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Abstract 

Background:  Craniosynostosis, defined as premature fusion of one or more cranial sutures, affects approximately 
1 in every 2000–2500 live births. Sagittal craniosynostosis (CS), the most prevalent form of isolated craniosynostosis, 
is caused by interplay between genetic and perinatal environmental insults. However, the underlying details remain 
largely unknown.

Methods:  The proband (a female monochorionic twin diagnosed with CS), her healthy co-twin sister and parents 
were enrolled. Obstetric history was extracted from medical records. Genetic screening was performed by whole 
exome sequencing (WES) and confirmed by Sanger sequencing. Functional annotation, conservation and structural 
analysis were predicted in public database. Phenotype data of Axin2 knockout mice was downloaded from The Inter-
national Mouse Phenotyping Consortium (IMPC, http://​www.​mouse​pheno​type.​org).

Results:  Obstetric medical records showed that, except for the shared perinatal risk factors by the twins, the proband 
suffered additional persistent breech presentation and intrauterine growth restriction. We identified a heterozygous 
mutation of Axin2 (c.1181G > A, p.R394H, rs200899695) in monochorionic twins and their father, but not in the mother. 
This mutation is not reported in Asian population and results in replacement of Arg at residue 394 by His (p.R394H). 
Arg 394 is located at the GSK3β binding domain of Axin2 protein, which is highly conserved across species. The 
mutation was predicted to be potentially deleterious by in silico analysis. Incomplete penetrance of Axin2 haploinsuf-
ficiency was found in female mice.

Conclusions:  Axin2 (c.1181G > A, p.R394H, rs200899695) mutation confers susceptibility and perinatal risk factors 
trigger the occurrence of sagittal craniosynostosis. Our findings provide a new evidence for the gene-environment 
interplay in understanding pathogenesis of craniosynostosis in Chinese population.
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Introduction
Craniosynostosis (CS), defined as premature fusion of 
one or more cranial sutures, affects approximately 1 in 
every 2000–2500 live births [1]. CS contains an isolated 
condition (non-syndromic craniosynostosis, NCS) and 
complex syndromes (with other malformations, syndro-
mic craniosynostosis) [2]. Sagittal craniosynostosis is 
the most prevalent form of NCS, accounting for 40–58% 
of all NCS cases [3]. Sagittal suture premature clo-
sure restricts the widen of the skull and then causes the 
scaphocephaly deformity and other adverse neurologic 
outcomes [4].

Pathoetiology of NCS involves interplay between 
genetic and environmental factors [5–8]. FGF (fibro-
blast growth factor), BMP (bone morphogenic protein), 
Wnt (wingless-type integration sites) pathways are major 
regulators in suture biology [9, 10]. Pivotal component 
mutations in these pathways, including FGFR2 (fibro-
blast growth factor receptor 2), TWIST1 (twist, dros-
ophila, homolog of 1) and Axin2  (axis inhibitor 2), have 
been regarded as the origin of craniosynostosis [1, 9]. 
Non-genetic risk factors, like intrauterine constraint, 
twin gestation, breech delivery, low birth weight, malnu-
trition, premature delivery, maternal thyroid disorders, 
gestational diabetes, virus infectious, can either cause or 
exacerbate craniosynostosis [7, 11–14]. Although several 
findings demonstrate the interactions between genetic 
and environmental risk factors contribute to premature 
fusion of cranial sutures [5, 15], more evidence are still 
need.

Monochorionic (MC) twins, sharing almost the same 
genome, offer a unique opportunity to study the gene-
environment interactions, for the healthy twin as an 
ideal control. Discordant phenotypes between MC twins 
emphasize the interplay between genetic and environ-
mental influences in etiologies of the disease [16].

In our study, we found that a heterozygous mutation 
of Axin2  (c.1181G > A, p.R394H, rs200899695) exist in 
Chinese female monochorionic sisters and their father. 
However, only the proband, suffering a persistent breech 
presentation and intrauterine growth restriction, was 
diagnosed with sagittal craniosynostosis. Public database 
indicated that Axin2 (c.1181G > A, p.R394H, rs200899695) 
mutation was not detected in Asian population. Accord-
ing to data from The International Mouse Phenotyping 
Consortium (IMPC, http://​www.​mouse​pheno​type.​org), 
about 22% female Axin2 heterozygous knockout mice 
developed abnormal head shape before delivery. Thus, 
we speculate that this particular Axin2 mutation leads to 
haploinsufficiency in female with incomplete penetrance, 
and additional environmental insults eventually trigger 
the occurrence of sagittal craniosynostosis.

Materials and methods
Clinic Examination and Information
All participants signed the informed consent and 
received physical examination by two experienced sur-
geons in Children’s Hospital of Nanjing Medical Univer-
sity. All samples used in our study were in compliance 
with the informed consent and agreement of patients. 
This study was approved by the ethics committee of Nan-
jing Medical University.

Clinical information of pregnancy history and infant 
clinical data were obtained from hospital medical 
records. Head CT scan of the healthy child was per-
formed upon the request of the parents.

Whole Exome Sequencing and Data Analysis
Genomic DNA, extracted from peripheral blood sam-
ples (proband, proband’s co-twin sister, the parents) 
and proband’s skull periosteum tissue, was subjected 
to whole-exome sequencing (WES) on the platform of 
Genergy Biotechnology, Shanghai, China. Raw reads 
were aligned to the human genome reference assembly 
(GRCh37/hg19) using the Burrows-Wheeler Aligner 
[17]. The Picard software was employed to remove PCR 
duplicates and evaluate the quality of variants. DNA 
variants was called and analyzed using the Genome 
Analysis Toolkit [18]. The variants with read depths 
less than 4 × were filtered out. All variants were further 
annotated [19–25]. The workflow of genetic analysis 
was shown in Fig. 1.

Sanger Sequencing
Axin2 mutation was validated by Sanger sequencing in 
Tsingke (China) using the following primers: Forward: 
5′-CGC​ACA​CCC​TAA​CGC​ACC​CCAT-3′ and Reverse: 
5′-ACC​GCC​CAC​CTA​GCC​TGC​TGAA-3′. Results 
were visualized using FinchTV (Geospiza) software.

Conservation Analysis
Multiple-species amino acid sequences were obtained 
from National Center for Biotechnology Information 
(NCBI), and were analyzed by WebLogo (Version 2.8.2, 
http://​weblo​go.​berke​ley.​edu)[26].

Structural Analysis
Three-dimensional models of the wild-type and mutant 
Axin2 protein were constructed by I-TASSER [27] and 
visualized using the PyMOL software (PyMOL Molec-
ular Graphics System, DeLano Scientific, San Carlos, 
CA).

http://www.mousephenotype.org
http://www.weblogo.berkeley.edu
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Functional Annotation
Functional annotation of Axin2  (c.1181G > A: p.R394H, 
rs200899695) was conducted on FAVOR functional 
annotation online portal (http://​www.​favor.​genoh​ub.​
org/) [28] or the University of California, Santa Cruz 
Genome Browser (UCSC, http://​www.​genome.​ucsc.​edu).

Phenotype analysis of Axin2 knockout mice
Phenotypes of Axin2 homozygous (Axin2−/−) and het-
erozygous (Axin2+/−) knockout mice were obtained 
from The International Mouse Phenotyping Consor-
tium (IMPC, http://​www.​mouse​pheno​type.​org) [29, 
30].

Fig. 1  Workflow for identifying Axin2 (c.1181G > A, p.R394H, rs200899695) mutation in pedigree diagnosed with sagittal craniosynostosis

Fig. 2  Clinical features of the pedigree with sagittal craniosynostosis. a Pedigree of the family. Proband is marked with an upward arrow. Open 
squares/circles denote unaffected individuals; squares denote males and circles denote females. b Schematic diagram of fetal position before 
delivery. Proband (II-1) was in breech presentation at left side of the uterus, while her healthy sister (II-2) was in cephalic presentation at right side of 
the uterus. c Computerized tomographic (CT) scan revealed premature closure of sagittal suture (solid circle) and digital impressions (arrowheads) 
in proband’s head (left panel). Cranial index of the proband is 70.9%. The co-twin sister was also received CT examination under the request of the 
parents. Her sagittal suture remains patent (dotted circle) and cranial index is 83.2% (right panel)

http://www.favor.genohub.org/
http://www.favor.genohub.org/
http://www.genome.ucsc.edu
http://www.mousephenotype.org
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Results
Clinical information
The pedigree came from Wuhan, Hubei Province, 

China. Female proband (II-1), the elder monochorionic 
diamniotic (MCDA) twin (Fig.  2a-c and Supplemen-
tary Fig. S1-3), was diagnosed sagittal craniosynostosis 

Fig. 3  Sequence analysis of Axin2 (c.1181G > A, p.R394H, rs200899695). a-e Integrative Genomics Viewer (IGV) of the sequences 
around Axin2 (c.1181G > A, p.R394H, rs200899695) and the results of Sanger sequencing were shown. The gDNA samples were extracted from 
peripheral leucocytes of the parents and twin sisters (a-d) and from skull periosteum tissue of the proband (e). Please note that the DNA sequences 
are shown in + strand, but Axin2 is located on-strand. The father and two twins have this missense mutation (a, c, d, e), but the mother does not 
carry this mutation (b)
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at the age of 9  months in the Department of Neuro-
surgery, Children’s Hospital of Nanjing Medical Uni-
versity. She was born to non-consanguineous parents 
without family history of craniosynostosis. Her mother, 
a 30-year-old Chinese female, conceived MCDA twins 
by frozen embryo transfer (FET) (Supplementary Fig. 
S1-3). Her father was 36-year-old at that time. Twenty-
six days after FET, two embryos inside a gestational 
sac (approximately 22 mm × 13 mm) was confirmed by 
four-dimensional ultrasound scan (Supplementary Fig. 
S1). Embryo length were 2.8 mm and 3.3 mm, respec-
tively. Fetal heart rate were 107 per minute and 118 per 
minute, respectively (Supplementary Fig. S1).

At 13 weeks of gestation, IgG of cytomegalovirus and 
herpes simplex virus were detected in the mother’s 
serum (Supplementary Table S1). At 14 weeks of ges-
tations, dietary assessment indicated that the mother 
had inadequate intakes of energy, protein, fat, several 
vitamins and minerals, while excessive consumption of 
carbohydrate (Supplementary Table S2). At 17  weeks 
of gestations, decreased thyroid-stimulating hormone 
(TSH) level and increased level of urinary iodine were 
detected (Supplementary Table S3). At 27  weeks of 
gestations, the mother was diagnosed with gestational 
diabetes mellitus (Supplementary Table S3).

The ultrasound scan detection indicated that the 
proband (II-1) had been in persistent breech position 

on the left side of uterus, while the younger sister (II-2) 
had been in cephalic position (Fig. 2a, b). At 28 weeks 
of gestations, the proband (II-1) and twin younger sis-
ter (II-2) were born via spontaneous vaginal delivery 
(Fig. 2a, b). Birth weight of proband (II-1) and co-twin 
(II-2) was 880 g (ranking 50th -90th centiles for postna-
tal weight of infants [31]) and 990 g (ranking 90th -97th 
centiles for postnatal weight of infants [31]), respec-
tively. The proband (II-1) were diagnosed with sagittal 
craniosynostosis and intrauterine growth restriction 
(Fig. 2c), while no signs of craniofacial deformity were 
detected in parents (I-1, I-2) and co-twin sister (II-2) 
(Fig.  2c). Cranial index, which represents the ratio of 
maximum cranial width to maximum cranial length, 
is decreased in patients with sagittal craniosynosto-
sis [32]. In our case, the cranial index of the proband 
and co-twin sister was 70.9%, 83.2%, respectively. In 
addition, tooth agenesis, oral clefts or colorectal can-
cer were not detected in this family through physical 
examination by clinical doctor as well as medical his-
tory inquiry. And the other family members have no 
history of tooth agenesis, oral clefts or colorectal can-
cer. Taken together, clinical records indicate that the 
proband suffered sagittal craniosynostosis, persistent 
breech presentation and intrauterine growth restric-
tion, except for other shared perinatal risk factors of 
the twins.

Table 1  Allele frequency of Axin2  (c.1181G > A: p.R394H, rs200899695) in human populations (dbGaP, Release Version: 
20,200,227,123,210)

Study Population Sample size Ref Allele Alt Allele BioProject ID BioSample ID

gnomAD—Exomes Global 250,890 G = 0.999151 A = 0.000849 PRJNA398795 SAMN07488253

gnomAD—Exomes European 134,850 G = 0.999993 A = 0.000007 SAMN10181265

gnomAD—Exomes Asian 49,008 G = 1.00000 A = 0.00000

gnomAD—Exomes American 34,584 G = 0.99396 A = 0.00604 SAMN07488255

gnomAD—Exomes African 16,244 G = 1.00000 A = 0.00000 SAMN07488254

gnomAD—Exomes Ashkenazi Jewish 10,072 G = 1.00000 A = 0.00000 SAMN07488252

gnomAD—Exomes Other 6132 G = 0.9995 A = 0.0005 SAMN07488248

ExAC Global 120,894 G = 0.999363 A = 0.000637 PRJEB8661 SAMN07490465

ExAC Europe 72,950 G = 0.99999 A = 0.00001

ExAC Asian 25,152 G = 1.00000 A = 0.00000

ExAC American 11,542 G = 0.99342 A = 0.00658

ExAC African 10,358 G = 1.00000 A = 0.00000

ExAC Other 892 G = 1.000 A = 0.000 SAMN07486028

ALFA Total 62,874 G = 0.99992 A = 0.00008 PRJNA507278 SAMN10492705

ALFA European 59,864 G = 0.99995 A = 0.00005 SAMN10492695

ALFA Other 2654 G = 0.9992 A = 0.0008 SAMN11605645

ALFA African 242 G = 1.000 A = 0.000 SAMN10492703

ALFA Asian 78 G = 1.00 A = 0.00 SAMN10492704

ALFA Latin American 2 22 G = 1.00 A = 0.00 SAMN10492700

ALFA South Asian 8 G = 1.0 A = 0.0 SAMN10492702

ALFA Latin American 1 6 G = 1.0 A = 0.0 SAMN10492699
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Mutation analysis of AXIN2 (c.1181G > A, p.R394H, 
rs200899695)
Whole-exome sequencing was applied to identify the 
potential genetic etiology leading to sagittal craniosynos-
tosis in our case. Due to the low incidence rate of sagittal 
craniosynostosis [3], we focused on private and/or rare 
(minor allele frequency, MAF < 0.01) variants on exons 
or splicing sites (Fig. 1). However, none of candidate ger-
mline or somatic mutations were proband-specific. As 
gene-environment interactions have been demonstrated 
in the pathogenesis of craniosynostosis [5, 15], we won-
der whether the intrauterine risk exposures (environ-
ment factors) triggered the susceptible individual to 
develop sagittal craniosynostosis. Based on this hypoth-
esis, we re-analyzed our sequencing data and identified 
a heterozygous missense mutation of Axin2 (c.1181G > A, 
p.R394H, rs200899695) in the leukocytes of subjects I-1, 
II-1 and II-2, and skull periosteum tissue of subject II-1. 
This finding was further validated by Sanger sequenc-
ing (Fig.  3a-e). The frequency of Axin2  (c.1181G > A, 
p.R394H, rs200899695) mutation of global population is 
0.000849, 0.000637, 0.00008 in gnomAD, ExAC, ALFA 

database, respectively, while is not detected in Asian pop-
ulation (Table 1).

Conservation analysis of Axin2 (c.1181G > A, p.R394H, 
rs200899695)
G to A transition of Axin2  (c.1181G > A, p.R394H, 
rs200899695) resulted in the replacement of Arg by His 
at 394th AXIN2 protein residue (Fig. 4a). Arg394 residue, 
located at the GSK3β binding domain (amino acid 327 to 
413 according to the UniProt Consortium) of Axin2 pro-
tein (Fig.  4a) [33], is conserved across species (Fig.  4b,c 
and Table 2).

Functional annotation and structural analysis and of Axin2 
(c.1181G > A: p.R394H, rs200899695)
Axin2  (c.1181G > A: p.R394H, rs200899695) mutation is 
predicted to be potentially deleterious by in silico anal-
ysis (Table  3) and the wild type Axin2  (c.1181G) loci 
is located within a region modified by H3K4Me3 and 
H3K27Ac (Fig.  5 a). In addition, p. R394H substitution 
is predicted to affect spatial structure of AXIN2 GSK3β 
binding domain (Fig. 5 b, c).

Fig. 4  Conservation analysis of Axin2 (c.1181G > A, p.R394H, rs200899695). a Schematic diagram depicts structure of AXIN2 protein. The mutation 
(R to H at 394th amino acid) resides in AXIN2 GSK3β binding domain. (TNKS_binding: Tankyrase binding N-terminal segment of AXIN; RGS: Regulator 
of G protein signaling; DIX: Disheveled and AXIN interacting) (b) Evolutionary conservation analysis revealed that the Arg394 site is conserved from 
zebrafish to humans. c WebLogo analysis showed that the Arg394 site was relatively conserved
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Phenotype analysis of Axin2 knockout mice
Data from The International Mouse Phenotyping Con-
sortium (IMPC) documented that homozygous Axin2 
knockout (Axin2−/−) mice developed preweaning lethal-
ity, while heterozygous Axin2 knockout (Axin2+/−) was 
alive (Fig. 6 a). The percentage of abnormal craniofacial 
morphology at embryonic day 12.5 (E12.5) for female 
Axin2+/+ and Axin2−/− mice was 0.73% (4/547) and 50% 
(1/2), respectively (Fig. 6 b). In addition, all female (6/6) 

and male (3/3) Axin2−/− mice had abnormal head shape, 
whereas 22.22% (2/9) female Axin2+/− mice were with 
abnormal head shape at E18.5 (Fig. 6 c). However, none 
of male (0/5) Axin2+/− mice presented with abnormal 
head shape (Fig. 6 c). Taken together, these results indi-
cate incomplete penetrance of Axin2 haploinsufficiency 
in female mice.

Discussion
Craniosynostosis, a highly heterogeneous disease, is 
caused by genetic mutations, adverse environmental 
exposures and their interactions. Identifying the pathoe-
tiology of craniosynostosis gives light to uncover suscep-
tibility individuals, discern environmental risk factors 
and establish effective strategies for prevention and early 
diagnosis. In our study, we demonstrated that a heterozy-
gous Axin2  (c.1181G > A: p.R394H, rs200899695) muta-
tion was presented in the monochorionic twins and their 
father, but not in the mother. However, only the female 
proband, who was received additional environmental 
insults (persistent breech presentation and intrauterine 
growth restriction), developed sagittal craniosynostosis. 
We assume that this Axin2 mutation predisposes to sag-
ittal craniosynostosis but extra environmental insults are 
needed to initiate the disease.

Prenatal risk factors, including intrauterine con-
straint, twin gestation, premature delivery, maternal 
thyroid disorders, gestational diabetes, malnutrition, 
virus infectious, increase the susceptibility of cranio-
synostosis in genetically predisposed infants [7, 11–14]. 
Research of monochorionic (MC) twins provide excep-
tional opportunity to decipher the interplay between 
genetic and environment risks on the occurrence of 
premature suture fusion [34]. In our study, monocho-
rionic twins suffered the majority of risk factors prena-
tally, however, only the infant with breech presentation 
and intrauterine growth restriction presented sagittal 
craniosynostosis. Thus, intrauterine growth restriction 
and breech position deserves particularly attention in 
causing sagittal craniosynostosis.

It has been well accepted that AXIN2  is essential 
for normal calvarial morphogenesis by directly tar-
geting β-catenin, orchestrating the crosstalk of Wnt, 
BMP, FGF signaling pathways and maintaining suture 
cell stemness [35–37]. Deletion or mutation of Axin2 
attribute to craniosynostosis in humans and mice [6, 
36]. Moreover, phenotype data available in The Interna-
tional Mouse Phenotyping Consortium (IMPC, https://​
www.​mouse​pheno​type.​org/) show that all female and 
male homozygous Axin2 knockout (Axin2−/−) mice 
present abnormal head shape malformation. For het-
erozygous Axin2 deletion (Axin2+/−) mice, a total of 
2/9 females develop abnormal head shape at E18.5; 

Table 2  Conservation prediction of AXIN2 (c.1181G > A: p.R394H, 
rs200899695)

a  A higher score means the region is more conserved

Conservation prediction Value Range a

 priPhCons 0.99 0—0.999 (default: 0.0)

 mamPhCons 0.97 0—1 (default: 0.0)

 verPhCons 1 0—1 (default: 0.0)

 priPhyloP 0.42 -10.761—0.595 (default: -0.029)

 mamPhyloP 2.75 -20—4.494 (default: -0.005)

 verPhyloP 4.82 -20—11.295 (default: 0.042)

 GerpN 16.5 0—19.8 (default: 3.0)

 GerpS 12.1 -39.5—19.8 (default: -0.2)

Table 3  Functional annotation of AXIN2 (c.1181G > A: p.R394H, 
rs200899695)

a  Defined as “disruptive” by the ensemble MetaSVM annotation
b  Predicted human enhancer sites from the GeneHancer database
c  Predicted super-enhancer sites and targets in a range of human cell types

Block/Annotation Name Data

ClinVar
 Allele Origin germline

Variant Category
 Disruptive Missense a Yes

 GeneHancer b Yes

 SuperEnhancer c Yes

Protein Function
  Polyphen2_HDIV Probably damaging

  Polyphen2_HVAR possibly damaging

 MutationTaster Disease causing

 LRT Deleterious

 SIFT Deleterious

  MutationAssessor predicted functional (medium)

  FATHMM Deleterious

  PROVEAN Deleterious

  MetaSVM Deleterious

  MetaLR Deleterious

  M-CAP Deleterious

  CADD_phred Deleterious

  Fathmm-MKL_coding Deleterious

https://www.mousephenotype.org/
https://www.mousephenotype.org/
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Fig. 5  Functional annotation and structural analysis and of AXIN2 (c.1181G > A: p.R394H, rs200899695). a UCSC database predicted that wild type 
AXIN2 (c.1181G) loci locates in the region  modified by H3K4Me3 or H3K27Ac in seven cell lines by ChIP-Seq assay. b Location of Arg394 residues 
within the GSK3β binding domain of AXIN2. c Location of the His 394 residues within the GSK3β binding domain of AXIN2. Arrowheads indicate the 
hydrogen bond in the domain

Fig. 6  Phenotype analysis of Axin2 homozygous (Axin2−/−) and heterozygous (Axin2+/−) knockout mice. Data of Axin2−/− and Axin2+/− mice were 
obtained from IMPC. a Axin2−/− mice could not be alive due to preweaning lethality. Number and percentage of Axin2+/− and matched Axin2+/+ 
mice at early adult stage. b Number and percentage of female mice (Axin2+/+, Axin2−/−) with abnormal craniofacial morphology at E12.5. c Number 
and percentage of mice (Axin2+/+, Axin2+/−, Axin2−/−) with abnormal head shape at E18.5



Page 9 of 11Xu et al. Hereditas          (2021) 158:20 	

however, the male Axin2+/− mice are not. These results 
indicate haploinsufficiency of Axin2 in female mice 
with incomplete penetrance.

In this study, an Axin2 heterozygous missense muta-
tion (c.1181G > A: p.R394H, rs200899695) was iden-
tified in peripheral blood samples of subjects I-1, 
II-1 and II-2 (Fig.  1a), suggesting that the proband 
inherits the mutation from her father. The wild type 
Axin2 (c.1181G) loci is conserved across species and in 
the region may be modified by H3K4Me3 or H3K27Ac 
in seven cell lines by ChIP-Seq assay. H3K4Me3 modi-
fication is known to mark genes that are essential for 
the identity and function. H3K4Me3 breadth contains 
information that ensures transcriptional precision at 
the identified genes [38]. H3K27Ac, a robust mark 
of active enhancers and promoters, has been dem-
onstrated to be strongly correlated with gene expres-
sion and transcription-factor binding [39]. However, 
much more functional annotation and experiments 
are needed to clarify whether Axin2  (c.1181G > A: 
p.R394H, rs200899695) could affect the H3K4Me3 or 
H3K27Ac modification. In addition, Axin2  missense 
mutation (c.1181G > A: p.R394H, rs200899695) is 
likely to be deleterious by in silico predication; how-
ever, only the proband received additional risk fac-
tors (persistent breech presentation and intrauterine 
growth restriction) developed sagittal craniosynosto-
sis. We assumed that phenotypic segregation in our 
case was probably due to Axin2  (c.1181G > A) muta-
tion possesses incomplete penetrance, thus making it 
insufficiency to trigger the disease alone. Our findings 
corroborate another well-established gene-environ-
ment interaction model of NCS, which substantiates 
the same environmental insults ultimately determin-
ing phenotype [15]. However, our gene-environment 
interaction fashion was observed in the context of 
Axin2  (c.1181G > A, p.R394H, rs200899695) mutation 
and female individual, further clinical observations, 
animal and mechanistic studies are needed to validate 
the hypothesis.

However, there are some limitations of our study. 
Experiments on whether Axin2 (c.1181G > A, p.R394H, 
rs200899695) mutation could affect the H3K4Me3 or 
H3K27Ac modification of AXIN2 are needed. We only 
offered a plausible explanation of Axin2  (c.1181G > A, 
p.R394H, rs200899695) mutation and perinatal risk 
factors contribute to sagittal craniosynostosis in a Chi-
nese female monochorionic diamniotic twin family. 
Given the small sample size and inherent ascertain-
ment bias, the identification of further families in the 
setting of this mutation would help to clarify the clini-
cal implications.

Conclusion
Based on the results of monochorionic twins, we dem-
onstrated Axin2  (c.1181G > A, p.R394H, rs200899695) 
mutation led to haploinsufficiency with incomplete 
penetrance in female, and additional prenatal risk fac-
tors (intrauterine growth restriction and breech posi-
tion) were indispensable to trigger the occurrence of 
sagittal craniosynostosis in this Chinese female mono-
chorionic diamniotic twin family. These findings pro-
vide new evidence for the gene-environment interplay 
in understanding etiologies of NCS.
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