tm Rm ¼ 1
2
fð1� RMSD

3
Þ þ TMscoreg: (1)

Here, the RMSD score is restrict up to 3 Å for higher struc-
tural similarity. In Equation (1), any RMSD value <3 Å will con-
tribute positively with TM-score.

GO-based semantic assessment

The semantic similarity between human proteins is estimated
by combining the similarities of their annotating GO term pairs
belonging to a particular ontology [e.g. molecular function (MF),
BP, cellular component (CC)]. Similarity of a GO term pair is
determined by considering certain topological properties (short-
est path length) of the GO graph and the average information
content (IC) of the disjunctive common ancestors (DCAs) of the
GO terms as proposed in [23].

In this measure, to estimate the semantic similarity between
two GO terms t1 and t2, first certain GO terms are selected as
cluster centers based on a value called propTerms(t) assigned to
each GO term t in the GO graph, which gives the proportion of
GO terms connected directly and indirectly to t in the ontology.
The GO terms for which this propTerms value is above a given
threshold are selected as cluster centers. The threshold values
for selecting cluster centers with respect to MF, CC and BP ontol-
ogies are given in Table 3. Depending on the interaction predic-
tion result, the threshold values are chosen. Initially, threshold
value is started from 0.1 and gradually increases. With the
increasing threshold value, the area under receiver operating
characteristic (ROC) curve (AUC) is determined with the varying
k (width of Gaussian function) values (from 1 to 10). Finally, the

Table 2. Known human target proteins of EBOV GP

Functional group Gene name Protein name

C-type lectin domain family CLEC4M [82] Liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN)
CLEC4G [83] Liver and lymph node sinusoidal endothelial cell C-type lectin (LSECTIN)
CLEC10A [81] Human macrophage galactose-and N-acetyl-galactosamine-specific C-type lectin (hMGL)

Dendritic cell-specific intercellular
adhesion molecule (ICAM)

CD209 [82] Dendritic cell-specific intercellular adhesion molecule-3-grabbingnon-integrin (DC-SIGN)

Tyrosine-protein kinase receptor AXL [90] Tyrosine-protein kinase receptor UFO
TYRO3 [89] Tyrosine-protein kinase receptor TYRO3
MER [89] Tyrosine-protein kinase Mer

T-cell immunoglobulin and
mucin domain

TIM1 [85] T-cell immunoglobulin and mucin domain-containing protein 1
TIM4 [79] T-cell immunoglobulin and mucin domain-containing protein 4

Integrin domain ITGB1 [94] Integrin beta-1
ITGA5 [93] Integrin alpha-5

Lactadherin MFGE8 [92] Lactadherin
Growth arrest-specific protein GAS6 [79] Growth arrest-specific protein 6

Table 3. GO-based cluster center threshold with k-value

GO Cluster center threshold Width k

MF 0.18 2
CC 0.55 1
BP 0.31 3
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threshold and k are chosen for which the AUC score is highest.
After selecting the cluster centers, the degree of membership of
a GO term to each of the selected cluster centers is calculated
using its respective shortest path lengths to the corresponding
cluster centers. The membership of the GO term to a cluster de-
creases with increase in its shortest path length to the cluster
center. Next, using the difference in membership values of the
GO terms t1 and t2 with respect to each cluster center, a weight
parameter is defined as one minus the maximum membership
difference value. This weight value determines how dissimilar
two GO terms can be with respect to the cluster centers. Next,
the average IC [117], of the DCAs of GO terms t1 and t2, is deter-
mined. Finally, the semantic similarity between the two GO
terms t1 and t2 is defined as the product of the weight parameter
and the average IC of the DCAs of the two GO terms.

To determine the semantic similarity scores for protein
pairs, the semantic similarity scores of their respective GO
terms are combined using the best-match average approach
[118, 119]. Here, the semantic similarity is estimated with re-
spect to BP, CC and MF ontologies of the GO database [120]
separately.

Data sources
Ontology data

Ontology data are downloaded from the GO database [121, 120]
(dated July 2015) containing 43 368 ontology terms subdivided
into 28 539 BP terms, 10 868 MF terms and 3961 CC terms.

GO annotation data

GO annotations for human proteins are downloaded from the
Uniprot database [122, 123].

Seed proteins

The seed human proteins (referred as set SD) for clustering are
those proteins that are known to interact with EBOV GP. These
known human seeds are assimilated from literature survey.
The list of known target human proteins (seeds in our approach)
of EBOV GP is given in Table 2.

Target proteins

The target human proteins are collected from Uniprot database
[122, 123].These target proteins are selected such that they are
the first-level interaction partner of the human seed proteins
and have structural information in Protein Data Bank (PDB)
[124]. In addition, human protein interaction information is col-
lected from DIP [125], MINT [126], BioGrid [127], STRING [128]
and iRefWeb [129] databases.

Clustering analysis

The cluster analysis strategy is designed by integrating four
classifiers, namely, Decision Tree (DT) Classifier [130],
KNeighbors (KNN) Classifier [131], SVM [132] and Gaussian
Naive Bayes (GNB) [133, 134]. A 3-fold cross-validation is done in
case of all four classifiers and their respective ROC curves [135]
are given in Figure 1. A pairwise relation with respect to seed
proteins is generated with the above-defined structural and se-
mantic features. All pairwise combinations, (Seedi, Seedj) within
the set SD, are considered as the positive samples for the classi-
fiers. The negative data have created as a pair of proteins
(Seedk, Nseedp) where Seedk 2 SD and Nseedp are the proteins
that have no interaction evidence with seed proteins and EBOV
proteins. Finally, all classifier results are aggregated for final
cluster. In this proposed work, we consider only those novel
interactions where classification results are in agreement with
all the classifiers to obtain more accurate cluster. The basic
workflow of clustering is shown in Figure 2.

Figure 1. ROC curves of DT, KNN, SVM and GNB. (A colour version of this figure is available online at: https://academic.oup.com/bfg)
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Figure 2. The workflow of cluster analysis based on known human target proteins of EBOV GP using DT, KNN, SVM and GNB. (A colour version of this figure is available

online at: https://academic.oup.com/bfg)

Table 4. Significant common KEGG pathways found in known and new human proteins

Serial number KEGG Term Host New host

% of proteins P-value % of proteins P-value

1 hsa05162 Measles 15.38 5.7E-2 22.52 7.8E-4
2 hsa04145 Phagosome 30.77 1.1E-5 27.27 3.10E-06
3 hsa05203 Viral carcinogenesis 18.22 1.30E-11 33.21 5.30E-09
4 hsa05152 Tuberculosis 15.31 7.5E-2 17.07 4.80E-02
5 hsa05133 Pertussis 25.81 3.2E-2 14.34 5.0E-3
6 hsa05205 Proteoglycans in cancer 12.23 8.40E-03 18.79 2.90E-02

Table 5. Significant common GO terms (biological process) found in known and new human proteins

Term Host New host

% of proteins P-value % of proteins P-value

Antigen processing and presentation 35.38 3.50E-02 21.73 7.40E-06
Modulation by virus of host morphology or physiology 15.32 4.60E-03 24.22 5.60E-04
Innate immune response 30.7 2.40E-03 17.39 2.50E-02
Viral genome replication 23.08 3.50E-05 13.62 1.80E-02
Integrin-mediated signaling pathway 14.83 6.30E-02 28.19 4.70E-04
Platelet activation 16.61 5.00E-05 18.4 6.80E-02

Table 6. Significant common GO terms (molecular function) found in known and new human proteins

Serial number KEGG Term Host New host

% of proteins P-value % of proteins P-value

1 GO:0001618 Virus receptor activity 61.54 1.20E-14 19.43 3.20E-06
2 GO:0001786 Phosphatidylserine binding 33.17 2.10E-06 17.3 4.20E-07
3 GO:0004714 Transmembrane receptor protein tyrosine kinase activity 23.08 3.20E-04 9.8 1.60E-03
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Discussion

The predictive model is able to retrieve the potential human
proteins, which may interact with EBOV GP and facilitate entry
of the virus into host cells. Structural and GO-based functional
annotation is considered as the key point of this analysis. In
this analysis, total 10 EBOV GP hosts are selected as seed
(Table 2). Among them, only 28 pairs of structural comparison
are possible and considered as positive data pair for training. In
addition, 28 pairs of negative data are manually created for the
classifiers. A new test data are created from human proteins
with respect to each seed proteins and those have structural in-
formation. These proteins are selected as the first-level interac-
tor of EBOV GP host and train \ test ¼ /. Finally, total 116
proteins are resulted from the cluster as the potential EBOV
host. To establish the involvement of these proteins in viral in-
fection, we have found some common pathway from KEGG
database (http://www.genome.jp/kegg/). A set of pathways
(hsa05162:Measles, hsa04145:Phagosome, hsa05203:Viral car-
cinogenesis, hsa05152:Tuberculosis, hsa05133:Pertussis and
hsa05205:Proteoglycans in cancer) is found as common between
the EBOV GP host and these cluster proteins (shown in Table 4).
A GO-based functional analysis over these proteins is shown in
Tables 5–7. These proteins share many biological activities
related to virus receptor, immune response and viral genome
replication with the known EBOV GP interactor.

Conclusion

In this article, we have reviewed the diverse level of host–virus
interaction predictions across the variety of pathogenic species
and their human host. These computational methods may have
important roles in paving the way of experimental verification
of virus–host interactions by highlighting high potential inter-
actions. Depending on the availability of the required data,
some virus–host interaction mechanisms are well studied and
targeted in more research. The main challenge for computa-
tional virus-interaction predictions is the lack of available veri-
fied interactions and the relevant feature information in most
of the prediction methods. Finally, a case study-based analysis
is proposed on EBOV–human interaction prediction. Here, four
different classifiers, DT Classifier [130], KNN Classifier [131],
SVM [132] and GNB [133, 134], are used for predictions. In this
approach, a cluster of potential human proteins is retrieved
from the predicted novel interactions. These sets of proteins
have close structural and semantic similarities with known
EBOV GP human target proteins, and this may facilitate EBOV
entry into host cells through interaction with EBOV GP. For
defining the structural similarity feature, we use five scores,
namely, TM-score [111], RMSD [112], MaxSub-score [113],

GDT_score [114] and Tm-Rm score [Equation (1)]. The semantic
similarity feature is determined by GO graph-based properties.
The proteins predicted by this method are highly likely to inter-
act with EBOV GP and facilitate EBOV entry into human cells.
This method would enlighten the promising future direction for
novel host–virus interactions.

Key Points

• The review presents computational approaches to-
ward the host–virus interaction-based predictive
models.

• EBOV, a member of Filoviridae family, is a negative-
sense RNA virus that causes high fatality rate in
humans. Among the seven genes of Ebola, GP is re-
sponsible for mediating attachment to host cell sur-
face receptors and entry of the virus into host cells.

• A case study-based analysis on novel EBOV–human
protein interactions prediction using structural and
semantic similarity features.

• Structural similarity feature is defined using five struc-
tural alignment scores, namely, TM-score, RMSD,
MaxSub-score and Tm-Rm score. The semantic simi-
larity feature is determined by using properties of the
GO graph and IC of GO terms.

• Finally, the pathway and GO-based functional annota-
tion is provided for novel EBOV–human interactions.

Funding

This work is partially supported by the CMATER research la-
boratory of the Computer Science and Engineering Department,
Jadavpur University, India, PURSE-II and UPE-II project and
Research Award [F.30-31/2016(SA-II)] from University Grants
Commission, Government of India and Visvesvaraya PhD
scheme from DeitY, Government of India.

References
1. Bennett JE, Dolin R, Blaser MJ. Principles and Practice of

Infectious Diseases. Philadelphia: Elsevier Health Sciences,
2014.

2. Arnold R, Boonen K, Sun MGF, et al. Computational analysis
of interactomes: current and future perspectives for bio-
informatics approaches to model the host–pathogen inter-
action space. Methods 2012;57(4):508–18.

3. Zhou H, Jin J, Wong L. Progress in computational studies of
host–pathogen interactions. J Bioinform Comput Biol 2013;
11(02):1230001.

Table 7. Significant common GO terms (cellular component) found in known and new human proteins

Serial number KEGG Term Host New host

% of proteins P-value % of proteins P-value

1 GO:0005615 Extracellular space 31.87 5.40E-02 19.56 5.50E-06
2 GO:0009986 Cell surface 26.14 4.70E-03 17.97 7.10E-03
3 GO:0005886 Plasma membrane 53.84 3.50E-02 28.2 7.70E-02
4 GO:0001726 Ruffle 22.15 5.80E-02 9.6 4.50E-03

Computational methods for virushost interaction prediction | 387

Deleted Text: are 
Deleted Text: GO 
Deleted Text: are 
Deleted Text: see 
Deleted Text: is 
Deleted Text: the 
Deleted Text: is 
Deleted Text: This 
Deleted Text: first 
http://www.genome.jp/kegg/
Deleted Text: ,
Deleted Text: GO 
Deleted Text: are 
Deleted Text: ,
Deleted Text: paper
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: study 
Deleted Text: -
Deleted Text: Decision Tree
Deleted Text: KNeighbors
Deleted Text: Gaussian Naive Bayes
Deleted Text: are 
Deleted Text: very 
Deleted Text: the 
Deleted Text: (
Deleted Text: equation 
Deleted Text: graph 
Deleted Text: host 
Deleted Text: s
Deleted Text: -
Deleted Text: interaction 
Deleted Text: study 
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: information content
Deleted Text: GO 
Deleted Text: -
Deleted Text: Acknowledgement
Deleted Text: (


4. Zhou H, Gao S, Nguyen NN, et al. Stringent homology-based
prediction of H. Sapiens-M. tuberculosis h37rv protein-protein
interactions. Biol Direct 2014;9(1):5.

5. Dyer MD, Murali TM, Sobral BW. Supervised learning and
prediction of physical interactions between human and HIV
proteins. Infect Genet Evol 2011;11(5):917–23.

6. Dyer MD, Murali TM, Sobral BW. Computational prediction of
host-pathogen protein–protein interactions. Bioinformatics
2007;2313:i159–66.

7. Dyer MD, Murali TM, Sobral BW. The landscape of human
proteins interacting with viruses and other pathogens. PLoS
Pathog 2008;4(2):e32.

8. Dyer MD, Neff C, Dufford M, et al. The human-bacterial patho-
gen protein interaction networks of Bacillus anthracis, Francisella
tularensis, and Yersinia pestis. PLoS One 2010;5(8):e12089.

9. Shen J, Zhang J, Luo X, et al. Predicting protein–protein inter-
actions based only on sequences information. Proc Natl Acad
Sci USA 2007;104(11):4337–41.

10. Lee SA, Chan Ch, Tsai CH, et al. Ortholog-based protein-protein
interaction prediction and its application to inter-species
interactions. BMC Bioinformatics 2008;9(Suppl 12):S11.

11. Krishnadev O, Srinivasan N. A data integration approach to
predict host-pathogen protein-protein interactions: applica-
tion to recognize protein interactions between human and a
malarial parasite. Silico Biol 2008;8(3, 4):235–50.

12. Nourani E, Khunjush F, Durmu S. Computational
approaches for prediction of pathogen-host protein-protein
interactions. Front Microbiol 2015;6:94.

13. Mei S. Probability weighted ensemble transfer learning for
predicting interactions between hiv-1 and human proteins.
PLoS One 2013;8(11):e79606.

14. Wuchty S. Computational prediction of host-parasite pro-
tein interactions between P. falciparum and H. sapiens. PLoS
One 2011;6(11):e26960.

15. Chatterjee P, Basu S, Kundu M, et al. PPI_SVM: Prediction of
protein-protein interactions using machine learning,
domain-domain affinities and frequency tables. Cell Mol Biol
Lett 2011;16(2):264.

16. Itzhaki Z. Domain-domain interactions underlying herpes
virus-human protein-protein interaction networks. PLoS One
2011;6(7):e21724.

17. Krishnadev O, Srinivasan N. Prediction of protein–protein
interactions between human host and a pathogen and its
application to three pathogenic bacteria. Int J Biol Macromol
2011;48(4):613–9.

18. Song H, Qi J, Haywood J, et al. Zika virus NS1 structure reveals
diversity of electrostatic surfaces among flaviviruses. Nat
Struct Mol Biol 2016;23(5):456–8.

19. Tyagi M, Hashimoto K, Shoemaker BA, et al. Large-scale
mapping of human protein interactome using structural
complexes. EMBO Rep 2012;13(3):266–71.

20. Franzosa EA, Xia Y. Structural principles within the human-
virus protein-protein interaction network. Proc Natl Acad Sci
USA 2011;108(26):10538–43.

21. De Chassey B, Meyniel-Schicklin L, Aublin-Gex A, et al.
Structure homology and interaction redundancy for dis-
covering virus–host protein interactions. EMBO Rep 2013;
14(10):938–44.

22. Nourani E, Khunjush F, Durmuş S. Computational prediction
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32. Segura-Cabrera A, Garcı́a-Pérez CA, Guo X, et al. A viral-
human interactome based on structural motif-domain
interactions captures the human infectome. PLoS One 2013;
8(8):e71526.

33. Kharrat N, Belmabrouk S, Abdelhedi R, et al. Screening for
clusters of charge in human virus proteomes. BMC Genomics
2016;17(9):758.

34. Mukhopadhyay A, Maulik U, Bandyopadhyay S, et al. Mining
association rules from HIV-human protein interactions. In:
2010 International Conference on Systems in Medicine and Biology
(ICSMB), pp. 344–8. IIT Kharagpur, India: IEEE, 2010.

35. Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel
biclustering approach to association rule mining for predict-
ing HIV-1-human protein interactions. PLoS One 2012;7(4):
e32289.

36. Mukhopadhyay A, Ray S, Maulik U. Incorporating the type
and direction information in predicting novel regulatory
interactions between HIV-1 and human proteins using a
biclustering approach. BMC Bioinformatics 2014;15(1):26.

37. Mondal KC, Pasquier N, Mukhopadhyay A, et al. Prediction of
protein interactions on HIV-1-human PPI data using a novel
closure-based integrated approach. In: International
Conference on Bioinformatics Models, Methods and Algorithms,
pp. 164–173. Vilamoura, Algrave, Portugal: SciTePress, 2012.

38. Plotkin JB, Dushoff J, Levin SA. Hemagglutinin sequence
clusters and the antigenic evolution of influenza A virus.
Proc Natl Acad Sci USA 2002;99(9):6263–8.

39. Abdel-Azim G. New hierarchical clustering algorithm for
protein sequences based on Hellinger distance. Appl Math
2016;10(4):1541–9.

40. Spencer KA, Dee M, Britton P, et al. Role of phosphorylation
clusters in the biology of the coronavirus infectious bronchitis
virus nucleocapsid protein. Virology 2008;370(2):373–81.

41. Schleker S, Garcia-Garcia J, Klein-Seetharaman J, et al.
Prediction and comparison of salmonella? Human and

388 | Halder et al.



salmonella? Arabidopsis interactomes. Chem Biodivers 2012;
9(5):991–1018.

42. Mariano R, Wuchty S. Structure-based prediction of host–
pathogen protein interactions. Curr Opin Struct Biol 2017;44:
119–24.

43. Mei S, Zhu H. Adaboost based multi-instance transfer learn-
ing for predicting proteome-wide interactions between sal-
monella and human proteins. PLoS One 2014;9(10):e110488.

44. Cui G, Fang C, Han K. Prediction of protein-protein inter-
actions between viruses and human by an SVM model. BMC
Bioinformatics 2012;13(7):S5.

45. Kim B, Alguwaizani S, Zhou X, et al. An improved method for
predicting interactions between virus and human proteins.
J Bioinform Comput Biol 2017;15(01):1650024.

46. Doolittle JM, Gomez SM. Structural similarity-based predic-
tions of protein interactions between HIV-1 and Homo sapi-
ens. Virol J 2010;7(1):82.

47. Doolittle JM, Gomez SM. Mapping protein interactions be-
tween dengue virus and its human and insect hosts. PLoS
Negl Trop Dis 2011;5(2):e954.

48. Cao H, Zhang Y, Zhao J, et al. Prediction of the Ebola virus in-
fection related human genes using protein-protein inter-
action network. Comb Chem High Throughput Screen 2017, doi:
10.2174/1386207320666170310114816.

49. Prehna G, Ivanov MI, Bliska JB, et al. Yersinia virulence de-
pends on mimicry of host Rho-family nucleotide dissoci-
ation inhibitors. Cell 2006;126:869–80.

50. Stebbins CE, Galán JE. Structural mimicry in bacterial viru-
lence. Nature 2001;412(6848):701.

51. Abbasi I, Githure J, Ochola JJ, et al. Diagnosis of Wuchereria
bancrofti infection by the polymerase chain reaction employ-
ing patients’ sputum. Parasitol Res 1999;85(10):844–9.

52. Zhao N, Pang B, Shyu CR, et al. Structural similarity and clas-
sification of protein interaction interfaces. PLoS One 2011;
6(5):e19554.

53. Ogmen U, Keskin O, Aytuna AS, et al. PRISM: protein inter-
actions by structural matching. Nucleic Acids Res 2005;
33(Suppl 2):W331–6.

54. Winter C, Henschel A, Kim WK, et al. SCOPPI: a structural
classification of protein–protein interfaces. Nucleic Acids Res
2006;34(Suppl 1):D310–4.

55. Teyra J, Paszkowski-Rogacz M, Anders G, et al. SCOWLP clas-
sification: structural comparison and analysis of protein
binding regions. BMC Bioinformatics 2008;9(1):9.

56. Keskin O, Nussinov R, Gursoy A. PRISM: protein-protein
interaction prediction by structural matching. Methods Mol
Biol 2008;484:505–21.

57. Mei S, Flemington EK, Zhang K. A computational framework
for distinguishing direct versus indirect interactions in
human functional protein–protein interaction networks.
Integr Biol 2017;9:595–606.

58. Bohn-Wippert K, Tevonian EN, Megaridis MR, et al.
Similarity in viral and host promoters couples viral reactiva-
tion with host cell migration. Nat Commun 2017;8:15006.

59. Yu G, He QY. Functional similarity analysis of human virus-
encoded miRNAs. J Clin Bioinform 2011;1(1):15.

60. Zhang SB, Tang QR. Protein–protein interaction inference
based on semantic similarity of gene ontology terms. J Theor
Biol 2016;401:30–7.

61. Jain S. and Others. An improved method for scoring protein-
protein interactions using semantic similarity within the
gene ontology. BMC Bioinformatics 2010;11(1):562.

62. Cui G, Han K. Scoring protein-protein interactions using the
width of gene ontology terms and the information content

of common ancestors. In: International Conference on
Intelligent Computing. Nanning, China: Springer, 2013, 31–6.

63. Cui G, Kim B, Alguwaizani S, et al. Assessing protein-protein
interactions based on the semantic similarity of interacting
proteins. Int J Data Min Bioinform 2015;13(1):75–83.

64. Ikram N, Qadir M, Afzal M. Investigating correlation between
protein sequence similarity and semantic similarity using
gene ontology annotations. IEEE/ACM Trans Comput Biol
Bioinforma 2017, doi: 10.1109/TCBB.2017.2695542.

65. Geisbert TW, Jahrling PB. Exotic emerging viral diseases:
progress and challenges. Nat Med 2004;10:S110–21.

66. Sanchez AS, Khan AS, Zaki SR, et al. Filoviridae: Marburg and
Ebola viruses: pathology and pathogenesis. In: Knipe DM,
Howley PM (eds), Field’s Virol, Vol. 1, Philadelphia: Williams
and Wilkins, 2001, 1293.

67. Volchkov VE. Processing of the Ebola virus glycoprotein. Curr
Top Microbiol Immunol 1999;235:35–47.

68. Sanchez A, Yang ZY, Xu L, et al. Biochemical analysis of the
secreted and virion glycoproteins of Ebola virus. J Virol 1998;
72(8):6442–7.

69. Jeffers SA, Sanders DA, Sanchez A. Covalent modifications
of the Ebola virus glycoprotein. J Virol 2002;76(24):12463–72.

70. Weissenhorn W, Carfı́ A, Lee KH, et al. Crystal structure of
the Ebola virus membrane fusion subunit, GP2, from the en-
velope glycoprotein ectodomain. Mol Cell 1998;2(5):605–16.

71. Ito H, Watanabe S, Sanchez A, et al. Mutational analysis of
the putative fusion domain of Ebola virus glycoprotein.
J Virol 1999;73(10):8907–12.

72. Feldmann H, Volchkov VE, Volchkova VA, et al. Biosynthesis
and role of filoviral glycoproteins. J Gen Virol 2001;82(12):
2839–48.

73. Chertow DS, Kleine C, Edwards JK, et al. Ebola virus disease
in West Africa-clinical manifestations and management.
N Engl J Med 2014;371(22):2054–7.

74. Yang Zy, Duckers HJ, Sullivan NJ, et al. Identification of the
Ebola virus glycoprotein as the main viral determinant of vas-
cular cell cytotoxicity and injury. Nat Med 2000;6(8):886–9.
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