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ABSTRACT
Recipients of chimeric antigen receptor-modified T 
(CAR-T) cell therapies for B cell malignancies have 
profound and prolonged immunodeficiencies and are 
at risk for serious infections, including respiratory 
virus infections. Vaccination may be important for 
infection prevention, but there are limited data 
on vaccine immunogenicity in this population. We 
conducted a prospective observational study of the 
humoral immunogenicity of commercially available 
2019–2020 inactivated influenza vaccines in adults 
immediately prior to or while in durable remission 
after CD19-, CD20-, or B cell maturation antigen-
targeted CAR-T-cell therapy, as well as controls. We 
tested for antibodies to all four vaccine strains using 
neutralization and hemagglutination inhibition (HAI) 
assays. Antibody responses were defined as at least 
fourfold titer increases from baseline. Seroprotection 
was defined as a HAI titer ≥40. Enrolled CAR-T-cell 
recipients were vaccinated 14–29 days prior to 
(n=5) or 13–57 months following therapy (n=13), 
and the majority had hypogammaglobulinemia and 
cellular immunodeficiencies prevaccination. Eight 
non-immunocompromised adults served as controls. 
Antibody responses to ≥1 vaccine strain occurred in 2 
(40%) individuals before CAR-T-cell therapy and in 4 
(31%) individuals vaccinated after CAR-T-cell therapy. 
An additional 1 (20%) and 6 (46%) individuals had at 
least twofold increases, respectively. One individual 
vaccinated prior to CAR-T-cell therapy maintained 
a response for >3 months following therapy. Across 
all tested vaccine strains, seroprotection was less 
frequent in CAR-T-cell recipients than in controls. 
There was evidence of immunogenicity even among 
individuals with low immunoglobulin, CD19+ B 
cell, and CD4+ T-cell counts. These data support 
consideration for vaccination before and after 
CAR-T-cell therapy for influenza and other relevant 
pathogens such as SARS-CoV-2, irrespective of 
hypogammaglobulinemia or B cell aplasia. However, 
relatively impaired humoral vaccine immunogenicity 
indicates the need for additional infection-prevention 

strategies. Larger studies are needed to refine our 
understanding of potential correlates of vaccine 
immunogenicity, and durability of immune responses, 
in CAR-T-cell therapy recipients.

BACKGROUND
Chimeric antigen receptor-modified T 
(CAR-T) cell therapies are increasingly used 
to treat B cell-lineage lymphoma, leukemia, 
and multiple myeloma. CAR-T-cell recipi-
ents are immunocompromised from their 
underlying malignancy and prior antitumor 
treatments, in addition to CAR-T-cell therapy 
related factors including lymphodepleting 
chemotherapy and ‘on-target/off-tumor’ 
depletion of non-malignant B-lineage cells 
expressing the CAR-T-cell targets.1 2

Strategies to prevent infections after CAR-T-
cell therapy are not well established. Vaccina-
tion is a potentially cost-effective and durable 
approach to preventing infection or severe 
disease from relevant pathogens, but data 
regarding vaccine immunogenicity in CAR-T-
cell therapy recipients are limited.3–5

Respiratory tract infections, particularly 
with viruses, are the most common infec-
tious complication after CAR-T-cell therapy, 
and influenza has been reported as a cause 
of death.2 6 7 Thus, there is an urgent need 
to understand the utility of influenza vacci-
nation prior to and after CAR-T cell therapy, 
and to inform the broader question of vaccine 
immunogenicity in these patients.

We report the results of a prospective 
observational study of the humoral immuno-
genicity of the inactivated influenza vaccine 
(IIV) among CAR-T-cell therapy recipients 
vaccinated before or after CAR-T-cell therapy 
compared with controls.
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METHODS
Study design and participants
We approached all adults  ≥18 years planning to receive 
a 2019–2020 season IIV before or after CD19-, CD20- or 
B cell maturation antigen (BCMA)-CAR-T-cell therapy at 
Fred Hutchinson Cancer Center (Fred Hutch). A control 
cohort included non-immunocompromised Fred Hutch 
employees. In the pre-CAR-T cohort, the IIV was admin-
istered after leukapheresis and  ≥2 weeks prior to CAR-
T-cell therapy. Exclusion criteria were immunoglobulin 
replacement therapy (IGRT) within 2 months prior to 
enrollment, bridging chemotherapy after vaccination, 
persistent or relapsed disease after CAR-T-cell therapy, 
or initiation of new antitumor therapies. All participants 
provided informed consent in accordance with the Decla-
ration of Helsinki.

Inactivated influenza vaccines
CAR-T-cell recipients received commercially available 
trivalent or quadrivalent 2019–2020 Northern Hemi-
sphere IIVs (as detailed in table  1 and online supple-
mental table S1). Controls received a quadrivalent IIV 
(Flucelvax, Seqirus).

Data and blood collection
Data were abstracted from medical records or directly 
obtained from controls. In the pre-CAR-T cohort, blood 
samples were obtained before vaccination (baseline), 
before lymphodepleting chemotherapy, and approx-
imately 30 days and 90 days after CAR-T-cell therapy 
(online supplemental figure S1). In the post-CAR-T 
cohort, samples were collected at baseline and once 
approximately 30–90 days after vaccination. In the control 
cohort, samples were obtained at baseline and 30 days, 60 
days, and 90 days after vaccination. Serum and periph-
eral blood mononuclear cells (PBMCs) were isolated and 
stored (online supplemental file 1).

Laboratory testing
We performed serum hemagglutination inhibition 
(HAI) assays for antibodies to all four vaccine strains. 
Postvaccine results for B(Yamagata) were excluded for 
individuals without confirmed receipt of a quadrivalent 
vaccine. The lower and upper limits of detection (LOD) 
were 10 and 1280, respectively. We also tested serum 
neutralizing antibody titers for H1 of the A(H1N1) 
strain.8 The lower and upper LOD ranged from 12.5 
to 25 and 2680 to 5369, respectively. We immunophe-
notyped B cells and T cells from PBMCs and measured 
total serum IgG, IgM, and IgA. Methods are detailed in 
the online supplemental file 1.

Outcomes
The primary outcome was an antibody response (sero-
conversion) to the respective vaccine strains at the first 
postvaccine time point, defined as an at least fourfold 
titer increase from baseline (or an HAI titer of ≥40 if the 
baseline titer was  <10).9 We also report the proportion 
of individuals with an at least twofold titer increase from 

baseline and HAI antibody titers ≥40, a threshold consid-
ered to correlate with seroprotection.10

Analyses
We compared baseline titers between cohorts using 
Kruskal-Wallis tests, and if significant, Dunn’s test was 
conducted for pairwise comparisons using the Holm step-
wise procedure to account for multiple comparisons. A 
value of half of the lower LOD was assigned for values 
below the LOD. We computed the proportion of indi-
viduals with an antibody response to  ≥1 vaccine strain 
with Wilson 95% CIs. We explored associations between 
baseline variables and responses in the post-CAR-T 
cohort using univariate Firth logistic regression models. 
Two-tailed p values were calculated and p values<0.05 
were considered statistically significant. Analyses were 
conducted using Stata V.16.0.

RESULTS
Baseline characteristics
Twenty-six adults received the IIV between October 2019 
and March 2020. Baseline characteristics, as well as CAR-T-
cell product and vaccine details, are in table 1 and online 
supplemental tables S1 and S2. The five adults in the 
pre-CAR-T cohort had relapsed or refractory B cell malig-
nancies and were vaccinated 14–29 days (median, 25) pre-
CAR-T-cell therapy. The 13 individuals in the post-CAR-T 
cohort were 13–57 months (median, 21) from CAR-T-cell 
therapy and had complete or very good partial remission. 
The eight controls were 25–62 years old (median, 43). 
Most individuals in both CAR-T cohorts had hypogamma-
globulinemia as well as low CD19+ B cell and CD4+ T-cell 
counts. The IIV was administered in the prior year to 12 
(92%) individuals in the post-CAR-T cohort and all indi-
viduals in the control cohort; data were not available for 
individuals in the pre-CAR-T cohort.

Baseline influenza antibody titers
Antibody titers to each vaccine strain are in figure  1 
and summarized in table 2. Baseline neutralizing anti-
body titers to A(H1N1) were similar in the pre-CAR-T 
and post-CAR-T cell cohorts but significantly higher in 
the control cohort. This was consistent with results from 
the HAI assay to A(H1N1), which additionally revealed 
baseline antibody titers above the LOD in only 1 (20%) 
individual in the pre-CAR-T and 3 (23%) individuals 
in the post-CAR-T cohorts compared with 7 (88%) in 
the control cohort. Baseline titers to A(H3N2) were low 
among all cohorts. Baseline titers to B(Victoria) or B(Ya-
magata) did not differ significantly between cohorts but 
tended to be lower in the CAR-T-cell cohorts. Corre-
spondingly, baseline HAI titers ≥40 to A(H1N1), B(Vic-
toria), and B(Yamagata), but not to A(H3N2), were 
less frequent among CAR-T-cell therapy recipients than 
controls.
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IIV immunogenicity and kinetics of influenza antibody 
responses
For each cohort, changes in titers by strain are summa-
rized in figure 1 and table 2; titer changes per individual 
are in figure 2.

Pre-CAR-T cohort
At the first postvaccine time point, a median of 14 days 
(range, 13–19) after IIV and before CAR-T-cell therapy, 

2 (40%; 95% CI 12% to 77%) individuals demonstrated 
responses to  ≥1 vaccine strain. After CAR-T-cell therapy, 
titers decreased, but neutralizing titers to A(H1N1) 
remained above baseline by day 30 post-CAR-T-cell therapy, 
and one individual maintained an antibody response 
through day 114. Among the remaining three (60%) indi-
viduals, one had  at least twofold increases in titers to two 
strains at the first time point after CAR-T-cell therapy.

Figure 1  Summary of longitudinal influenza antibody kinetics and geometric mean titers (GMTs). Individual titer results are 
plotted for each sample collection time point for the pre-CAR-T, post-CAR-T, and control cohort (from left to right in each panel). 
(A) Neutralization titers to A(H1N1) and (B) HAI titers to A(H1N1), (C) A(H3N2), (D) B(Victoria), and (E) B(Yamagata) are shown. A 
value of half of the lower limit of detection (LOD) was assigned for values below the LOD (LODs are detailed in the Methods). 
Data have been jittered to allow viewing of overlapping values. Horizontal bars represent GMT. Symbols on or above the dashed 
horizontal line represent HAI titers ≥40. Baseline titers to A(H1N1) were significantly lower in the CAR-T cohorts when compared 
with the control cohort (neutralization assay: pre-CAR-T vs controls, p=0.01; post-CAR-T vs controls, p=0.02. HAI assay: 
pre-CAR-T vs controls, p=0.02; post-CAR-T vs controls, p=0.004; based on Dunn’s test with the Holm stepwise procedure 
for multiple comparisons). There were no significant differences in baseline titers between cohorts based on the HAI assay to 
A(H3N2), B(Victoria), or B(Yamagata) (Kruskal-Wallis, p=0.21, p=0.17 and p=0.36, respectively). CAR-T-cell, chimeric antigen 
receptor-modified T cell; HAI, hemagglutination inhibition.
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Post-CAR-T cohort
The median time between vaccination and postvaccine 
sample collection was 37 days (range, 20–99). Responses 
to  ≥1 vaccine strain occurred in 4 (31%; 95% CI 13% 
to 58%) individuals. An additional six (46%) individ-
uals had an at least twofold increase to  ≥1 strain each. 
Three (23%) individuals received IGRT 62, 66, and 95 
days prior to the baseline sample, but their baseline titers 
were similar to those who did not receive IGRT. Two of 
these individuals received subsequent IGRT prior to the 
postvaccine sample but none met criteria for a response 
(online supplemental table S2).

Control cohort
The first postvaccine time point was a median of 29 
days from vaccination (range, 27–37). Responses to  ≥1 
vaccine strain occurred in 3 (38%) individuals, all for the 
A(H3N2) strain, and were maintained through 90 days 
after vaccination. Three (38%) additional individuals had 
an at least twofold increase to ≥1 strain.

Summary of influenza antibody kinetics
Among both CAR-T cohorts, there was a modest increase 
in the geometric mean titer (GMT) at the first postvaccine 
time point (figure 1). The pre-CAR-T cohort had a rela-
tively rapid decrease in GMTs over time to a level below 
the baseline by the 90-day time point. Some individuals in 
the post-CAR-T cohort generated antibody titers higher 
than the controls. The IIV for the 2019–2020 season had 
relatively low immunogenicity in the controls aside from 
strain A(H3N2), to which no controls had a prevaccine 
HAI titer  ≥40. Baseline and postvaccine HAI titers ≥40 
were more frequent among controls than in either CAR-T 
cohort (table 2).

Predictors of IIV immunogenicity
To explore possible predictors of IIV immunogenicity, 
we depict titer fold changes by key clinical and immu-
nologic characteristics (online supplemental figure S2). 
There was evidence of immunogenicity across most vari-
ables, and responses were observed in individuals with 
very low or no detectable CD19+ B cells and individuals 

Table 2  Antibody titers and antibody responses at baseline and at the first postvaccine time point

Antigen
Pre-CAR-T cohort
(n=5)

Post-CAR-T cohort
(n=13)

Control cohort
(n=8)

 �  Days from vaccination to first 
postvaccine time point, median (range)

14 (13–19) 37 (20–99) 29 (27–37)

Neutralization assay

A(H1N1) Baseline GMT (range) 20.7 (6.3–92.0) 43.8 (12.5–847.5) 228.8 (23.5–2680.2)

Antibody response*, n (%) 2 (40) 2 (15) 0

Hemagglutination inhibition assay

A(H1N1) Baseline GMT (range) 6.2 (5–15) 6.5 (5–40) 28.3 (5–320)

Antibody response*, n (%) 1 (20) 1 (8) 0

Baseline titer ≥40, n (%) 0 1 (8) 4 (50)

Postvaccine titer ≥40, n (%) 1 (20) 2 (15) 4 (50)

A(H3N2) Baseline GMT (range) 15.5 (10–30) 9.8 (5–40) 8.8 (5–20)

Antibody response, n (%) 1 (20) 1 (8) 3 (38)

Baseline titer ≥40, n (%) 0 1 (8) 0

Post-vaccine titer ≥40, n (%) 1 (20) 1 (8) 4 (50)

B(Victoria)
 �
 �
 �

Baseline GMT (range) 10.0 (5–20) 17.2 (5–1280) 21.8 (10–40)

Antibody response, n (%) 1 (20) 0 0

Baseline titer ≥40, n (%) 0 2 (15) 3 (38)

Post-titer ≥40, n (%) 1 (20) 2 (15) 5 (63)

B(Yamagata)†
 �
 �
 �

Baseline GMT (range) 14.3 (5–40) 24.2 (5–480) 31.3 (10–80)

Antibody response, n (%) 0 1 (10) 0

Baseline titer ≥40, n (%) 1 (20) 4 (31) 5 (63)

Postvaccine titer ≥40, n (%) 1 (20) 6 (60) 5 (63)

*Antibody response is defined as a fourfold rise in neutralization or hemagglutination inhibition (HAI) titer or a HAI titer of ≥40 postvaccine 
if the baseline HAI titer was <10.
†B/Phuket/3073/2013 (Yamagata) is included in quadrivalent vaccines only; postvaccine results from individuals without confirmed 
quadrivalent vaccine were excluded from postvaccine summaries; remaining N were 5 in the pre-CAR-T cohort, 10 in the post-CAR-T 
cohort, and 8 in the control cohort.
CAR-T, chimeric antigen receptor-modified T cell; GMT, geometric mean titer.

https://dx.doi.org/10.1136/jitc-2021-003428
https://dx.doi.org/10.1136/jitc-2021-003428
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with severe hypogammaglobulinemia. Most responders 
had IgA and IgM levels below the lower limit of normal. 
Univariate logistic regression analyses in the post-CAR-T 
cohort did not identify any associations between an anti-
body response and variables of age, sex, underlying malig-
nancy, time from CAR-T-cell therapy, IgG level, CD19+ B 
cell count, or CD4+ T-cell count (data not shown).

DISCUSSION
CAR-T-cell therapy recipients are immunocompromised 
prior to and for months following therapy, rendering 
them at high risk for infections.1 6 7 11 Vaccination may be 
an effective strategy to prevent the acquisition and severity 
of infections, but there are limited data about vaccine 
immunogenicity, or predictors of vaccine responses, in 

this population.3–5 In this prospective study of IIV admin-
istered before or after CAR-T-cell therapy, we demon-
strated robust antibody responses to ≥1 vaccine strain in 
31%–40% of individuals and partial antibody responses 
in 60%–77%, despite substantial humoral and cellular 
immunodeficiencies. Our findings support administra-
tion of relevant vaccines before CAR-T-cell therapy and 
for (re)vaccination, as indicated, of individuals in remis-
sion, irrespective of serum IgG level and total B cell 
count. Nevertheless, these data underscore the need for 
additional preventive measures in CAR-T-cell therapy 
recipients.

Immunity to influenza prior to vaccination reflects 
an individual’s history of vaccination and infection.
The 2019/2020 H1N1 vaccine strain was similar to the 

Figure 2  Kinetics of influenza antibody titers by individual. Line plots demonstrating neutralization titers to A(H1N1) and 
hemagglutination inhibition (HAI) titers to A(H1N1), A(H3N2), B(Victoria), and B(Yamagata) for (A) the pre-CAR-T cohort, (B) the 
post-CAR-T cohort, and (C) the control cohort. Each line connects results from one individual over time. Individuals with 
antibody responses at the first postvaccine time point are indicated with an arrow and their study ID. Symbols on or above 
the dashed horizontal line represent HAI titers ≥40. For the pre-CAR-T cohort, day 0 was set at the day of CAR-T-cell therapy, 
vaccines were administered between 0 and 8 days after baseline sample collection (median, 0), and time between vaccine 
and sample collection prior to CAR-T-cell therapy ranged from 13 to 19 days (median, 14). For the post-CAR-T cohort and 
the control cohort, day 0 was set at the day of vaccination. individuals without confirmed receipt of a quadrivalent vaccine are 
excluded from the plots showing HAI titers to B(Yamagata). CAR-T, chimeric antigen receptor-modified T cell.
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2018/2019 formulation, and cross-reactive antibodies may 
explain the high baseline antibody titers to A(H1N1) in 
controls.12 13 In contrast, a high proportion of individuals 
pre-CAR-T-cell therapy had undetectable baseline titers to 
A(H1N1), which may be due to lack of prior vaccination, 
poor prior responses, or loss of pre-existing immunity. 
Among individuals in remission after CAR-T-cell therapy, 
baseline titers to A(H1N1) were also significantly lower 
than in controls despite a similarly high frequency of 
prior-year vaccination, suggesting either poor responses 
and/or rapid waning.14 Baseline antibody titers to the 
A(H3N2) vaccine strain were low among all cohorts, 
likely due to a new strain in the 2019/2020 vaccine formu-
lation. Both B strains were unchanged from the previous 
year, and there was a trend towards lower baseline titers 
in the CAR-T-cell cohorts. Overall, a higher proportion of 
controls had detectable influenza-specific antibodies and 
HAI titers ≥40 at baseline and following vaccination, indi-
cating that CAR-T-cell therapy recipients have higher risk 
for morbidity from influenza infection.15 16

After receiving the IIV, 31%–40% of individuals in 
all cohorts had   at least fourfold increases in antibody 
titers for  ≥1 vaccine strain, and 60%–77% had   at least 
twofold increases. The limited responses to A(H1N1) 
and B strains among controls may reflect pre-existing 
immunity, as individuals with repeated annual IIV have 
minimal immune responses to the same or similar strains 
after re-exposure.13 Peak titers generally occurred at the 
first postvaccine time point. In the pre-CAR-T-cell cohort, 
we observed relatively rapid antibody decay after CAR-T-
cell therapy. Given that the two individuals with antibody 
responses received plasma cell targeted BCMA-CAR-T-
cells, this observation may be related to destruction of 
newly generated influenza-specific antibody-secreting 
plasma cells by the CAR-T-cells.17 However, antibody titers 
generally persisted above baseline for at least 30 days 
and up to 4 months after CAR-T-cell therapy, which may 
provide immunity during the highest-risk time frame.7 15 
Given the safety of the IIV, these data demonstrate suffi-
cient immunogenicity to consider recommending 
vaccination.

These observations are relatively consistent with a study 
including 14 CAR-T-cell therapy recipients receiving a 
two-dose SARS-CoV-2 mRNA vaccine series, in which 5 
(36%) developed a positive antibody titer and 6 of 12 
tested patients had a T cell response, although absolute 
titers were relatively low.5 In two other studies including 
14 and 3 post-CAR-T-cell therapy recipients receiving 
SARS-CoV-2 mRNA vaccines, only 11% and 3% had 
antibody responses, and there were no clear predictors 
of response.3 4 Comparisons are limited by differences 
in vaccines, pre-existing immunity, assays, and response 
definition.

An important observation was the lack of clear correla-
tions between clinical or immunologic characteristics and 
antibody responses. Key observations included vaccine 
immunogenicity in individuals with low peripheral CD19+ 
B cell counts and low serum IgG, IgA and IgM levels. 

Although some guidelines and clinical heuristics would 
suggest not vaccinating the majority of individuals in our 
CAR-T-cohorts, we nonetheless demonstrate clinically 
relevant immunogenicity of the IIV. This could be due 
to persistence or recovery of B cells in lymphoid tissue or 
the bone marrow. Whether responses originated from de 
novo naïve B cells or boosted memory B cells is unclear. 
Due to different expression patterns of the CAR-T-cell 
targets on B-lineage cells, CD19- and CD20-targeting 
CAR-T-cells may lead to greater depletion of pathogen-
specific memory B cells, whereas BCMA-targeting CAR-T-
cells may affect the generation of new antibody-producing 
plasma cells.

This is one of the first reports of vaccine immunogenicity 
after CAR-T-cell therapy and the first to explore pre-CAR-
T-cell therapy vaccine immunogenicity. The prospec-
tive study design and inclusion of a control comparator 
group are additional strengths. Our data support consid-
eration for administration of non-live vaccines before 
CAR-T-cell therapy for influenza, and by extrapolation, 
to other relevant pathogens in this clinical context (eg, 
SARS-CoV-2, pneumococcus). Additionally, vaccinations 
should be considered in patients in remission after CAR-
T-cell therapy. The primary limitation is the small sample 
size, and observations pertaining to predictors of vaccine 
response are limited by small numbers and patient 
heterogeneity. All participants in the pre-CAR-T cohort 
had a refractory hematologic malignancy, but heteroge-
neity in the underlying diseases and prior treatments may 
have influenced responses. These issues were less relevant 
in the post-CAR-T cohort, as all individuals were in remis-
sion for >12 months and received CD19-targeted thera-
pies, except one. Although different CAR-T-cell products 
with potentially variable kinetics were used, we demon-
strated that most individuals shared cellular and humoral 
deficits. Administration of the IIV was at the discretion 
of clinical providers, which may have introduced bias, 
and vaccine types varied. Additionally, timing of sample 
collection varied based on clinical follow-up; short-lasting 
responses might have been missed in the post-CAR-T 
cohort, which had the longest interval between vaccina-
tion and postvaccine sample collection. Additional data 
are needed to determine immunogenicity within the first 
year after CAR-T-cell therapy. Nevertheless, persistent 
immunodeficiency is a key concern for the long-term care 
of CAR-T-cell recipients, adding relevance to our observa-
tions. Although HAI titers ≥40 generally correspond to a 
50% reduction in the incidence of infection,10 this is not 
established in immunocompromised individuals. Cellular 
responses are another critical component of immunity 
to influenza and other infections;18 T cell responses may 
demonstrate additional utility of vaccination in this popu-
lation with impaired B cell immunity.5

In summary, despite the small sample size, these data 
support consideration for vaccination for influenza and 
other pathogens before and after CAR-T-cell therapy, 
irrespective of hypogammaglobulinemia or B cell aplasia. 
Larger studies are clearly needed to determine optimal 
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timing of vaccination and better define predictors of 
vaccine immunogenicity and durability. Additional strate-
gies to prevent infections, like vaccination of close contacts 
and standard precautions, should remain the backbone 
of infection prevention in these high-risk individuals.
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