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Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of super-
oxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes
and nonalcoholic liver disease. Results show that low-dose y-irradiation increases SOD activity and protects against alloxan dia-
betes. Prior or post-low-dose X- or y-irradiation increases antioxidative functions in livers and inhibits ferric nitrilotriacetate and
carbon tetrachloride-induced (CCly) hepatopathy. Moreover, radon inhalation also inhibits CCly-induced hepatopathy. It is highly
possible that low-dose irradiation including radon inhalation activates the biodefence systems and, therefore, contributes to
preventing or reducing reactive oxygen species-related diabetes and nonalcoholic liver disease, which are thought to involve

peroxidation.

1. Biological Response to
Low-Dose Irradiation

Low-dose irradiation induces various stimulating effects, es-
pecially the activation of biological defense system such as
antioxidative [1-9] and immune functions [9, 10]. For exam-
ple, low-dose irradiation increases endogenous antioxidants
in animal tissue. It has been reported that antioxidants such
as superoxide dismutase (SOD) [3], glutathione peroxidase
(GPx) [6], glutathione reductase (GR) [6, 7], glutathione [7],
catalase [6], and thioredoxin [6] are activated and/or induced
by low-dose irradiation. SOD changes superoxide anion
(*O7) into hydrogen peroxide (H,0O,), catalase, and GPx
detoxify H,O, into H,O and O,. Glutathione directly reacts
with reactive oxygen species (ROS), and GPx catalyzes the
destruction of H,O; and hydroxyl radical (*OH). This catal-
ysis generates oxidized glutathione (GSSG) and finally re-
duced glutathione (GSH) (total glutathione; t-GSH; GSH +

GSSG). However, GR catalyzes the regeneration of GSH
from GSSG. Thus GR and GPx are both the enzymes in the
glutathione-regenerating pathway, and the changes of both
activities are in a similar fashion. It is highly possible that
low-dose X-irradiation activates the defensive systems in the
living body and, therefore, contributes to preventing or re0
ducing ROS-related injuries, which are thought to involve
peroxidation.

Recently, we also demonstrated that radon inhalation ac-
tivates antioxidative function in some organs. For example,
radon inhalation activated antioxidative functions in the liv-
er, kidney, lung, and brain of mice, including suggesting the
possibility of a new therapy to treat liver, kidney, lung, and
brain damage [11].

In this paper, we describe the activation of biodefense
system by low-dose X- or y-irradiation or radon inhalation
and its applicable possibility for treatment of diabetes and
nonalcoholic liver disease.
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FiGure 1: Changes in SOD activity in pancreas after alloxan administration and effects of low-dose y-irradiation. Each value indicates the
mean + standard error of mean (SEM). *P < 0.05, **P < 0.01 versus sham-irradiated no-alloxan control group ((b). control, 0 Gy) [12].

2. Protection against Alloxan
Diabetes by Low-Dose y-Irradiation before
Alloxan Administration [12]

Diabetes is classified into insulin-dependent (Type I) and
noninsulin-dependent (Type II) types. Alloxan selectively
destroys insulin-secreting f3 cells in the islets of Langerhans
in the pancreas, including sever glycosuria in experimental
animals. Therefore, alloxan is one of the drugs used to ana-
lyze the developmental mechanism of Type I diabetes. The
mechanism of the induction of diabetes by alloxan is spec-
ulated that oxidation-reduction induced by alloxan incor-
porated into 3 cells produces ROS such as *O,, H,0,, and
*OH, which damage  cells [13, 14]. Therefore, we evaluated
the protective effects of a single dose whole body *°Co y-ir-
radiation against alloxan-induced hyperglycemia in rats. Im-
mediately before use the alloxan was dissolved in a solution of
50 mM citrate buffer (pH 4.5) and 0.6% NaCl and adminis-
tered under ether anesthesia at 40 mg/kg via the daucal vein.

In the control groups not treated with alloxan, the SOD
activities in pancreas significantly increase in the 0.5 or
1.0 Gy irradiation groups compared with sham-irradiated
control group. The alloxan-treated groups except 0.5 Gy-
irradiated group showed a significant decrease in SOD activ-
ity compared with sham-irradiated control group (Figure 1).
No significant irradiation dose dependence was observed in
the lipid peroxide levels in pancreas of the control group not
treated with alloxan. Among the alloxan-treated groups, the
nonirradiation group showed a significant increase, but the
0.5 or 1.0 Gy irradiation groups showed a significant de-
crease, compared with the alloxan-treated-non-irradiation
groups, to a level similar to that in the untreated group
(Figure 2). In the control groups not treated with alloxan, no
effects of the irradiation dose on the blood glucose level were

observed. The alloxan-treated-irradiation groups except
0.5 Gy-irradiated group showed a significant increase in
blood glucose level. A significant decrease in blood glucose
level was observed in the alloxan-treated-0.5Gy irradia-
tion group compared with alloxan-treated-non-irradiation
group, showing a level similar to that in the untreated-non-
irradiation group (Figure 3).

The results of SOD and lipid peroxide level suggest that
low-dose y-irradiation increase SOD activity decreases lipid
peroxide levels and protects against alloxan diabetes.

3. Prevention of Type I Diabetes by
Low-Dose y-Irradiation in NOD Mice [18]

Low-dose irradiation protects oxidative damage in animal
tissue. Oxidative damage is known to be a major cause of
many human diseases, such as diabetes. This study demon-
strated the effects of low-dose irradiation on the progression
of type I diabetes in mice. Nonobese diabetic (NOD) mice
were treated with y-irradiation, and the progression of the
disease was monitored. About 60% of the control mice were
positive for diabetes by 22 weeks of age, whereas only 10, 30,
and 40% of the mice irradiated at 13, 12, and 14 weeks of age,
respectively, presented a positive response. The insulin level
of mice irradiated at 13 weeks of age was 89% higher than
that of control mice. Many positively stained apoptotic cells
were observed in the pancreas of control mice, whereas only
a few were detected in the pancreas of irradiated mice at 13
weeks of age. In addition, SOD activity in pancreas of mice
irradiated at 13 weeks of age was significantly higher than
that of control mice. These findings suggest that activation
of antioxidative function induced by low-dose irradiation
suppresses progression of type I diabetes in NOD mice.
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F1Gure 2: Changes in lipid peroxide levels in pancreas after alloxan administration and effects of low-dose y-irradiation. Each value indicates
the mean + SEM. *P < 0.05, **P < 0.01 versus sham-irradiated no-alloxan control group. *P < 0.05, #*P < 0.01 versus sham-irradiated

alloxan control group [12].
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F1Gure 3: Changes in blood glucose levels after alloxan administration and effects of low-dose y-irradiation. Each value indicates the mean +
SEM. **P < 0.01 versus sham-irradiated no-alloxan control group (B. control, 0 Gy). ¥*P < 0.01 versus sham-irradiated alloxan control

group [12].

4. Effects of Radon Inhalation on
Diabetes-Associated Substances [15]

A hot spring in Misasa-cho in Tottori Prefecture in Japan
(Misasa hot spring) is famous as a radon hot spring. Indi-
cations for treatment at the Misasa hot spring, a radon pro-
ducing radioactive spring, include diabetes. To clarify its
mechanisms of action on these conditions, we examined the
diabetes-associated substances in rabbits after radon inhala-
tion. Radon water was (form Ikeda mineral springs at 4°C)

used as radon source. The radon concentration of the water
was approximately 14-18 kBgq/l (high concentration group)
and 7-10 kBq/I (low concentration group). Radon inhalation
was maintained with an ultrasonic nebulizer using radon
water.

The results show that insulin level of high radon con-
centration group was significantly higher than that of control
group. Glucose-6-phosphate dehydrogenase levels of low and
high radon concentration groups were significantly higher
than that of control group. Pancreatic glucagon levels of low
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FIGURE 4: Dynamic changes in diabetes-associated substances of rabbit blood by radon inhalation. Each value indicates the mean + SEM.
The number of rabbits per experiment was ten for control, eight at 7-10 kBq/l, and nine at 14-18 kBq/l. Significance: *P < 0.05, **P < 0.01

versus control [15].

or high radon concentration group were significantly higher
than that of control group. However, no significant changes
were observed in blood glucose levels (Figure 4).

These findings suggest that radon inhalation may con-
tribute to the mechanism underlying alleviation of diabetic
symptoms. In the future, clarification in detail of the mech-
anisms of these phenomena will be helpful toward under-
standing the effects on the functions of the living body or
radon inhalation at the hot spring.

5. Inhibitory Effects of
Prior Low-Dose X-Irradiation on
Ferric-Nitrilotriacetate-Induced
Hepatopathy in Rats [16]

Transient hepatopathy after ferric nitrilotriacetate (Fe®*-

NTA) administration induced free radicals. This hepatop-

athy resembles excessive iron disease in humans. Therefore,
this study demonstrated whether or not prior low-dose
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X-irradiation would suppress transient hepatopathy in rats.
Rats were irradiated with a single dose of 0.5 Gy of X-ray. A
sham producer without X-irradiation (sham irradiation) was
performed on control rats. Two hours after X-irradiation, a
single dose of Fe**-NTA was administrated to rats.

At 1, 3, 6, and 12 hr after Fe>*-NTA administration, iron
levels in serum of sham-irradiated groups were significantly
increased compared with that of control level. No signifi-
cant differences in iron level were observed between sham
irradiation and 0.5 Gy irradiation (Figure 5). This result may
indicate that there are no differences of the amount of free
radicals induced by Fe*"-NTA administration between sham
irradiation and 0.5 Gy irradiation. The glutamic oxaloacetate
transaminase (GOT) activities of Fe**-NTA-administrated
rats were significantly increased at 12 hr, and the glutamic
pyruvic transaminase (GPT) activity was significantly in-
creased at 6 or 12 hr. However, at 12 hr after Fe>*-NTA ad-
ministration, the GPT activity in serum of 0.5 Gy-irradiated
rat was significantly lower than that of sham-irradiated rat,
and at 6 or 12hr the GOT activities in serum of 0.5 Gy-
irradiated rat were significantly lower than that of sham-
irradiated rat (Figure 6). Moreover, the thiobarbituric acid
reacting substances (TBARSs), which show the level of
oxidant injury, in liver of Fe’>*-NTA-administrated rats were
significantly increased at 3, 6, 12, or 24 hr compared with
that of nonadministrated control rats. However, the increases
in the lipid peroxide levels were suppressed by X-irradiation
between 6 and 24 hr (Figure 7). These findings suggest that
low-dose irradiation inhibits Fe**-NTA-induced hepatopa-
thy regardless of iron levels in serum.

To clarify the mechanism of the inhibitory effect, SOD
activity, which is an antioxidant enzyme, was examined. The
SOD activity in livers of sham-irradiated groups significantly
decreased compared with that before administration. How-
ever, the decreases in the SOD activity were suppressed by
X-irradiation between 3 and 12 hr (Figure 7). Based on these
results, it is speculated that antioxidative function of the liver
was activated by low-dose X-irradiation, resulting in the
inhibition of Fe**-NTA-induced hepatopathy.

6. Inhibitory Effects of
Post-Low-Dose y-Irradiation on
Ferric-Nitrilotriacetate-Induced
Mice Liver Damage [20]

We previously investigated whether or not X-irradiation at
a dose of 0.5 Gy before Fe*"-NTA administration suppressed
transient hepatopathy in rats. It is of interest whether 0.5 Gy
y-irradiation after Fe**-NTA affects the oxidative liver dam-
age. In this study, we investigated whether active oxygen-re-
lated diseases can be treated with low-dose irradiation, 0.5 Gy
y-irradiation to mice with Fe’*-NTA-induced transient hep-
atopathy.

Three hours after Fe’*-NTA administration, the activities
of GOT and GPT in serum of the sham-irradiated and
0.5 Gy-irradiated groups reached a peak of about 3-4-fold
that before administration. In the irradiated groups, in-
creases in the activities were significantly suppressed between
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FiGUure 5: Time-dependent changes in the serum iron levels of
Wister rats after Fe**-NTA administration following low-dose X-
irradiation. Each value indicates the mean + SEM. The number of
rats per experimental point is 10~12. * P < 0.05 by ¢-test, each Fe**-
NTA-administrated group value versus non-administrated control
group value [16].

24 and 48 hr after irradiation and returned to normal values
earlier than those in the sham-irradiated group. Within
48 hr after irradiation, the lipid peroxide (malondialdehyde
(MDA)) levels in the livers of the sham-irradiated groups
significantly increased to about 4-7-fold that before Fe’*-
NTA administration. In the irradiated groups, the relative
increase in the lipid peroxide levels was smaller than those in
the sham-irradiated groups, but both groups showed a sim-
ilar time course. The increases in the lipid peroxide levels
were significantly suppressed between 6 and 48 hr after irrad-
iation, and each point value was significantly lower than the
sham-irradiated group. Within 48 hr after irradiation, the t-
GSH content in the livers of the sham-irradiated groups sig-
nificantly decreased compared with that before Fe’"-NTA
administration. In the irradiated group, the relative decrease
in the t-GSH content was smaller than that in the sham-ir-
radiated group, and both groups showed a similar time
course. The decrease in the t-GSH content was significantly
suppressed between 6 and 48 hr after irradiation.

Low-dose irradiation accelerated the rate of the recovery.
The decrease in the transaminase activities and lipid peroxide
levels showed that hepatopathy was recovered at 24—48 hr
after irradiation. This may be because of the enhancement
of antioxidant agents such as t-GSH by low-dose irradiation.
These findings suggest that posttreatment with low dose of
y-ray is useful for clinical prevention and/or therapy of var-
ious ROS-related diseases.

7. Low-Dose y-Irradiation Reduces Oxidative
Damage Induced by CCl, in Mouse Liver [21]

Carbon tetrachloride (CCly) is frequently used as a chemical
inducer of experimental liver damage. Transient hepatocellu-
lar disorder induced by CCly administration is thought to be
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Figure 6: Time-dependent changes of the GPT and GOT activities in serum of Wister rats after Fe’*-NTA administration following low-dose
X-irradiation. Each value indicates the mean = SEM. The number of rats per experimental point is 10-12. *P < 0.05 by ¢-test, each Fe¥*-
NTA-administrated group value versus non-administrated control group value. *P < 0.05 by ¢-test, each group value at various intervals
after irradiation versus the value at the same intervals after sham-irradiation [16].
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by t-test, each Fe’"-NTA administrated group value versus non-administrated control group value. *P < 0.05 by ¢-test, each group value at
various intervals after irradiation versus the value at the same intervals after sham irradiation [16].

induced by trichloromethyl radical trichloromethyl peroxy
radical [22, 23]. Overproduction of these radicals initiates
lipid peroxidation of polyunsaturated fatty acid in mem-
brane and eventually leads to cell necrosis. These radicals in-
duce an adverse reaction by forming radicals after its admin-
istration in the early stage between intracellular uptake and
transformation into storage types. We believe that the clarifi-
cation of glutathione-associated metabolism and neogenesis
after irradiation is important for advancing studies of the
mechanism of radio adaptive response. Therefore, we exam-
ined the effects of irradiation (0.5 Gy of y-ray) reducing the
oxidative damage in CCly-hepatopathy mice. The irradiation
of y-rays was initiated 24 hr after the injection of CCl,.

The irradiation was found to accelerate the recovery
from hepatopathy induced by CCly. Fatty degeneration was
observed in CCly administration group. However, low-dose

irradiation inhibits fatty degeneration. The lipid peroxide
levels in livers were greatly elevated by CCly treatment.
However, those levels decreased more rapidly after the irra-
diation. GOT and GPT activities were remarkably increased
by CCly injection, and those of low-dose irradiation group
rapidly returned to normal values compared with the sham
irradiation group.

The t-GSH content of low-dose irradiation group was
higher than that of the sham irradiation group. The irradia-
tion group showed accelerated recovery of the t-GSH content
which had decreased after CCly administration.

GR activity obviously decreased with CCly administra-
tion. This lowered GR activity rapidly elevated to normal lev-
el with 0.5 Gy irradiation in 3 hr. In contrast, the sham irrad-
iation group did not show any change in the activity 3 hr after
the irradiation.
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Figure 8: Differences in the GPT activity in serum, lipid peroxide level, catalase activity, and t-GSH content in liver between normal and
acatalasemic mice, six to seven weeks of age, under nontreated control, CCly administration, 0.5 Gy X-irradiation, or 0.5 Gy-irradiation prior
to CCly administration. Each value indicates the mean + SEM. The number of mice per experimental point is 6-12. ***P < 0.001 by ¢-test,
acatalasemic mice value versus normal mice value under no treatment. *P < 0.05, **P < 0.01, ***P < 0.001 by ¢-test, each normal mice
value or acatalasemic mice value under CCly administration or 0.5 Gy X-irradiation versus under no treatment, respectively. *P < 0.05,
#P < 0.01, P < 0.001 by t-test, each acatalasemic mice value or normal mice value under CCly administration after 0.5 Gy X-irradiation

versus under CCly administration [17].

These findings suggest that low-dose irradiation relieved
functional disorder at least in the liver of mice with active
oxygen diseases.

8. Inhibitory Effects of Prior or
Post-Low-Dose X-Irradiation on Carbon
Tetrachloride-Induced Hepatopathy in
Acatalasemic Mice [17, 19]

Catalase is an important component of the cellular defense
system against damage induced by ROS. In terms of the
regulation of intracellular H,O, in biological systems, both
catalase and GPx are responsible; the former was suggested
to play a major role in H,O, breakdown, particularly when
H,0; is overproduced [24].

Hypoacatalasemic mouse has higher catalase activity
than acatalasemic mouse and lower catalase activity than
normal mouse. For example, the catalase activities of blood
and tissues in acatalasemic mouse (C3H/AnLCsPCsP) are
one-tenth to half, and those of hypoacatalasemic mouse
(C3H/AnLCs¢Cs®) are two-thirds those of normal mouse
(C3H/AnLCs*Cs?), respectively [25]. The catalase activities
in blood and organs of the acatalasemic (C3H/AnLCs"CsP)
mouse of C3H strain are lower than those of the normal
(C3H/AnLCs*Cs*) mouse. It was reported that CCly-in-
duced hepatotoxicity was enhanced in acatalasemic mice in
comparison with the normal mice in the later phases of liver
injury [26]. This might be due to the increased formation of
*OH in the absence of catalase instead of *O,. Therefore, we
examined the effects of prior or post-low-dose X-irradiation,
which reduced the oxidative damage under CCly-induced



8 ISRN Endocrinology

(A) control (A) control

(C) 0.5Gy (C) 0.5Gy

(D) 0.5Gy + CCLy (D) 0.5Gy + CCLy

(a) Acatalasemic (b) Normal

FiGure 9: Differences in liver histopathology between acatalasemic (a) and normal (b) mice under non-treated control (A) CCly administra-
tion (B), 0.5 Gy X-irradiation (C), or 0.5 Gy irradiation prior to CCly administration (D). All figures under lower magnification (X 100) are
stained with Sudan Black B (black-colored) for the detection of fatty degeneration surrounding the central vein (C) and the portal vein (P).
The areas of cell necrosis surrounding the central vein in the CCly-administrated mice after 0.5 Gy X-irradaiation were smaller in both mice
in comparison with the CCly-administrated mice. No obvious difference was noted in the extent of the centrilobular hepatocyte damage by
nontreatment or 0.5 Gy X-irradiation in both mice [17].
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TaBLE 1: Temporal changes in aminotransferases in blood of acatalasemic or normal mice at each sham, 0.5 Gy, or 15 Gy X-ray irradiation
following CCl, administration. Each value indicates the mean = SEM. The number of mice experimental points is 5. ***P < 0.001 versus

normal mouse *P < 0.05, **P < 0.01 versus control [19].

Mice
Treatment Normal Acatalasemic
Control 0.84 + 0.09 2.20 = 0.15"*
GOT activity [KU/L] CCl4 + Sham 5.62 + 0.47 7.74 + 0.56
CCl4 + 0.5 Gy 4.57 + 0.43* 6.61 + 0.51*
CCl4 + 15 Gy 7.52 + 0.55* 9.65 + 0.62*
Control 0.97 £ 0.10 2.17 + 0.15"*+
GPT activity [KU/L] CCl4 + Sham 7.36 = 0.54 9.14 + 0.60
CCl4 + 0.5Gy 527 + 0.46** 7.62 + 0.55%*
CCl4 + 15 Gy 7.98 = 0.55 10.14 + 0.64*

TaBLE 2: Temporal changes in antioxidant-associated substances in liver of acatalasemic or normal mice at each sham, 0.5 Gy, or 15 Gy X-ray
Irradiation following CCly administration. Each value indicates the mean = SEM. The number of mice experimental points is 5. ***P < 0.001
versus normal mouse *P < 0.05, ***P < 0.001 versus control, *P < 0.05, **P < 0.001, versus CCl + Sham [19].

Mice
Treatment Normal Acatalasemic
Control 0.39 + 0.06 0.49 + 0.08
k sk k >k ok
Lipid peroxide level [nmol/mg protein] CCl4 + sham 1.04 +0.20 .
CCl4 + 0.5 Gy 0.80 = 0.08* 1.28 £ 0.18
CCl4 + 15 Gy 1.01 £0.12 1.17 £ 0.2
Control 48.6 + 3.8 55.5 + 3.7
sk ok ok ok
SOD activity [U/mg protein] CCl4 + sham 20.7 £ 5.0 204 + 3.9
CCl4 + 0.5 Gy 22.0 £ 2.4 29.1 + 6.4%
CCl4 + 15 Gy 152 +24 20.7 £ 3.4
Control 250 + 25.0 95 + 14.5+F
*okok *
Catalase activity [U/mg protein] CCl4 + sham 107 +23.2 68 +13.3
CCl4 + 0.5 Gy 205 + 14.1%% 110 + 10.0%*
CCl4 + 15 Gy 167 + 30.9% 53+ 11

hepatopathy in the acatalasemic or normal mice. The acata-
lasemic mice showed a significantly lower catalase activity
and a significantly higher GPx activity compared with those
in the normal mice. Moreover, low-dose irradiation in-
creased the catalase activity in the acatalasemic mouse liver
to a level similar to that of the normal mouse liver. Analyses
of blood GOT and GPT activity and lipid peroxide levels
showed that CCly-induced hepatopathy was inhibited by
low-dose irradiation (Figure 8). Other results in this report
show that histological examinations of liver tissues revealed
no significant changes before CCly administration in acata-
lasemic and normal mice from either the prior low-dose-
irradiated or the control sham-irradiated groups. Liver tis-
sues exhibited that fatty degeneration was more extensive in
acatalasemic mouse liver than in the normal mice. However,
in low-dose irradiated and CCly-treated groups, there was no
obvious difference in the extent of the fatty degeneration be-
tween the acatalasemic and normal mice (Figure 9). These
findings may indicate that the free radical reaction induced
by the lack of catalase and the administration of CCly is

more properly neutralized by high GPx activity and low-dose
irradiation in the acatalasemic mouse liver.

Next, we examined the effects of post-low-dose X-irrad-
iation on CCly-induced acatalasemic mice liver damage. The
0.5 Gy irradiation after CCly; administration decreased the
activities of GOT and GPT in the acatalasemic or normal
mice blood compared with those of CCly-treated mice. How-
ever, high-dose irradiation (15 Gy) after CCly administration
increased the GOT activities in the acatalasemic or normal
mice blood compared with those of CCly-treated mice (Table

1). CCly administration significantly increased the lipid per-
oxide levels in livers of acatalasemic or normal mice. How-
ever, the 0.5 Gy irradiation after CCly administration signif-
icantly decreased the lipid peroxide levels in livers of nor-
mal mice. CCly administration significantly increased the ac-
tivities of SOD and catalase in livers of acatalasemic or nor-
mal mice. However, the 0.5 Gy irradiation after CCly; admin-
istration significantly increased the SOD activity in livers of
acatalasemic mice and catalase activities in livers of acata-
lasemic or normal mice (Table 2). In addition, other results in
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this report showed that pathological disorder was improved
by 0.5 Gy irradiation. The fat degeneration in normal mice
was quickly reduced, in contrast to acatalasemic mice. These
findings suggest that low-dose irradiation after CCl, admin-
istration accelerates the rate of recovery and that catalase
plays an important role in the recovery from hepatopathy in-
duced by CCly, in contrast to high-dose irradiation.

9. Radon Inhalation Protects Mice
from Carbon-Tetrachloride-Induced
Hepatic and Renal Damage [27]

We assessed whether radon inhalation provided protection
from CCly-induced hepatic and renal damage in mice. Mice
were subjected to intraperitoneal injection of CCly after
inhaling approximately 18 kBg/m?® radon for 6 hr. Radon
inhalation significantly increased t-GSH content and GPx
activity in the liver and kidney. Injection of CCly was asso-
ciated with significantly higher levels of GOT and alkaline
phosphatase (ALP) activity in serum, and pretreatment with
radon significantly decreased the GOT and ALP activity
associated with CCly injection, suggesting that radon inhala-
tion alleviates CCly-induced hepatopathy. These findings
suggested that radon inhalation activated antioxidative func-
tions and inhibited CCls-induced hepatopathy.

10. Conclusion

It is highly possible that low-dose irradiation including radon
inhalation activates the biodefence systems and, therefore,
contributes to preventing or reducing reactive oxygen spe-
cies-related diabetes and nonalcoholic liver disease, which are
thought to involve peroxidation.
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