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Abstract: The tube contours in two‐dimensional images are important cues for optical three‐dimen‐

sional reconstruction. Aiming at the practical problems encountered in the application of tube con‐

tour detection under complex background, a fully convolutional network (FCN)‐based tube contour 

detection method  is proposed. Multi‐exposure  (ME)  images are captured as  the  input of FCN  in 

order to get information of tube contours in different dynamic ranges, and the U‐Net type architec‐

ture is adopted by the FCN to achieve pixel‐level dense classification. In addition, we propose a new 

loss function that can help eliminate the adverse effects caused by the positional deviation and jag‐

ged morphology of tube contour labels. Finally, we introduce a new dataset called multi‐exposure 

tube contour dataset (METCD) and a new evaluation metric called dilate inaccuracy at optimal da‐

taset scale  (DIA‐ODS)  to reach an overall evaluation of our proposed method. The experimental 

results show that the proposed method can effectively improve the integrity and accuracy of tube 

contour detection in complex scenes. 

Keywords: fully convolutional network; tube contour detection; multi‐exposure images; U‐Net;   

dilation operation 

 

1. Introduction 

Tubes are widely used in the fields of aerospace, automobiles, ships, and other fields 

for transporting liquids or gases such as fuel, coolant, and lubricating fluid. These tubes 

are generally metallic. The contours of tubes in two‐dimensional images usually appear 

as edges containing certain shallow features (such as gradient, intensity) and deep fea‐

tures (such as texture, shape, and spatial relation), as shown in Figure 1a. Accurate detec‐

tion of these contours is very important for achieving three‐dimensional reconstruction 

and measurement of tubes [1–3]. In theoretical research and practical applications, many 

scholars have proposed various methods that can be used for the detection of tube con‐

tours. 

In the field of image processing, many edge detection algorithms have been proposed 

[4,5], and some of them have been used to perform tube contour detection in some single 

tube measurement applications [3,6]. These kinds of methods only require the gradient 

information in the image to complete the edge detection work. Therefore, these methods 

have the advantage of simple design, easy operation and high efficiency. However, due 

to  the  lack  of high‐level  features,  these methods  are  easily disturbed  by messy  back‐

grounds, uneven lighting and ambient noise. 

There are some other researchers [7,8] who adopted the combination of multiple fea‐

ture descriptors, such as texture, shape and spatial relation, to realize the tubular object 

recognition under general background. To a certain extent, these kinds of methods im‐

prove  the  robustness  and  stability  of  the  result.  However,  these  methods  need  a 
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Abstract: Smart buildings in big cities are now equipped with an internet of things (IoT) infras-
tructure to constantly monitor different aspects of people’s daily lives via IoT devices and sensor
networks. The malfunction and low quality of service (QoS) of such devices and networks can
severely cause property damage and perhaps loss of life. Therefore, it is important to quantify differ-
ent metrics related to the operational performance of the systems that make up such computational
architecture even in advance of the building construction. Previous studies used analytical models
considering different aspects to assess the performance of building monitoring systems. However,
some critical points are still missing in the literature, such as (i) analyzing the capacity of compu-
tational resources adequate to the data demand, (ii) representing the number of cores per machine,
and (iii) the clustering of sensors by location. This work proposes a queuing network based message
exchange architecture to evaluate the performance of an intelligent building infrastructure associated
with multiple processing layers: edge and fog. We consider an architecture of a building that has
several floors and several rooms in each of them, where all rooms are equipped with sensors and an
edge device. A comprehensive sensitivity analysis of the model was performed using the Design
of Experiments (DoE) method to identify bottlenecks in the proposal. A series of case studies were
conducted based on the DoE results. The DoE results allowed us to conclude, for example, that the
number of cores can have more impact on the response time than the number of nodes. Simulations
of scenarios defined through DoE allow observing the behavior of the following metrics: average
response time, resource utilization rate, flow rate, discard rate, and the number of messages in the
system. Three scenarios were explored: (i) scenario A (varying the number of cores), (ii) scenario B
(varying the number of fog nodes), and (iii) scenario C (varying the nodes and cores simultaneously).
Depending on the number of resources (nodes or cores), the system can become so overloaded that
no new requests are supported. The queuing network based message exchange architecture and the
analyses carried out can help system designers optimize their computational architectures before
building construction.

Keywords: internet of things (IoT); smart building; queuing model; sensors networks

1. Introduction

The Internet of Things (IoT) has emerged as a dominant computing paradigm to enable
ubiquitous connectivity between different “things” [1]. The IoT connects any item to the
Internet through distributed sensors for identification, positioning, tracking, monitoring,
and management [2,3]. The number of IoT devices worldwide is predicted to nearly double
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from 8.74 billion in 2020 to over 16.44 billion in 2025 [4]. IoT holds promise because of
its importance in many commerce, industry, and education applications [5]. IoT devices
can be used, for example, to automate activities in smart homes [6], traffic from vehicular
networks [7], and health monitoring of elderly in their homes [8]. Therefore, an IoT system
grants services to smart scenarios in different contexts, efficiently managing hardware,
software, and communication resources to reduce costs in specific domains. Identifying
abnormal behavior in a monitored environment using IoT has been very useful in smart
homes and buildings.

According to the United Nations, the world’s urban population is projected to grow by
2.5 billion from 2014 to 2050, when it will account for 66% of the total global population [9].
The growing population in cities increases the demand for the fundamental needs of the
people living there, such as housing, utilities, medical care, welfare, education, and employ-
ment [10]. The smart city concept has been envisioned to deal with challenges faced during
the growth of cities. A smart city denotes “the effective integration of physical, digital and
human systems in the built environment to deliver a sustainable, prosperous and inclusive
future for its citizens” [11]. As the cells of smart cities, smart buildings integrate intelli-
gence, enterprise, control, materials, and construction to advance the building’s energy
efficiency, longevity, comfort, and satisfaction [12]. In both the smart cities and buildings
contexts, the “smart” refers to the development, integration, and utilization of intelligent
systems based on Information and Communication Technologies (ICT). Originally, smart
home technology was used to control environmental systems such as lighting and heating.
However, for some time now, IoT has allowed almost all house electrical components to
be connected to a central system, making it possible to monitor the environment. A smart
home can provide services based on user needs. From the concept of smart homes, IoT
can be extended to a broader context: smart buildings. Managing smart buildings requires
more sophisticated computing infrastructures and a readiness to meet a great demand for
data generation. The computational power of cloud computing is used to process such
demand for a long time.

Cloud computing has been the backbone for hosting and offering subscription-
oriented computing and application services. It is also used to execute the applications for
different IoT-enabled cyber-physical systems [13]. Using cloud computing is sometimes
impossible by the distant placement of IoT devices. Edge and fog computing emerged
to place services closer to the data source [14]. The central research problem in this work
is that such addition of processing layers in the IoT systems architecture requires perfor-
mance evaluations from the earliest stages of development. However, evaluations with
real experiments can be costly because there are many configuration possibilities. Sim-
ple home automation with IoT devices can cost more than a hundred thousand dollars
(Homeadvisor Service: https://www.homeadvisor.com/cost/electrical/install-or-repair-
a-home-automation-system/, accessed on 2 July 2021) Unnecessary expenses can be made
to obtain resources that will not be used. Analytical models can be a solution in this context,
allowing predictions based on probabilistic calculations [15–23]. Queuing theory is a pop-
ular mathematical method for analyzing different systems and observing their behavior
concerning system performance. Queue models are simple, didactic and efficient [24–26].
Queue theory applications generally have two goals: predicting system performance and
finding a system design to improve performance in the planning phase [27].

Some previous work in the literature developed analytical models to assess the capabil-
ities of IoT systems in smart homes and buildings. Some studies focused on ensuring only
the functioning of the system [28–31], others analyzed the energy efficiency [30,32,33]. In
particular, Zheng et al. [34] model the smart home workflow system based on the Zig-Bee
and discusses the resource flow situation in the smart home system for analyzing the user
comfort perception. Lin et al. [35] propose a localization approach that utilizes the neigh-
bor received signal strength to build a fingerprint database and adopts a Markov-chain
prediction model to assist positioning. Casado et al. [36] develop a control model that is
applied to ensure reliable temperature monitoring and control in a smart supermarket. The

https://www.homeadvisor.com/cost/electrical/install-or-repair-a-home-automation-system/
https://www.homeadvisor.com/cost/electrical/install-or-repair-a-home-automation-system/
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efficiency of the presented approach is verified with the results obtained in the case study
carried out. Ajao et al. [6] analyzed the system performance in terms only of response time
and drop rate. They explored the very specific context of a window automated control,
which is not a critical situation. In our case, we envision aspects related to sensors with
critical latency requirements, such as fire detection, but our model can be used to represent
any type of sensor in a building.

Furthermore, the previous works did not show detailed performance analyses of
data transactions in the system. Very few works in literature considered these issues in a
comprehensive manner, especially using queuing network models. Bouloukakis et al. in a
recent work, ref. [37] presented several queuing models to represent QoS settings of IoT
interactions. Nevertheless, the models are for different purposes of performance analysis
without a proper consideration of system/network architecture. While, we propose in
our study the adoption of a queuing network based message exchange architecture to
represent the data transaction in an edge/fog infrastructure for smart buildings. Volochiy
et al. in the most related work, ref. [38] proposed a queuing network for availability and
safety assessment of data services in a general IoT infrastructure. We extensively propose a
comprehensive queuing network based message exchange architecture to capture the data
transaction in a specific IoT sensor network for smart buildings for the sake of performance
evaluation. Our study presents a significant progress and contribution compared to the
work [38], as well as many other above-mentioned works in the performance assessment
of IoT sensor networks in smart buildings using queuing networks.

Among the above-cited papers, none explored layers of edge and fog. Previous work
has also not explored the analysis of the impact of resource capacity variation on system
performance. Furthermore, this work considered sensors grouped by location, an essential
characteristic when monitoring more than one environment. Therefore, this paper proposes
a queuing network based message exchange architecture to evaluate IoT systems for smart
buildings supported by fog-edge. The contributions of this paper are as follows:

• A queuing network-based message exchange architecture, which is a useful tool for
system designers to evaluate the performance of architectures for smart buildings
supported by fog edge, even before their implementation. The model allows config-
uring parameters according to the designer’s need, including the number of nodes,
service times, queue size, among others. The designer will be able to analyze various
performance metrics, for example, the mean response time (MRT) and drop rate.

• A comprehensive sensitivity analysis with Design of Experiments (DoE), which al-
lows you to analyze different factors and how changes in their levels impact the
performance of a smart building system. According to Raj Jain [39], parameters on
an experiment or simulation are a variable that their configured values impact the
system somehow but are adjusted to be constant (e.g., Operating System). Factors
are varied during the test to observe their specific impact on the system (e.g., number
of cores in a server). Four factors are observed in this work, are (i) service time, (ii)
number of fog nodes, (iii) number of processing cores, and (iv) queue size.

• Three simulations were carried out considering different scenarios, which serve to
analyze the performance of an intelligent building: scenario A (varying the number of
cores), scenario B (varying the number of fog nodes), and scenario C (varying the nodes
and cores simultaneously). The monitored scenarios analyze the system’s behavior
by changing the number of fog nodes and cores. Metrics such as MRT, resource
utilization, drop rate, and flow rate were considered. According to the sensitivity
analysis, the simulations were carried out considering the factors with the greatest
impact on performance: number of cores and number of nodes. In scenarios A and B,
the arrival rate was varied from 0.04 to 0.08 msg/ms. Depending on the number of
resources (nodes or cores), the system can become so overloaded that no new requests
are supported. For example, in scenario A, with 4 and 8 cores, the resource utilization
does not exceed 80. In scenario B, when there are only two nodes in the fog, there
are always dropped requests (ranging from 0.1 msg/ms to 0.35 msg/ms dropped).
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Scenario C indicated that by varying the parameters similarly (cores and nodes), the
cores have a much greater impact on performance than the number of nodes.

The remainder of this paper is organized as follows: Section 2 shows a brief back-
ground of queuing theory. Section 3 presents the related works, comparing them with our
proposal. Section 4 presents the methodology applied to carry out this work. Section 5
describes the architecture that was used as the basis for building the model. In Section 6 the
proposed queuing network based message exchange architecture is presented. Section 7
describes experiments performed with Design of Experiments (DoE). Section 8 presents the
results obtained from the simulations carried out. Finally, Section 9 traces some conclusions
and future work.

2. Queuing Theory Background

A queue is the implementation of a waiting list of jobs in order to obtain a service.
One or more servers may provide services. This set (queue + one or more servers capable
of providing services) is called the service center. If an analogy with the real world is
performed, one can imagine one or more front desks accessed through a queue. All the
front desks work in parallel and provide the same service, regardless of their position. In
queuing theory, a service center is schematically represented as in Figure 1 [40].

Input Customer ...
Queue of Waiting

Servers

Output Customer

Figure 1. Service center (queue of waiting + one or many servers).

A model that uses one or more service centers is called a queuing model. Several
performance metrics are used to measure the performance of such a model Below, the most
critical performance metrics are presented and they can characterize such a queuing model.
The number of customers at a time is denoted by ns. A random variable n whose mean
values cannot be calculated using a probability distribution is used. The expected value for
the number of customers that are at a certain time in the system is called the nth moment
of the origin of n and is calculated as follows:

E[nk] =
∞

∑
i=0

ikProb{n = i} (1)

If it is considered that Prob{n = i} and E[nk] to be equal with averages over an
infinitely long interval of time (long-run time averages), one has:

lim
s→∞

( f irst s time when i customers are in the system) (2)

E[nk] = lim
s→∞

1
S

∫ S

0
[nu]

kdu (3)

Each client j that arrives in the system should spend some a time before it is served.
This time is defined as the response time for customer j and it was noted with rj. If it
is considered that Prob{r ≤ t} and E[rk] are equal to averages over an infinite number
of customers (long-run customer averages), the following equation for the probability
distribution function and expected value is obtained.

Prob{r ≤ t} = lim
j→∞

(Z) (4)
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The variable Z means the fraction of the first J customers to arrive whose response
time is less or equal to t.

E[rk] = lim
j→∞

1
J

J

∑
j=1

rk
j (5)

If the system is a stable one (E[n] and E[r] are finite numbers), the throughput T must
be equal with the long-run rate for the customer arrivals, where T is defined as:

T = lim
s→∞

1
S
(number o f clients departed in f irst s time units) (6)

The time when a server is busy is called the utilization of the service center. If it is
denoted by bs, the number of servers occupied at time s, U(utilization) is defined as follows:

T = lim
s→∞

1
S

∫ s

0
budu (7)

3. Related Work

This section presents related works with approaches similar to our proposal. Some
of previous works which are related to analytical models, smart homes/buildings are
considered for discussion in this section to highlight the contributions of our study.

Arbib et al. [26] propose a technique that employs the Petri net tools to model, simulate,
analyze, and control at the discrete-event level the smart home applications. However,
Arbib et al. did not focus on critical types of sensors but only light control, for example.
Novak et al. [29] present a method for anomaly detection in user’s activities utilizing data
from unobtrusive sensors. A service for a smart-home environment using this method
adapts to a user’s behavior and may provide alarms to a responsible person if unusual
activity is detected. As an unusual activity, they consider long periods of inactivity, lacking
activity, unusual presence, and changes in daily activity patterns. Anomaly detection
is based on an unsupervised classification technique Self Organizing Maps and next
activity prediction employing Markov model. Novak et al. observed multiple metrics in
conjunction, neither fog layer. Wang et al. [33] present an energy management modeling
of a multi-source power system composed of photovoltaic (PV) array, storage, and power
grid connection, and considering messages from the smart grid. The designed system can
supply a tertiary building at the same time as PV may produce energy. The control strategy
manages the power flow through the load concerning its power demand and public grid
constraints. Wang et al. only observe energy metrics.

Nabih et al. [28] specifies and models an Integrated System (IS) devoted to the HAH
management at the operational level. The IS is designed to monitor the daily living of the
apartment inhabitant, detect possible troubles and accidents, communicate with family,
doctors, and emergency services. A Petri net model in a modular approach is proposed to
describe the actions and the activities of the IS effectively. Nabih et al. does observe only
simple aspects of smart home and not a smart building.

The Health At Home (HAH) is an alternative to the traditional hospital to promote
early discharge and help patients and older adults live autonomously. Fanti et al. [30]
specifies and models an Integrated System (IS) devoted to the HAH management at the
operational level. The IS is designed to monitor the daily living of the apartment inhabitant,
detect possible troubles and accidents, communicate with family, doctors, and emergency
services. Fanti et al. [32] deals with the energy consumption management problem in
buildings by modeling and controlling the major electric appliances. Renewable energies
are considered by considering the production schedules of both wind and solar sources.
Each appliance is described by modular mathematical models using the Matlab/Simulink
software. A simulator is designed that models the load energy consumption and helps
to recognize how they contribute to peak demand. In the proposed control strategy, the
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comfort conditions are respected for each appliance based on user preferences. Fanti et al.
focus on energy and not performance related to time and drop rate.

Garcia et al. [31] use Petri nets to model Activities of Daily Living (ADLs) to capture
the complex behaviors of ambient systems, such as the activities described above. Petri nets
models’ granularity allows a complete and detailed understanding of the different varia-
tions and cases of the ADLs modeled. Garcia models the austere environment of the smart
home and not complex parameters such as sensor grouping by locations. Ajao et al. [6]
designed a smart room with automated window control, which can automatically open
and close based on changing weather conditions. The response time and error percentage
metrics were observed. Ajao et al. [6] observed the response time, the main metric studied
in this article.

Casado et al. [36] focus on the problem of fault-tolerant maintenance of a networked
environment in the domain of the Internet of things. Based on continuous-time Markov
chains, together with a cooperative control algorithm, novel feedback model-based predic-
tive hybrid control algorithm is proposed to improve the maintenance and reliability of the
Internet of things network. Virtual sensors are substituted for the sensors that the algorithm
predicts will not function properly in future time intervals; this allows for maintaining
reliable monitoring and control of the Internet of things network. Casado et al. focus on
maintenance and reliability and not edge capacity planning.

Some previous works adopted Petri nets to represent the data flows in a system for
availability evaluation, mainly. Some others used queuing Petri nets for performance
evaluation but not at a detailed level. Very few works presented comprehensive perfor-
mance evaluation with detailed sensitivity analysis using DoE to assimilate the impact of
different factors on the system performance, especially using queuing network models. As
above mentioned, refs. [37,38] are the most related works that presented the use of queu-
ing models for comprehensive performance assessment of data transactions and services
in IoT infrastructures. We propose to use a queuing network-based message exchange
architecture to comprehend the exact performance behaviors and evaluation of the data
transactions. We employ a common type of queuing model but extensively construct a
queuing network to represent the data transactions in an edge/fog based IoT infrastructure
for smart buildings.

Table 1 presents a comparison of the collected studies, highlighting the application
context, the metrics used, resource capacity analysis, sensor grouping by location, and num-
ber representation of cores per machine. Then, the works are discussed in a grouped way
according to each comparison criterion.

Table 1. Related Works.

Reference Application
Context

Metrics Resource
Capacity
Analysis

Sensors Grouped
by Location

Represents
Number of Cores

per Machine

[28] Smart home System effectiveness Not Not Not
[29] Smart home System effectiveness Not Not Not
[33] Smart building Energy efficiency Not Not Not
[34] Smart home User comfort perception Not Not Not
[30] Smart home System effectiveness,

vivacity, limitation and reversibility.
Not Not Not

[32] Smart building Energy efficiency Not Not Not
[31] Smart home System effectiveness Not Not Not
[6] Smart home Error percentage, Response time. Not Not Not

[35] Smart building Trajectory pedestrian prediction Not Not Not
[36] Smart building Temperature Not Not Not
[41] Smart building Indoor environment quality sensing Not Not Not

[37,38] Smart building IoT services Not Not Not
This Work Smart building Resource utilization, MRT, Drop rate, Flow rate, Number of

jobs in the system.
Yes Yes Yes

Main components of the architecture-Some works use sensors to seek improvements
in the elderly quality of life, monitoring them non-invasively to detect domestic accidents.
Although the cited works have observed the communication of messages to external
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environments, the authors do not highlight how communication is carried out, nor do
they focus on remote processing. Our proposal exploits the IoT and the edge and fog
layers as complementary features that help optimize data processing. Metrics-Performance
metrics facilitate understanding how the system behaves in different usage scenarios.
These adopted metrics in our work are important for analyzing whether the system is
functioning properly. The mean response time is important to verify that the configuration
results in satisfactory transmission and processing time. The drop rate allows observing
the number of requests that are discarded according to the network configuration. The flow
rate shows the rate of traffic through the system. Using computational resources allows
observing the configuration necessary to meet the system’s needs, avoiding the overload
or resource idleness. The number of jobs in the system shows the number of requests in the
system’s queues. Furthermore, this work is not limited to evaluating sensors or specific
environmental conditions. The queuing network based message exchange architecture is
configurable for any type of data collected by a set of sensors. Resource capacity analysis
refers to evaluating how the system behaves according to the number of available resources.
This analysis allows predicting whether the system will satisfy requests satisfactorily and
avoiding wasting computational resources. We analyze the system’s behavior by changing
the number of nodes in the fog in our work. Sensors grouped by location refers to how
the model represents different sets of sensors. Our model allows us to assign different
arrival rates depending on location. In our model, these locations can be seen as rooms in a
building. This feature aims to make the model more realistic because, depending on the
location, the data generated can be different. Our model is also the only one that represents
the number of processing cores per machine. The fog layer has multi-core machines. The
more cores a node has, the more requests it can process in parallel. The model allows for
varying the fog capacity by changing the number of machines and the number of cores in
each one of them. We believe this feature is critical to accurately representing architectures.

4. Methodology

The main objective of this work is to develop a queuing model that can evaluate IoT
systems for intelligent buildings supported by edge and fog layers. To evaluate the model,
some scenarios were built and based on them, sensitivity analysis and three simulations
were developed to determine which factors most impact the metrics studied. Figure 2
presents a flowchart that summarizes the strategy used in this work.

Application Understanding: It is important to understand how the application works,
define how many components are involved, and the system’s data flow, for example,
where the data will be sent after passing through component ’x’. Metrics Definition: The
metrics of interest must be identified, considering the model’s information to diagnose
system performance. In this work, the selected metrics can be important in the end user’s
perception and useful for system administrators, they are: MRT, resource utilization,
discard rate, and throughput. Definition of Parameters: The parameters that will be
inserted in the model are defined. These parameters define the behavior and capability of
features of each component. In this work, the parameters added were the number of cores,
nodes, service rate, and queue size. Analytical Model Generation: A performance model
using queuing model is developed. In this part, the model is built considering the defined
metrics and parameters and the expected results. The choice of the queuing model is
because the considered intelligent building scenario has few components and the queuing
model satisfactorily meets low complexity systems. Template Validation: Implementation
of model validation using programming language considering the components inserted in
the model. The results collected in the validation are compared with the results returned
by the model, if they are similar values, the model is validated. Otherwise, there will be
a need to adjust the model. If, after validation, the need to adjust the model is detected,
it must return to the analytical model generation step. Sensitivity Analysis: Using DoE,
the analysis presents results considering predefined factors and levels. From this, it is
possible to identify the factors most relevant to the results of the chosen metrics and
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how the interaction between the factors and variations in their levels impact performance.
Scenario Selection: Some scenarios are built for performance analytics. In this part, will be
defined which scenarios can represent the reality of an intelligent building. The scenarios
will be chosen to analyze the most important factors considering the sensitivity analysis
results. Conducting the Scenarios Assessment: The built scenarios are evaluated using
the queuing model through simulation. In each scenario, the factors will vary, and the
chosen metrics will be analyzed, allowing to see which configurations the system has
satisfactory performance.

Analytical Model 
Generation

Conducting Scenario 
Assessment

System 
Description

MRT Resource 
Usage Drop Rate Flow Rate

DoE

Application 
Understanding

Definition of Metrics

Definition of Parameters

Sensitivity Analysis

Number of 
Cores

Number of 
Nodes Service Rate Queue Size

Data flow

Scenario Selection Scenario A Scenario B Scenario C

Queue Model

Model Validation Implementation

Simulation

Adjustment?
Yes

Not

Figure 2. Analytical model development methodology.

5. System Architecture

This section presents the architecture of infrastructure for security monitoring in
smart buildings. The architecture is discussed considering three aspects: general system
architecture, message life cycle, and assumptions.

General system architecture-Figure 3 illustrates the architecture of the system. Sensors
can be different and have different purposes, but we exemplify some possible types of
sensors as an illustration. The building can detect unexpected movement in environments
(for example, when access to certain places is not allowed) and notify security guards. In
addition, it can detect signs of fire and notify security agents to call the fire department.
Security cameras can perform facial recognition through systems equipped with artificial
intelligence. Such images can be compared with the database and check criminal records of
passersby in the building. The architecture is composed of two computing layers: (i) edge
computing layer in building rooms, for the integration of security sensor data; (ii) fog
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computing layer in data centers for internal client access (e.g., security agents). The edge
computing layer enables real-time monitoring and aggregation of security data, using
temperature and motion sensors to periodically collect and process data about each room’s
environment. The edge computing layer is designed with multiple nodes to collect and
process data in every room on every building floor. The fog computing layer is composed
of: an edge-fog gateway for data grouping and load balancing between the two tiers; a set
of fog nodes for parallel data processing; and a station where data is made available for
internal client access.

Building Room Edge Fog

Floor 1

 Floor 2

Gateway 
Edge-Fog

Fog Nodes

Node 1
Node 2
Node N

Building
with

Detectors

Building
with

Névoa Data 
Center

Cyber Point of View

Physical Point of View

Security Agent

Edge Device

Temperature 
Sensor 01

.

.

.

Motion 
Detector N

Motion 
Detector 01

Room N

Temperature 
Sensor 02

Figure 3. Overview of an architecture that allows you to monitor multiple sensors in an intelli-
gent building.

Message life cycle-The architecture also indicates the life cycle of the data packages and
the operational behavior of the security monitoring system. Data is periodically collected by
motion and heat detectors and then sent to an edge device to be grouped and encapsulated
as a security alert. If the device is busy, the data can be added to the queue, where they
will be answered according to the order of arrival. However, if the edge device queue is
completely occupied, the data will be discarded. These alerts are then transmitted to the fog
via a gateway. The Edge-Fog gateway plays a role in data distribution and load balancing
to the fog nodes. Load balancing is performed so that all fog nodes receive the same
amount of processing requests, which is important to avoid overloading and queuing one
node while other nodes are available. Messages are processed in fog nodes by specialized
applications, which are customized for the alert type. As with the edge device, fog nodes
also have a queued request limit, and if this limit is reached, the data will be discarded.
Data processed in the fog layer is delivered directly to internal customers (security officers).
Given this, questions may arise such as: “What are the impacts of requests’ arrival rate on
the performance metrics of a smart building system?”; and “How does a specific resource
capacity configuration impact the performance metrics of a smart building system?”.

Assumptions and Arguments-Some assumptions about the architecture under consid-
eration are provided below to simplify the modeling.

• Edge layer
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– b1: Data generation has been modeled for all active sensors in a room, connected
to an edge device that is also installed in the room.

– b2: We did not take into account the communication latency between sensors and
edge devices. In practice, the connection is formed by wireless communication.
However, we have simplified the negative impact of short-haul communication
at the edge layer on overall performance metrics.

– b3: The communication latency of the connection between the edge and fog
layers is assumed as a delay in the propagation of data from each edge node to
the fog layer.

– b4: The data collection of each sensor is independent of that of others. However,
the rate of each input is deterministic, that is, with a fixed rate.

• Fog Layer

– n1: We do not consider sophisticated load balancing in the fog layer. Jobs received
at the fog gateway are evenly distributed to each of the nodes in the fog layer. To
simplify the modeling, we did focus on the load balancing problem.

– n2: We consider nodes with equal configurations, but the model allows the
appraiser to configure the nodes in a heterogeneous way.

• IoT Infrastructure

– i1: The performance of data transactions between IoT sensors and internal
clients (security agents) is the main focus of the modeling, as in the work of
Ashraf et al. [3]. Therefore, the involvement of physical components and their
operational availability is minimized. We did not consider component failure
and recovery behaviors in performance evaluation modeling.

– i2: Our main focuses were (i) exploring the bottleneck in real-time security data
transmission and (ii) exploring the impact of changing the fog layer configuration
on performance metrics.

6. Queuing Network Model

Queuing theory is a powerful analytical model that can represent complex
systems [24,27,42,43]. This section presents a model based on queuing theory for the
presented architecture, which is illustrated in Figure 4. The model has multiple entry
points and one exit point. The Java Modeling Tools (JMT) was used to model and eval-
uate the proposed scenario. JMT is an open-source toolkit for analyzing and evaluat-
ing the performance of communication systems based on the queuing theory [44]. JMT
was run in its 1.1.1 version through a .jar file in a Linux Ubuntu 18.04 LTS environment.
The model (with a .jsimg extension) can be downloaded through the following url:
https://tinyurl.com/queuemodel, (accessed on 2 July 2021). Table 2 describes all the
model elements.

Table 2. Description of model components.

Type Element Description

Sensors Responsible for data generation.
Edge Device Responsible for data pre-processing.

Processing Gateway Edge-Fog Responsible for forwarding data from the edge to
the fog.

Fog Node It saves data, processes and forwards information
and/or alerts to security agents.

Communication Edge-Fog Propagation
Time

Edge data propagation delay.

Execution
Status

Fog Client Represents the end of data processing and avail-
ability for security agents.

https://tinyurl.com/queuemodel
https://tinyurl.com/queuemodel
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Figure 4. A queuing network based message exchange architecture of a smart building multi-
layer architecture.

Data flow in the model occurs from left to right. The multiple entries in the model
correspond to the rooms in the building. Each room has sensors that generate requests
within a predefined time interval and an edge device that acts as a gateway between the
edge and the fog layer. Such an edge device is represented by a queue and a unique internal
server. The rooms have n sensors, an amount that can vary depending on the size of the
room, as very large rooms may need several sensors to cover their entire area. The arrival
rate will depend on the number of sensors and the data generating distribution. When
we increase the arrival rate, more sensors are in operation as they are calibrated for a fixed
generation interval. When the arrival rate is higher than the system can handle, the data is
discarded. It is considered that the rooms are organized into floors. Each floor has a certain
distance from the fog layer. This way, there is a delay (“Edge-Fog Propagation Time”) from
each floor to the fog layer. Propagation time components do not have a specific service; it is
just a component that causes a delay in propagating a request, emulating a network delay.

In queuing theory, Kendall notation is popularly used as a standard system for the de-
scription and classification of a queuing node. Originally, queuing models were represented
using three factors as A/S/c (A indicates the arrival time of between each item to the queue,
S represents the distribution of service time, and c is the number of vacant slots in the
queue). An extension of the above representation is A/S/c/K/N/D in which K represents
capacity, N indicates job population size, and D reflects the discipline of the queue node. In
this work, we adopt this representation in building the queuing network for the edge/fog
system. In the fog layer, there is a gateway that is used as an entry point. Upon arriving
at the gateway, messages can be distributed following a specific load balancing strategy.
In this work, in the simulations section, we consider the equal distribution strategy. By
Kendall notation, the network follows the D/M/c/K/FCFS pattern. The generation rate
follows a deterministic pattern (D), as the sensors are calibrated for a fixed generation
interval. However, node service times follow an exponential distribution. Service stations
have a number (c) of servers, which we consider here as CPU cores. It is important to
note that the system has a limited queuing size, exceeding requests being dropped. The
respective queues have a fixed size k, and all queues together sum K total size. The arrival
policy is first to come, first service (FCFS). The fog also has a sink station (“Fog Client”)
corresponding to the location where security agents can access sensitive data in real-time.
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7. Sensitivity Analysis with DoE

Sensitivity analysis is a measure of the effect of a given input data about the output
data, aiming to outline the weak links of the computer systems, and from then on, seek to
adopt a set of techniques that aim to improve these systems in different scenarios [45]. Some
jobs use sensitivity analysis to provide the necessary security and forward the perspective
of system administrators [46,47]. In this work, we have applied a sensitivity analysis
with DoE.

The Design of Experiments (DoE) corresponds to a collection of statistical techniques
that deepen the knowledge about the product or process under study [48]. It can also be
defined by a series of tests in which the researcher changes the set of variables or input
factors to observe and identify the reasons for changes in the output response.

System designers often adopt sensitivity analysis to evaluate how “sensitive” a metric
is to changes in the model [49]. The parameters to be changed are defined using an
experiment plan. The goal is to generate the most significant amount of information with
the least possible experiments. The behavior of the system based on parameter changes
can be observed using sets of outputs. In the literature, there are three categories of graphs
usually adopted for experiments with DoE:

• Pareto chart is represented by bars in descending order. The higher the bar, the greater
the impact. Each bar will represent the influence of each factor on the dependent variable.

• Main effects graphs are used to examine the differences between the level means
for one or more factors, graphing the mean response for each factor level connected
by a line. It can be applied when using a comparison between the relative strength
of the effects of various factors. The signal and magnitude of the main effect can
express the mean response value. The magnitude will express the strength of the
effect. The higher the slope of the line, the greater the magnitude of the main effect.
It is necessary to consider that the horizontal line has no main effect; each level will
affect the response in the same way.

• Interaction graphs are responsible for identifying interactions between factors. An
interaction occurs when the influence of a given factor on the result is altered (ampli-
fied or reduced) by the difference in another factor’s level. Assuming the lines on the
graph are parallel, there is no interaction between the factors. If they are not parallel,
there is an interaction between the factors.

This section describes the experiments performed to analyze factors that can influence
the performance of a smart building. It was also analyzed how changes in their levels
impact the performance of the system. The results obtained are discussed based on the
mean response time metric.

7.1. Design

The mean response time (MRT) metric is analyzed through the DoE. The choice of MRT
is due to its more direct impact on the perception of the end-user. Resource utilization level,
for example, is a metric considered to be of secondary type. Four factors were adopted
in this study: service rate, number of nodes, number of cores, and queue size. All factors
have two levels. The service rate factor refers to the rate it takes the server to execute a
request, and its levels are 0.033 msg/ms and 0.044 msg/ms. The number of nodes refers to
the number of servers in the fog, defined as 5 and 10. The number of cores is defined by
the number of cores in each fog server, defined as 2 and 4. Queue size refers to the number
of requests that will be added to the server queue. Its two levels are 50 and 100. Table 3
summarizes the factors and levels chosen to perform the DoE using the MRT metric. They
must be combined to define how the experiments should be performed with all factors and
levels defined.
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Table 3. DoE Factors and Levels.

Factors Level 1 Level 2

Service Rate 0.033 0.044
Number of Nodes 5 10
Number of Cores 2 4
Queue Size 50 100

7.2. Results of DoE

The Pareto chart determines the magnitude and importance of factors. Figure 5
presents the Pareto graph for the factors related to the MRT metric. When a factor has
a high impact on the tests, very different values are obtained when changing its level.
Bars that cross the red reference line (effect 366.1) are considered statistically significant.
These factors are statistically significant considering the 95% statistical confidence with
the terms of the current model. The factor number of cores has the greatest relevance
among the factors in this study. Therefore, the number of cores by fog nodes is decisive in
the building’s monitoring efficiency. The number of nodes factor also has high relevance.
Queue size and service rate proved to be far less influential. As the Pareto plot displays
the absolute value of the effects, you can determine which effects are large, but it cannot
determine which effects increase or decrease the response time.

Term

ABD
AD

ACD
ABCD

ABC
AB
AC

A
D

BD
CD

BCD
BC

B
C

5004003002001000

A Service Rate
B Number of Nodes
C Number of Cores
D Queue Size

Factor Name

Effect

366.1

Figure 5. Influence of factors on the MRT metric.

Figure 6 presents the main effects graph for the MRT metric. The graph breaks down
the average resulting values for each level. The more horizontal the line, the less influence
that factor has, as it means that the different levels of the factor similarly influence the
result. All factor levels interfere with the MRT metric in some way. The factors number
of nodes and number of cores have the greatest effect. Regarding the number of nodes
factor, with 5 nodes, the highest mean response time was obtained (485 ms), while with
10 nodes, this time was much lower (53 ms). Therefore, the building will be more efficient
using 10 nodes in the fog. Regarding the number of cores factor, it can be seen that the
MRT is much higher when using 2 cores instead of 4. When using 4 cores, the processing
speed is doubled. Thus, the MRT is drastically reduced.
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Figure 6. Main effects for MRT.

Figure 7 displays the interactions for each possible factors combination. Two factors
interact with each other if the effect depends on the variation in the effects of the other.
There is an interaction between all factors, although the variation of effects is low in some
cases. In the interaction between service rate and the number of nodes, the largest rate
variation occurs when nodes are equal to 5. When the service rate equals 0.033 msg/ms,
the MRT reaches 584 ms. With a service rate of 0.044 msg/ms, the MRT is equal to 386 ms.
In the interaction between service rate and the number of cores, the greatest rate variation
occurs when cores are equal to 2. The MRT is equal to 598 ms when the service rate reaches
0.033 msg/ms and 389 ms when the rate is 0.044 msg/ms. The interaction between service
rate and queue size is relatively low (compared to other interactions), with no variation in
the MRT when changing the levels of these factors. In the interaction between the number
of nodes and cores, the greatest variation occurs when the number of cores equals 2. With
5 nodes in the fog, the MRT reaches 923 ms. With 10 nodes, the MRT is equals 63 ms. In
the interaction between the number of nodes and queue size, the greatest variation occurs
with a queue size equal to 100. The MRT reaches 651 ms for 5 nodes, and with 10 nodes,
the MRT equals 53 ms. In the interaction between the number of cores and queue size,
the greatest variation also occurs when the queue size equals 100. With this configuration,
MRT reaches 661 ms when nodes have 2 cores. With 4 cores, the MRT is equal to 43 ms.
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Figure 7. Interactions of factors considering the MRT. The * mark means the relationship between
two factors.
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8. Simulations Results

This section presents the simulations performed on the proposed queuing network
based message exchange architecture considering the variation in the two factors that most
influenced the performance of the building monitoring system. These factors were defined
based on the DoE performed previously, and they are the number of nodes in the fog
and the number of cores in each node. Table 4 presents the configuration used for the
experiments. The tag X indicates that the component has no queue capacity definition.
The time column represents the service time for the queue components. The propagation
time of components represents the time for communication between one layer and another.
In this section, three scenarios are presented: Scenario A presents a variation under the
number of nodes; Scenario B presents a variation under the number of cores; and Scenario
C examines both factors together.

The simulation follows a discrete-event simulation (DES) model with the operation
of a system as a (discrete) sequence of events in time. Each event occurs at a particular
instant in time and marks a change of state in the system. Between consecutive events, no
change in the system is assumed to occur; thus, the simulation time can directly jump to
the occurrence time of the next event, which is called the next-event time progression.

Table 4. Parameters Inserted in the Model.

Component Type Component Time (ms) Queue Size

Queue Machine Edge Devices 5 50
Fog Nodes 30 50

Propagation Time Edge-Fog 1 6 X
Edge-Fog 2 12 X

8.1. Scenario A: Varying the Number of Cores

In this scenario, the factor number of cores was varied, which obtained the greatest
relevance according to the DoE. The number of cores in the fog was varied in 1, 2, 4, and
8 cores, while the number of cores in the edge nodes remained fixed (1 core). The amount
of edge and fog nodes was fixed at 6 and 5 nodes, respectively.

Figure 8 presents the results considering different numbers of cores in the fog nodes:
1, 2, 4, and 8. Figure 8a shows the MRT of the entire system. The greater the resources,
the smaller the MRT tends to be, but this pattern is not always apparent. Thus, when
there is only 1 core, the MRT is much higher than the other configurations, even for low
arrival rate values. With 1 core, it is noted that the growth remains stagnant between
1400 ms and 1500 ms. Such stagnation occurs due to the high utilization of resources
with little processing power (see Figure 8b). The stagnation also happens with 2 cores,
but only from AR = 0.062 msg/ms, reaching an MRT of approximately 700 ms. With
4 and 8 cores, the MRTs obtained are very close. This proximity suggests that it is perhaps
more advantageous and cost-effective to use just 4 cores. Considering the smallest AR
(0.04 msg/ms), we have an MRT of 1434 ms, 77 ms, 46 ms, and 45 ms for 1, 2, 4, and
8 cores, in that order. Assuming the desired MRT of around 100 ms, the configurations
that meet this restriction are those with 2 or more cores. Considering the extreme point
(AR = 0.08 msg/ms), there is an MRT of 1492 ms, 731 ms, 59 ms, and 47 ms for 1, 2, 4, and
8 cores, respectively. Assuming the 100 ms SLA, such time constraint would be met with
4 or 8 cores.

Figure 8b shows the fog utilization. The greater the number of cores, the lower the use
of resources tends to be. Thus, the use with 1 core is much higher than with 8 cores, even
with low AR values. When fog nodes have only 1 core, utilization is 100% for all analyzed
arrival rates. When there are 2 cores, the utilization for AR = 0.04 msg/ms is approximately
70% and reaches 100% AR ≥ 0.058 msg/ms. With 4 and 8 cores, utilization grows as the
arrival rate increases, but it does not deplete available resources. Considering the point of
least demand (AR = 0.04 msg/ms), we have a utilization rate of 100 %, 70 %, 36 % and 17 %
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for 1, 2, 3 and 4 cores, in this order. Assuming an SLA premise where maximum utilization
of 80% is accepted, such restriction can be met when the main fog nodes are configured
with 2 or more cores. Considering the extreme point (AR = 0.08 mg/ms), is observed a
utilization of 100%, 100%, 71% and 36% for 1, 2, 4 and 8 cores, respectively. With an SLA
assumption of 80%, this option can be attended with 4 or 8 cores in each fog node.

Figure 8c shows the edge utilization. As the arrival rate increases, the edge utilization
rate also increases. However, changing the number of cores in edge nodes does not
influence the result because the edge does not depend on processing in fog nodes to
perform its tasks. Regardless of the SLA premise on the edge utilization, choosing any
number of nodes in the fog is possible. The number of fog nodes does not interfere with
edge utilization.
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Figure 8. Model analysis results considering different numbers of cores. (a) Mean Response Time
(MRT); (b) Fog Utilization; (c) Edge Utilization; (d) Drop Rate; (e) System Number of Messages;
(f) Flow Rate.

Figure 8d shows the drop rate. The drop rate tends to decrease as the number of
cores increases. Thus, configurations with 4 or more cores are well below the others when
high arrival rates. With 1 core, the system has a drop rate of at least 0.1 msg/ms for
low AR, and the rate increases as AR grows. With 2 cores, there is no message drop-
ping until AR = 0.049 msg/ms, but with higher arrival rates, it can discard approximately
0.15 msg/ms. The system does not discard any messages for configurations with 4 and
8 cores, even with AR = 0.08 msg/ms. Considering the smallest AR (0.04 msg/ms), dis-
card exists only when the system is configured with 1 core, with a drop rate equal to



Sensors 2021, 21, 5660 17 of 23

0.07 msg/ms. Assuming the SLA requires no message dropout, the configuration needs to
have 2 or more cores on each node in the fog. Considering AR = 0.08 msg/ms, there is a
discard of 0.34 msg/ms and 0.14 msg/ms for 2 and 4 nodes, and no discard with 4 and
8 cores. For the SLA where there should be no discard, the configurations that meet this
requirement have 4 or 8 cores.

Figure 8e displays the number of messages across the system. Note that the lines of
the graph have curves similar to those of the MRT (see Figure 9a). The greater the number
of messages in the system, the longer the queue and the longer it will be serviced. In
the 1 core configuration, the system always has approximately 250 messages, regardless
of the arrival rate. When there are 2 cores, the number of messages is less than 50 until
AR = 0.049 msg/ms. For 4 and 8 cores configurations, messages are less than 50 for all
arrival rates.

Figure 8f shows the system flow rate. Throughput is expected to increase as the
arrival rate increases because more messages arrive. It can be observed that such behavior
in configurations with 2, 4, and 8 cores. However, an inflection point with 2 cores and
AR = 0.58 msg/ms is observed when the flow stabilizes. The 1-core configuration has a
much lower flow rate than the others and remained stable for all arrival rates. Stability
happens because the system becomes overloaded and starts dropping messages (see
Figure 9d). Considering AR = 0.04 msg/ms, the flow rate is 0.16, 0.23, 0.24 and 0.24 for
1, 2, 4 and 8 cores, in that order. Assuming an SLA premise where a flow rate greater
than 0.2 msg/ms is needed, it is possible to meet this restriction with 2 or more cores.
Considering AR = 0.08 msg/ms, the flow rate is 0.16, 0.33, 0.47 and 0.48 for 1, 2, 4 and 8 cores,
respectively. Considering a minimum flow rate SLA of 0.04 msg/ms, the configurations
that meet this requirement have 4 or 8 cores in each node in the fog.

In conclusion, the edge is not impacted by the change in the number of cores in
the fog. The edge does not depend on fog processing to function. For MRT metrics,
the system behaves stably in all fog configurations except with 2 cores. With this setting,
from AR = 0.053 msg/ms, the MRT increases because fog resources also grow, getting close
to 100%. The increase in MRT also increases the number of messages in the system, making
the graphs of the two metrics similar. Also, the drop rate is only existing when fog nodes
have only 1 or 2 cores.

8.2. Scenario B: Variation in the Number of Nodes in the Fog

The second most relevant factor in the DoE was varied in this scenario: the number of
nodes in the fog. The number of nodes in the fog was varied in 2, 5, 10, and 15 nodes, while
the number of nodes on edge remained fixed (6 nodes). Each edge node has 1 processing
core, while fog nodes have 2 cores.

Figure 9 presents the results considering a different number of nodes in the fog.
Figure 9a shows the MRT of the entire system for the 4 variations: 2, 5, 10, and 15 fog
nodes. It is expected that the larger the number of nodes, the smaller the MRT, as the
system performs load balancing. This behavior can be seen in the configurations observed
in this analysis. However, with 10 or more nodes in the fog, the difference in MRT may
not be significant. When the resources were reduced to 5 and 2 nodes, the MRT was much
higher due to AR, reaching 734 ms and 749 ms, respectively. The MRT’s proximity for 10
and 15 nodes suggests that it might be more advantageous and cost-effective to use just
10 nodes in the fog. Regarding the arrival rate growth, it is observed that the AR has a
greater impact when there are 5 fog nodes. The MRT has little significant growth for 2,
10, and 15 nodes as the workload increases. However, with 2 nodes, the MRT is always
above 700 ms, regardless of the arrival rate. A pattern observed in the four scenarios is
about the stagnation of MRT growth as a function of AR. In all configurations, there is a
certain stability in the MRT. However, for 5 nodes, this could only be observed with AR
from 0.071 msg/ms. The range AR = [0.071 msg/ms–0.08 msg/ms] can be used to offer
infrastructure customers an average MRT of 700 ms. For 15 nodes, this average would
be 55 ms. Considering the smallest AR (AR = 0.04 msg/ms), there is an MRT of 744 ms,
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77 ms, 49 ms, and 46 ms for 2, 5, 10, and 15 nodes, respectively. Considering a Service
Level Agreement (SLA) assumption that reports a requirement of MRT > 100 ms, such a
time constraint would be met with configurations from 5 nodes in the fog. Considering
the extreme point, with the highest demand (AR = 0.08 msg/ms), there is an MRT of
759 ms, 734 ms, 81 ms, and 55 ms for 2, 5, 10, and 15 nodes, respectively. For a 100 ms SLA
assumption, this time restriction will only be met from 10 fog nodes.

Figure 9b shows the fog utilization rate. The greater the number of nodes in the fog
lower tends to be the use of resources. Thus, the utilization with 2 cores is much higher
than with 5, 10, and 15 nodes. A pattern observed in all scenarios except for 2 nodes is that
utilization grows as the arrival rate increases. With 2 cores, usage growth remains stable at
100% for all arrival rates. When there are 5 nodes, utilization grows until reaching 100%,
with AR ≥ 0.058 msg/ms. With 10 and 15 nodes, the highest utilization achieved is 71%
and 48%, respectively. Considering the smallest AR (0.04 msg/ms) there is a utilization of
100%, 72%, 36% and 24% for 2, 5, 10 and 15 nodes, in that order. An SLA that considers
utilization of up to 80% can be met with configurations with 5 or more nodes. Considering
the point of highest demand (AR = 0.08 msg/ms), the utilization rate is 100%, 100%, 71%
and 48%, respectively. For the usage SLA premise up to 80%, this restriction can be met
from 10 nodes in the fog.
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Figure 9. Model analysis results considering different numbers of fog nodes. (a) Mean Response
Time (MRT); (b) Fog Utilization; (c) Edge Utilization; (d) Drop Rate; (e) System Number of Messages;
(f) Flow Rate.

Figure 9c shows the edge utilization rate. As expected, as the arrival rate increases,
the edge utilization rate also increases. However, changing the number of nodes in the fog
does not influence the result much. The edge does not rely on processing on fog nodes to
perform its tasks, as this layer comes before the fog layer. Regardless of the preference for
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using the edge, the system designer can choose any number of nodes in the fog, as this
does not interfere with using the edge resources.

Figure 9d shows the drop rate of messages. The greater the system capacity, the lower
the drop rate tends to be. Thus, the drop rates for configurations with 10 nodes or more
are well below the others when the arrival rate is high. The system does not discard any
messages for configurations with 10 or more nodes, even with AR = 0.08 msg/ms. With
5 nodes, there is no message discard until AR = 0.053 msg/ms, but with higher arrival
rates, it can discard more than 0.1 msg/ms. With 2 nodes, the system has a drop rate
of at least 0.1 msg/ms for low AR, and the rate increases with AR growth. Considering
the smallest AR (0.04 msg/ms), discard only when the system is configured with 2 fog
nodes, with a drop rate equal to 0.1 msg/ms. Assuming an SLA requires no discard,
the configuration must have 5 or more nodes in the fog. Considering the point of greatest
demand (AR = 0.08 msg/ms), there is a discard of 0.34 msg/ms and 0.14 msg/ms for 2 and
4 nodes, in that order, with no discard for 10 and 15 nodes. Imagining the SLA where there
should be no discard, the configurations that meet this requirement have 10 or more nodes.

Figure 9e displays the number of messages (requests) in processing state within the
system.The lines of the graph have curves similar to those of the MRT graph (see Figure 9a).
This similarity occurs because the number of messages in the system is related to the MRT.
When the MRT increases, there will have more messages in the system because the queues
get longer. However, with 2 nodes in fog, the observed MRT is higher than with the 5-node
configuration. Still, for the configuration with 2 nodes, there are fewer messages in the
system as of AR = 0.58 msg/ms. The low number of messages with 2 nodes is due to the
higher drop rate than the other configurations, as it has less processing capacity and fewer
queues (see Figure 9d).

Figure 9f shows the system flow rate. The flow rate is expected to be directly pro-
portional to the arrival rate. The same behavior can be observed with configurations
including 5, 10, and 15 nodes. However, there is an inflection point with 5 nodes and
AR = 0.58 msg/ms when the rate stabilizes. The 2-node configuration has a much lower
flow rate than the others and remained stable for all arrival rates. Stability happens because
the system becomes overloaded and starts dropping messages (see Figure 9d). Consid-
ering AR = 0.04 msg/ms, the flow rate is 0.13 msg/ms, 0.23 msg/ms, 0.24 msg/ms and
0.24 msg/ms for 2, 5, 10 and 15 cores, in that order. Assuming an SLA premise where a
flow rate greater than 0.2 msg/ms is needed, it is possible to meet this restriction with 5 or
more nodes. When AR = 0.08 msg/ms, there is a flow rate of 0.13 msg/ms, 0.34 msg/ms,
0.47 msg/ms and 0.48 msg/ms for 2, 5, 10 and 15 nodes, respectively. Considering an SLA
of at least 0.04 msg/ms for flow rate, the configurations that meet this requirement are
those that have 10 or more nodes in the fog.

Analyzing the results of this section more broadly, it can be seen that the use of the
network edge is not impacted by the change in the number of nodes in the fog. For the MRT
metric, the system behaves stably in all fog configurations except with 5 nodes. With that
setting, as of AR = 0.053 msg/ms, the MRT has considerable increases. In this case, the use
of fog resources also grows, getting close to 100%. The increase in MRT causes the number
of messages in the system also to increase. With AR from 0.058 msg/ms, the configuration
with 5 nodes starts to have more messages in the system than the configuration with
2 nodes. With 2 nodes, the system has the lowest flow rate and the lowest processing
capacity, which also means shorter queues, causing an increase in the drop rate.

8.3. Scenario C: Varying the Number of Nodes and Cores Simultaneously

In the previous scenarios (A and B), the factors number of fog nodes and number of
cores in each node were analyzed separately. Such analyzes allowed us to observe how
each factor interferes in all metrics in a very detailed way. However, in addition to having
an isolated impact on the system behavior, the DoE analysis showed that there is a strong
interaction between both factors on the mean response time, as shown in the Pareto graph
(Figure 5) and interaction graph (Figure 7). Such graphs only indicate the existence and
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magnitude of the interaction, but not accurately. Therefore, this section shows the variation
of the two factors with values equal to 1, 2, 4, and 8 nodes/cores. The number of nodes
at the edge was fixed with 6 nodes with 1 core each. Table 5 presents the combinations
between the factors analyzed in this scenario.

Figure 10 presents a 3D surface graph to show the behavior of the system considering
the MRT by varying two factors with a high impact on performance. First of all, it is
essential to say that the colors are related to the MRT result. The bar on the right indicates
the magnitude of the results. The top indicates larger MRTs, and the bottom indicates
smaller MRTs. Therefore, the purple color represents the lowest MRT, and the red color
means the highest MRT. In the graph, it is worth noting the presence of a projection at the
top that facilitates the observation of the interaction of factors. Changing the number of
cores is greater than the impact of changing the number of nodes. The purple is present for
most of the projection. The purple corresponds to MRTs in the top place of 1.9 × 106 ms—that
is, if adopting any node number with core number greater than 2, the MRT will be below
1.9 × 106 ms. Observing the red part of the graph (larger MRT), the dominant factor is the
number of cores. If this number is small, the MRT always tends to be high, and there is no
point in changing the number of nodes. Therefore, the result indicates that it is often more
beneficial to invest in the capacity of a single server node with greater processing power than
to acquire several smaller servers. This case study shows that when purchasing an 8-node
number with 8 cores, there will be the same performance as 6 nodes with 6 cores for this
case study.

Figure 10. Analysis of mean response time by varying factors simultaneously.
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Table 5. Combinations of the factors number of cores and number of nodes.

Combination Number of Cores Number of Nodes

#1 1 1
#2 1 2
#3 1 4
#4 1 8
#5 2 1
#6 2 2
#7 2 4
#8 2 8
#9 4 1

#10 4 2
#11 4 4
#12 4 8
#13 8 1
#14 8 2
#15 8 4
#16 8 8

9. Conclusions

This work proposed a queuing (D/M/c/K/FCFS) network based message exchange
architecture to evaluate the performance of smart building infrastructures. The architecture
evaluated includes IoT sensors and edge-fog components. The model allows the analysis
of several metrics, such as utilization level, drop rate, mean response time, and flow rate.
In addition, the model has features that are not found in related works, such as resource
capacity analysis, sensors grouped by location, and the number of cores per machine.
Performance analyzes were performed considering the proposed queuing network based
message exchange architecture through a sensitivity analysis using DoE and simulations.
In the analysis with DoE, some factors that can impact building performance were studied:
number of nodes available in the fog, number of cores on each node, queue size, and service
rate. The two most relevant factors were explored in the simulations: the number of nodes
in the fog and cores. The simulations results show that the arrival rate and the number of
resources available in the fog can be very influential on system performance, As the arrival
rate increases, it may be necessary to use more fog resources for the system to function satis-
factorily. In the results for drop rate in scenario A, for example, when we have 2 processing
cores and AR = 0.04 msg/ms, there was no message discard, but when AR > 0.049 msg/ms,
the number of discarded messages grows with the arrival rate increment. This work can
be useful for system designers in this context to better define building monitoring system
configurations. The limitation of this work lies in the lack of cloud support. Therefore, we
intend to extend the model, including the cloud layer and its components, evaluating new
scenarios as future work. Furthermore, we intend to develop and implement a real system
to compare its performance with the results obtained with the model.
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