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Nicotinic acid adenine dinucleotide 2’-phosphate (NAADP) is a naturally occurring
nucleotide that has been shown to be involved in the release of Ca2+ from intracellular
stores in a wide variety of cell types, tissues and organisms. Current evidence suggests
that NAADPmay function as a trigger to initiate a Ca2+ signal that is then amplified by other
Ca2+ release mechanisms. A fundamental question that remains unanswered is the
identity of the NAADP receptor. Our recent studies have identified HN1L/JPT2 as a high
affinity NAADP binding protein that is essential for the modulation of Ca2+ channels.
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INTRODUCTION

Nicotinic acid adenine dinucleotide phosphate was first described in 1995 as potent Ca2+ mobilizing
adenine nucleotide (1). NAADP’s biological activity was first observed in sea urchin egg
homogenates (1, 2), soon followed by reports describing NAADP evoked Ca2+ release in
invertebrates (1, 3, 4), mammalian and human cells (5–7). Obviously, NAADP signaling was
very successful in evolution since it operates in both invertebrate and vertebrates.

Here, we will highlight the steps of NAADP’s discovery, the tales and mysteries of its mode of
action, and finally discuss the unifying hypothesis of NAADP action that was published some years
ago (8).
NAADP: DISCOVERY IN SEA URCHIN EGG HOMOGENATE

Hon Cheung Lee’s laboratory at the University of Minnesota developed the sea urchin egg
homogenate system in 1985 in order to study D-myo-inositol 1,4,5-trisphosphate (IP3) induced
Ca2+ mobilization in vitro (2). The egg homogenate system contained Ca2+ pumps that were able to
pump Ca2+ into vesicles in an ATP-dependent manner and IP3 receptors that would release Ca2+

from the vesicles in response to the addition of IP3. Two important observations using the sea
urchin egg homogenate system were made in 1987 (9). The first was that nicotinamide adenine
dinucleotide (NAD) was able to release Ca2+, but only after a lag of several minutes. This
observation led to the discovery of cyclic ADP-ribose (cADPR) (10). The lag in the response to
NAD was due to the conversion of NAD to cADPR by ADP-ribosyl cyclases. The second
observation was that nicotinamide adenine dinucleotide (NADP) caused an immediate and
robust release of Ca2+ from the egg homogenate (9). Further examination of the NADP-induced
Ca2+ release revealed that the release was not due to NADP itself, but a contaminant in commercial
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sources of NADP that could be resolved chromatographically
from NADP (1). Alkaline treatment of NADP produced a 30-
fold enrichment of the active metabolite that released Ca2+ (1). In
1995, Aarhus and Lee demonstrated that the derivative produced
by alkaline treatment of NADP was nicotinic acid adenine
dinucleotide 2’-phosphate (NAADP) (1). Some of the basic
properties of NAADP-induced Ca2+ release as determined
using the sea urchin egg system are as follows. Ca2+ release by
NAADP was saturable with an EC50 of 30nM, making it the most
potent of the agents (IP3 and cADPR) known to mobilize Ca2+

from intracellular stores (1). NAADP-induced Ca2+ release
exhibited self-desensitization, but the action of NAADP was
not desensitized by preexposure to IP3 or cADPR (1).
Antagonists of IP3 or cADPR did not block NAADP-induced
Ca2+ release (1). In addition, the Ca2+ stores sensitive to NAADP
were distinct than those released by IP3 or cADPR as indicated
by density gradient fractionation of egg homogenates and
stratifying live sea urchin eggs by centrifugation. While IP3 and
cADPR appear to release Ca2+ from endoplasmic reticulum
stores, NAADP releases Ca2+ from a thapsigargin-insensitive
store that has the properties consistent with being acidic
lysosomal type organelles (11, 12). In the sea urchin egg
system, NAADP displays a unique self-inactivation mechanism
(13, 14). Subthreshold concentrations of NAADP inhibit
subsequent Ca2+ release by maximal concentrations of NAADP
in a time and concentration-dependent manner (13, 14).
NAADP was shown to be active in intact cells as microinjection
of NAADP into live sea urchin eggs resulted in Ca2+ mobilization
and induced a cortical reaction (1). NAADP has now been shown to
be active in many cell types [reviewed in references (15–18)].
NAADP: ENDO/SARCOPLASMIC
RETICULUM AND RYANODINE
RECEPTORS

The molecular mechanisms involved in Ca2+ mobilizing activity
of NAADP have been a matter of many discussions in the past
years: basically, two hypotheses evolved: (i) NAADP activates
type 1 ryanodine receptor (RYR1) localized on endoplasmic
reticulum (ER) Ca2+ stores, or (ii) NAADP’s target organelles
are acidic endo-lysosomal stores and Ca2+ mobilization proceeds
via two-pore channels (TPC).

In 1999 Cancela et al. proposed a model for pancreatic acinar
cells in which nanomolar concentrations of NAADP activate an
unknown NAADP receptor/Ca2+ channel that releases trigger
Ca2+ which then would be amplified by Ca2+ induced Ca2+

release (CICR) through RYR (19). A more direct effect of
NAADP on cardiac RYR (RYR2) was reported in 2001
showing Ca2+ release from cardiac microsomes; further, RYR2s
in lipid planar bilayers were activated by NAADP (20). However,
micromolar NAADP was used in (20) while in most other studies
nanomolar NAADP was sufficient to evoke Ca2+ release. One
year later, in a similar experimental approach in lipid planar
bilayers, low nanomolar NAADP (EC50 ~ 30 nM) increased the
open probability of RYR1 from skeletal muscle of RYR1 (21).
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However, others did not confirm RYR activation by NAADP in
lipid planar bilayers (22, 23). In 2003, in the nuclear envelope of
pancreatic acinar cells, NAADP-evoked Ca2+ release was not
affected by inhibition of lysosomal acidification, but was blocked
by antagonists of RYR, ryanodine and ruthenium red, as well as
by depletion of ER using SERCA inhibitor thapsigargin;
accordingly, it was hypothesized that NAADP acts on RYR,
but most likely indirectly via a NAADP binding protein
(NAADP BP) (24). In 2004 and 2005, RYR was identified as
major Ca2+ channel responding to NAADP in T cells; using a
combination of NAADP microinjection during Ca2+ imaging,
NAADP evoked local and global Ca2+ signaling was abolished by
either pharmacological inhibition or gene silencing of RYR (25).
More evidence for NAADP acting on RYR1 was obtained in
partially purified RYR1 preparations where NAADP facilitated
[3H]ryanodine binding, while this was blocked by a novel
NAADP antagonist, BZ194 (26). Collectively, these data
indicated that if an unknown NAADP receptor/Ca2+ channel,
as proposed by Cancela et al. (19), would be involved to produce
trigger Ca2+ ahead of activation of RYR by CICR, this process
must be working with very small and very fast Ca2+ signals. To
solve this problem, at least partially, high-resolution Ca2+

imaging was optimized for T cells and combined with NAADP
microinjections and specific gene knock-outs (27). Using high
spatiotemporal resolution (25 ms, 368 nm), for the first time
initial local Ca2+ signals of T cells were characterized; while
experiments with Ryr1-/-, Orai1-/-, Stim1-/- and Stim2-/- T cells
identified the protein products of these genes as major elements
essential for NAADP evoked Ca2+ signaling, evidence for
involvement of other ion channels was not obtained (27, 28).
Though further studies from Petersen and colleagues confirmed
that NAADP acts on ER stores via RYR in pancreatic acinar cell
function, they also emphasized that acidic stores and two-pore
channels (TPC) are additionally required (29).

However, as mentioned above, in a couple of systems, RYR1
did not respond to NAADP. Using overexpression of RYR1 in
HEK cells and intracellular dialysis of 10 nM NAADP did not
evoke Ca2+ signals above background (30). In a similar cell
model, HEK cell overexpressing RYR1, direct activation NAADP
(30 nM and 1 μM) activation of RYR1 by on-nucleus patch
clamp was not observed (31).

Taken together, these studies suggest two different roles for
RYR in NAADP signaling: (i) as amplifier of initial lysosomal
Ca2+ signals, or (ii) in a more direct sense as NAADP sensitive
Ca2+ channels. However, the latter results appear to be restricted
to T cells and pancreatic acinar cells. While in pancreatic acinar
cells also the endo-lysosomal system and TPCs were found to be
involved in NAADP signaling, in T cells a role of endo-lysosomes
remains to be confirmed (32).
NAADP: ACIDIC STORES AND
TWO-PORE-CHANNELS

The second hypothesis regarding NAADP’s mechanism of action
is that NAADP targets organelles that are acidic endo-lysosomal
September 2021 | Volume 12 | Article 703326
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stores and Ca2+ mobilization proceeds via two-pore channels
(TPCs) Several laboratories have demonstrated that the two-pore
channel (TPC) family of endolysosomal proteins are regulated by
NAADP (33–35). The experimental approaches utilized to
support the role of TPCs in NAADP signaling, include
manipulation of TPC levels by overexpression (33–36) or
knockdown (33, 34), as well as electrophysiological analyses
(36–39). However, in some reports TPCs were found to be
activated primarily by phosphatidylinositol 3,5-bisphosphate
and to conduct Na+ currents rather than Ca2+ currents (40–42).

An important unresolved issue is whether TPCs directly
interact with NAADP. Most biological data suggest that while
TPCs are required for NAADP action, NAADP does not appear
to bind directly to TPCs. For instance, overexpression of
mammalian TPC2 slightly increased [32P]NAADP binding
activity, but the increment in binding was much lower than
the increase in TPC2 mRNA levels (3-fold versus 250-fold)
(34). [32P]NAADP binding activity was also found in
immunoprecipitates using antibodies to sea urchin TPCs (39).
The question of whether NAADP binds directly to TPCs was
assessed by photoaffinity labeling. [32P]-5-azido-NAADP was
synthesized and characterized as a photoaffinity probe for
NAADP binding sites (43–46). 5-azido-NAADP was previously
shown to release Ca2+ from sea urchin egg homogenates and
mammalian cells with high affinity (44, 47). Photoaffinity
labeling of sea urchin egg homogenates with [32P]-5-azido-
NAADP resulted in specific labeling of proteins with molecular
weights of 45, 40 and 30kDa, which are much smaller in size
than the TPCs expressed in sea urchin (45). These proteins
exhibited the properties of high affinity [32P]-NAADP binding
previously described in this system (45). The photolabeled
proteins were not recognized by antibodies to sea urchin TPCs
suggesting these proteins are immunologically distinct from
TPCs (45). A small amount (~5%) of the photolabeled 45 and
40kDa proteins were pulled down with antibodies to sea urchin
TPCs, suggesting an interaction between these proteins and
TPCs (45).

Photolabeling in mammalian cell extracts with [32P]-5-azido-
NAADP resulted in the specific labeling of 23kDa protein(s)
(44, 46). The photolabeling pattern was not changed by
overexpression of TPC isoforms (44). Photolabeling was also
unchanged in tissue samples form TPC1 or TPC2 knockout
mice (44). Similar results were also obtained with a TPC1/
TPC2 double knockout mouse model (48). The unchanged
photolabeling from overexpression and knockout models
indicates that the high affinity NAADP binding proteins
detected by [32P]-5-azido-NAADP in mammalian systems are
independent of TPC proteins. Overall, the data suggest that a
NAADP-sensitive complex containing the TPC channel and
high affinity NAADP binding protein(s) is responsible for
mediating NAADP-evoked Ca2+ release.

The identity of the high affinity NAADP binding
proteins identified via photoaffinity labeling is crucial to
our understanding of the mechanism by which NAADP elicits
Ca2+ release. The next section details our efforts to accomplish
this task.
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NAADP: UNIFYING HYPOTHESIS

One excellent possibility to identify proteins that specifically
bind small ligands is photoaffinity labelling. In 2012 independent
studies reported photoaffinity labelling experiments with [32P]-5-
N3-NAADP as PAL-ligand (44–46). The main, but unexpected
finding of all three reports was labelling of small soluble proteins
in mammalian cell extracts (44, 46). In the two reports conducted
in different mammalian cell lines and tissues, a protein double
band of 22/23kDa was labelled consistently by [32P]-5-N3-
NAADP and specificity was demonstrated by displacement of
the label by low nanomolar concentrations of ‘cold’ NAADP
(44, 46).

These novel findings resulted in the ‘unifying hypothesis’ (8).
The central idea of this hypothesis consists of a (small) NAADP
binding protein and a Ca2+ channel that is activated by the
NAADP binding protein in conjunction with NAADP. This idea
builds on an earlier report by Petersen’s group where binding
proteins for NAADP or cADPR were proposed to activate RYR
(24). The ‘unifying hypothesis’ helps to explain the fact that one
part of the community obtained evidence of RYR1 localized on
the ER as target of NAADP, but not for lysosomal TPCs, while
the other part reported data supporting TPCs localized on
lysosomes as NAADP’s target channels, but did not find
evidence for RYR in NAADP signaling (for details see
chapters above).

The molecular identification of the protein hidden in the 22/
23kDa band that was photoaffinity labelled turned out to be as
complicated as the design of NAADP analogues suitable for
photo-affinity labelling (48–50). Nine years after discovery of the
small soluble NAADP binding proteins and formulation of the
‘unifying hypothesis’, two back-to-back studies in Science
Signaling reported identification of a 21kDa NAADP binding
protein as haematological and neurological expressed 1-like
protein (HN1L)/Jupiter microtubule associated homolog 2
(JPT2) in March 2021 (51, 52). HN1L/JPT2 was purified
independently from erythrocytes and Jurkat T-lymphocytes
using photo-affinity labeling as selection criterion during
protein purification and enrichment steps. HN1L/JPT2, also
known as C16orf34, FLJ13092, KIAA1426, or L11, is a 20.1
kDa protein with broad expression in mammalian cell types (see
human protein atlas.org) and with orthologues throughout the
animal kingdom (51). Recombinantly expressed HN1L/JPT2
was specifically photo-affinity labelled, though displacement
by ‘cold’ NAADP was somewhat shifted to higher NAADP
concentrations (51, 52). Crucial experiments to validate HN1L/
JPT2’s role as signal transducer in NAADP signaling were (i)
decreased responsiveness of SKBR cells to microinjected
NAADP upon gene silencing of HN1L/JPT2 by shRNA (44)
and (ii) largely diminished initial Ca2+ microdomains upon
knock out of Hn1l/Jpt2 using CRISPR/Cas technology both in
human Jurkat T cells or in primary rat effector T cells (51).
Further, inHn1l/Jpt2-/- rat T cells, NAADP antagonist BZ194 did
not further enhance the Ca2+ phenotype suggesting that the same
signaling pathway is affected by both interventions (52). These
results confirmed the first part of the ‘unifying hypothesis’ since
September 2021 | Volume 12 | Article 703326
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the NAADP binding protein is not any more a faint band on a
phosphoscreen, but an identified protein to be further analysed
and validated by the scientific community. But what about the
second part of the ‘unifying hypothesis’, activation of different
ion channels? Roggenkamp et al. (52) reported co-localization of
HN1L/JPT2 with RYR already before T cell receptor (TCR)/CD3
stimulation using super-resolution microscopy (Figure 1) (52).
Further, TCR/CD3-dependent re-localization of HN1L/JPT2
from the cytosol towards the plasma membrane within seconds
was observed by super-resolution microscopy. Finally, HN1L/
JPT2 was detected by western blot in anti-RYR immunoprecipitates
from Jurkat T cells (52). Collectively these data confirm interaction
of HN1L/JPT2 with RYR.

But what about other proposed target channels for NAADP?
Gunaratne et al. (51) demonstrated co-immunoprecipitation of
HN1L/JPT2 when TPC1, but not TPC2, was pulled down from
HEK293 cells overexpressing GFP-tagged TPC1 or TPC2
demonstrating that HN1L/JPT2 may function as a switch point
to direct incoming signals either to RYR1 or TPC1 activation
(Figure 2). The fact that HN1L/JPT2 interacts with two different
ion channels nicely confirms the second part of the ‘unifying
hypothesis’ and paves the way for experiments to unravel the
molecular mechanism(s) opening this bifurcation onto one or
the other path.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION AND OUTLOOK

Despite confirmation of the main aspects of the ‘unifying’
hypothesis , several questions remain open. Though
photoaffinity labelling of HN1L/JPT2 and specific and high
affinity binding of [32P]NAADP were demonstrated (51, 52),
details of the molecular basis for NAADP binding to HN1L/JPT2
remain elusive. Under non-reducing conditions, recombinant
HN1L/JPT2 was detected in size exclusion-HPLC mainly as
dimer, though higher oligomers and monomers were observed,
too (52). It is currently unclear whether this might be an artefact
due to recombinant HN1L/JPT2 production, or whether there is
a biological background, perhaps related to regulation of HN1L/
JPT’s activity in NAADP signaling. Further, the binding site of
NAADP on HN1L/JPT2 so far has not been mapped. However,
understanding binding of NAADP would greatly facilitate
further structure-activity studies to translate the basic finding
of a novel signal transducer to pharmacology and hopefully to
therapy. What type of disease and therapy is meant? In 2010 it
was shown that NAADP signaling is an important determinant
of CNS autoimmunity (53); however, specific, high affinity
compounds antagonizing NAADP’s interaction with HNL1
that may be tested in multiple sclerosis animal model
experimental autoimmune encephalomyelitis are not yet known.
FIGURE 1 | HN1L/JPT2 co-localization with ryanodine receptors and scheme of Ca2+ microdomain formation by ryanodine receptors and ORAI1 channels in
ER-PM junctions of T cells. Left: Co-localization of HN1L/JPT2 with RYR shown by super-resolution microscopy in a single Jurkat T cell [image taken from Figure 6
of (45)]. From (52). Reprinted with permission from AAAS. Right: scheme of Ca2+ microdomain formation by RYRs and ORAI1 channels in ER-PM junctions of T
cells. Abbreviations used: STIM1/2, stromal interaction molecule 1 and/or 2.
September 2021 | Volume 12 | Article 703326
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Next open question relates to the molecular basis for HN1L/
JPT2 binding to and activation of different Ca2+ channels. Like
for NAADP binding, we do not know the binding interface of
either side. However, also this protein-protein interaction would
be of high translational value for the same reasons as quoted for
the NAADP binding site at HN1L/JPT2 above. Another point
of interest is the interaction of HN1L/JPT2 with TPC isoforms.
Co-immunoprecipitation was only confirmed for TPC1, but not
for TPC2 (51). However, the molecular basis for this is unclear.
This differential binding of HN1L/JPT2 to TPC1, but not TPC2,
also opens the question of further, still unknown members of the
NAADP signalosome.

Further, the exact kinetic mechanism of NAADP-HN1L/JPT2-
Ca2+ channel interaction is unknown. Possible would be (i) that
NAADP binds HN1L/JPT2 first and afterwards to the Ca2+ channel
or (ii) that a fraction of HN1L/JPT2 is already bound to the Ca2+

channel before cell activation and operates like in a “waiting
position” until NAADP formation upon cell activation takes place.

It is possible that other NAADP binding proteins exist and
participate in NAADP signalsome. Zhang et al. have identified
Lsm12 as a high affinity NAADP binding protein that is essential
for NAADP -induced TPC2 activation (54). The Lsm12 data
suggest that NAADP signaling has more components that need
to be identified and studied.

In conclusion, the identification of HN1L/JPT2 constitutes a
milestone in Ca2+ signaling research, allowing for future
characterization of the molecular basis as well as for translational
Frontiers in Immunology | www.frontiersin.org 5
research towards therapeutic applications. The ‘unifying
hypothesis’ was confirmed in its major aspects, however, the
current model does not explain the complexity and calls for
further investigation of the NAADP signaling pathway.
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