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Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on
behavior, but these cues are also capable of “masking” the expression of the circadian
pacemaker, depending on the type of cue presented, the time-of-day when they
are presented, and the temporal niche of the organism. Masking is capable of
complementing entrainment, the process by which an organism is synchronized to
environmental cues, if the cues are presented at an expected or predictable time-
of-day, but masking can also disrupt entrainment if the cues are presented at an
inappropriate time-of-day. Therefore, masking is independent of but complementary to
the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic
nucleus) when exogenous stimuli are presented at predictable times of day. Importantly,
environmental cues are capable of either inducing sleep or wakefulness depending on
the organism’s temporal niche; therefore, the same presentation of a stimulus can affect
behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature
examining the neural mechanisms underlying masking behavior based on the temporal
niche of the organism. However, the importance of these mechanisms in governing
the daily behaviors of mammals and the possible implications on human health have
been gravely overlooked even as modern society enables the manipulation of these
environmental cues. Recent publications have demonstrated that the effects of masking
weakens significantly with old age resulting in deleterious effects on many behaviors,
including sleep and wakefulness. This review will clearly outline the history, definition,
and importance of masking, the environmental cues that induce the behavior, the
neural mechanisms that drive them, and the possible implications for human health and
medicine. New insights about how masking is affected by intrinsically photosensitive
retinal ganglion cells, temporal niche, and age will be discussed as each relates to
human health. The overarching goals of this review include highlighting the importance
of masking in the expression of daily rhythms, elucidating the impact of aging, discussing
the relationship between dysfunctional masking behavior and the development of sleep-
related disorders, and considering the use of masking as a non-invasive treatment to
help treat humans suffering from sleep-related disorders.
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INTRODUCTION

What Is Masking?
Masking allows an organism to respond to changes in exogenous
stimuli (e.g., light-dark cycle, social cues, temperature, food,
drugs), thereby enabling the organism to act immediately and
appropriately (Rietveld et al., 1993); these exogenous stimuli are
also capable of “masking” to superpose and integrate with the
expression of the endogenous circadian pacemaker, depending
on the type of cue presented, the time-of-day when it is
presented, and the temporal niche of the organism (Aschoff,
1960, 1988; Wever, 1985; Mrosovsky, 1999; Mrosovsky et al.,
1999; Redlin and Mrosovsky, 1999). In this way, masking is
capable of complementing and integrating with entrainment if
the cues align with arousal and the circadian system [e.g., in
diurnal mammals, if lights are on during the day when the
suprachiasmatic nucleus (SCN) is active], but can also work
independently of the circadian system (e.g., in diurnal mammals,
if lights are on at night when the SCN is inactive). In this review,
we argue that when exogenous stimuli occur at times that are
predictable for the organism, the expression of daily patterns
can be strengthened; this is a key point that is often overlooked
when considering masking effects on behavior. However, when
exogenous stimuli occur at inappropriate times, the expression of
daily patterns can be weakened and even misaligned.

The meaning of the term “masking” has evolved over time.
When the term masking was first introduced, it was used to
describe environmental factors that could prevent a second
identity from emerging in an organism. Fry (1947) used the
example of humidity being capable of masking the effect of
extreme temperature on an organism; high levels of humidity
at extreme ambient temperatures can prevent death in an
organism, whereas the same extreme ambient temperature with
low humidity can result in death. In this way, humidity can
act as a “masking factor.” The incorporation of the term
“masking” into the circadian literature stemmed from the need
to describe the differences in behavior expressed in constant
conditions (i.e., endogenous influence) as compared to when
an entraining agent is present (i.e., an exogenous, “masking”
influence) (Aschoff, 1960). In the early 1980s, these masking
effects were described as “noise” that prevented chronobiologists
from being able to visualize the endogenous circadian rhythm
(Moore-Ede et al., 1982); these masking effects were therefore
defined based on their obscuring relationship to circadian
rhythms, and the argument at the time was that masking
“obscured” the endogenous rhythm that was more important
than these exogenous masking influences.

Here we argue that the definition of masking should not
necessarily rely on an obscuring nature to the endogenous
circadian rhythm, but should rather focus on its direct effects
on behavior and physiology which are superposed and integrated
with circadian rhythms. In this way, masking can be included as
a separate factor in models that predict specific behaviors, such
as sleep–wake cycles, to be integrated with circadian rhythms
and produce the daily patterns of behavior that are expressed
by the organism. Therefore, we argue that masking can be more
simply defined today as an acute response to an exogenous

stimulus which is superposed on the endogenous circadian
rhythm to allow an organism to respond to immediate changes
in the environment.

This description of masking as a stimulus-response has
been proposed by many (Rietveld et al., 1993; Mrosovsky
and Hattar, 2003; Salazar-Juárez et al., 2006; Morin, 2013).
As Rietveld et al. (1993) clearly state: “Masking, as is well
known, enables an organism to act immediately and in an
appropriate way to changes of the environment, integrating
with internally produced rhythmicity.” In these definitions of
masking, chronobiologists do not necessarily think of masking
as something that obscures something more important. Instead,
the term masking has evolved to be integrated with circadian
rhythms to result in the daily patterning of activity. We
have incorporated these new definitions into our proposed
definition of masking that considers the law of superposition.
By considering masking as a separate factor that allows for
superposition to the endogenous circadian rhythm, researchers
will be able to experimentally test the power of masking as an
independent factor using mathematics and physics to model
daily patterns of behavior. There is evidence in the literature to
suggest that masking continues to exist in organisms that no
longer have an endogenous rhythm (van der Horst et al., 1999;
Bunger et al., 2000; Zheng et al., 2001; Papachristos et al., 2011;
Pfeffer et al., 2015; Engeland et al., 2018; Yang et al., 2019),
providing experimental support for the notion that masking is
a separate factor which contributes to daily patterns of behavior.
However, the extent to which masking affects the expression of
daily rhythms is yet to be determined. For example, we know
that masking has time-of-day effects and also differential effects
on nocturnal vs. diurnal organisms, but an in-depth examination
of how and why masking effects change based on time-of-day
is necessary in order to better understand this separate and
important masking system, which operates independently but is
integrated with endogenous circadian rhythms to result in the
daily patterns of behavior that are observed by the organism.

The ability to respond immediately to changes in exogenous
stimuli is adaptive to the organism, as it allows the organism
to behave in appropriate ways, depending on the organism’s
temporal niche (Lu et al., 2010; Bloch et al., 2013; Ghosh
et al., 2021). For example, nocturnal (i.e., night-active) organisms
mask negatively to powerful exogenous stimuli, such as light,
by decreasing activity, and they mask positively to darkness by
increasing activity (Aschoff and von Goetz, 1988a; Aschoff, 1999;
Shuboni et al., 2012). Diurnal (i.e., day-active) organisms, on
the other hand, mask positively to light by increasing activity,
and they generally mask negatively to darkness by decreasing
activity, although the change in activity in response to darkness
is less consistent across organisms as compared to changes in
activity in response to light (Aschoff and von Goetz, 1989; Cohen
et al., 2010; Shuboni et al., 2012; Barak and Kronfeld-Schor,
2013; Langel et al., 2014). Masking has been tested in many
organisms experimentally by providing light or dark pulses of
varying intensity and duration during the organism’s subjective
night or day, respectively (Salazar-Juárez et al., 2006; Morin and
Studholme, 2009, 2014; Shuboni et al., 2012). Importantly, as
described above, masking is not only an immediate and acute

Frontiers in Neuroscience | www.frontiersin.org 2 August 2022 | Volume 16 | Article 911153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-911153 August 3, 2022 Time: 14:21 # 3

Gall and Shuboni-Mulligan Contributions of Masking on Behavior

response to changes in exogenous stimuli but may also result
in a disruption to the daily patterns of the organism and the
effects can extend for far longer than the pulse itself (Morin and
Studholme, 2009). In fact, dim light at night induces masking
which, in turn, disrupts the expression of circadian rhythms due
to the unexpected change in light intensity for the organism
(Frank et al., 2010). It is important to recognize that light is a
powerful exogenous stimulus which is capable of resulting in
masking behavior, but other exogenous stimuli (as described in
the sections below) are also able to mask behavior. We should
also point out that masking effects differ depending on which
time-of-day (i.e., circadian phase) they are presented to the
organism (Aschoff and von Goetz, 1988a,b; Shuboni et al., 2015).
In this way, masking and circadian rhythms may bidirectionally
influence and complement each other functioning synergistically.
Therefore, masking is independent of but complementary to the
circadian system.

Masking is important and adaptive for an organism because it
allows the organism to respond quickly to sudden, inappropriate
changes in the environment. In this way, the masking system
is capable of overriding the internal circadian rhythm so that
the organism can escape danger. In fact, masking behavior has
recently been shown to be evolutionarily conserved in Drosophila
melanogaster (Ghosh et al., 2021), providing further evidence
that masking provides an adaptive advantage for the organism.
Importantly, masking can also be complementary to entrainment
when the environmental changes are predictable. For example,
when diurnal organisms experience light during the day and
darkness at night, this predictable change in light intensity
aligns with the organism’s active and rest phases, which also
align closely with increases and decreases in neural activity of
the master clock, the SCN (Ramkisoensing and Meijer, 2015).
In contrast to diurnal organisms, nocturnal organisms exhibit
an inverted phase relationship between the active and rest
phases with electrical activity in the SCN (Brown and Piggins,
2007; Colwell, 2011). Once again, we should recognize that
many environmental factors are capable of affecting masking
and circadian rhythms, including light, darkness, socialization,
temperature, food, and even drug usage (Aschoff, 1999; Kosobud
et al., 2007; Hasler et al., 2012; Refinetti, 2015; Fernandes et al.,
2021). When these environmental stimuli occur at naturally
appropriate and predictable time points, alignment occurs, and
masking promotes activity during the same time as signaled by
the circadian pacemaker strengthening entrainment. However,
when these environmental stimuli are misaligned with behavior
(i.e., they occur at inappropriate time points that are not naturally
occurring), they instead can modulate, disrupt, or further shift
the expression of circadian rhythms (Gronfier et al., 2007).
Researchers should take note of the consequences of how these
environmental stimuli can either complement or disrupt the
expression of daily patterns, especially because exposure to
environmental stimuli at night is so prevalent in our society
(e.g., increased use of light-emitting screens at night; Chang
et al., 2015) which can affect behavior in profound ways (Fonken
and Nelson, 2014). For example, exposure to environmental
stimuli can mask and therefore significantly complement or
disrupt activity levels, sleep, wakefulness, mood, and even quality

of life, depending on the time-of-day when the environmental
stimulus is presented.

Masking is an important topic to understand within the
field of biological rhythms because it is increasingly affecting
human health (e.g., increased artificial light exposure at night,
decreased natural light exposure during the day, increased use
of melatonin) (Hölker et al., 2010; Wright et al., 2013; Kyba
and Kantermann, 2016; Li et al., 2022). Thus, masking stands
to have significant deleterious effects on human health when
these exogenous stimuli occur at an inappropriate time-of-day,
whereas masking is capable of having significant beneficial effects
on human health when these stimuli occur at an appropriate or
expected time-of-day that align with other exogenous arousal-
promoting or sleep-promoting stimuli.

In this review, we have updated Mrosovsky’s (1999) review,
which focused on masking, to include new insights, including (1)
exploring often overlooked exogenous stimuli that affect masking
behavior (e.g., social cues, temperature, food, and drugs), (2)
updating the model regarding homeostatic and circadian effects
on sleep to include masking effects (Borbély, 1982; Borbély
et al., 2016), (3) discussing the neural mechanisms underlying
masking in nocturnal and diurnal species, and (4) including
new findings regarding the deleterious along with the beneficial
impacts that masking can have on human health and behavior
(e.g., sleep) as we age.

EXOGENOUS STIMULI THAT AFFECT
MASKING BEHAVIOR

Light
A zeitgeber is defined as a time-giver and a cue that is capable
of entraining circadian rhythms (Golombek and Rosenstein,
2010). Some zeitgebers, such as light, are also capable of
masking circadian rhythms; these exogenous stimuli are capable
of complementing circadian rhythms either via entrainment,
masking, or both, depending on when they are presented to the
organism. Light is the most powerful zeitgeber which also acts
as a masking stimulus and has a profound effect on behavior of
the organism (Aschoff, 1999). The brain is capable of receiving
direct input about light via retinal projections, including the
retinohypothalamic tract (RHT; Hattar et al., 2006). Melanopsin
is a photopigment located in intrinsically photosensitive retinal
ganglion cells (ipRGCs) (Beaulé et al., 2003) which project
to retinorecipient brain areas to modulate non-image forming
vision (Hattar et al., 2006) including entrainment of the master
clock to the light-dark cycle, the pupillary light reflex (PLR),
and masking to light in nocturnal mice (Hatori et al., 2008). In
diurnal Nile grass rats, it has been recently shown that these
melanopsin-containing ipRGCs are resistant to excitotoxic injury
and are capable of maintaining functional non-image forming
behaviors (Fogo et al., 2019). One of the retinorecipient brain
areas that receives direct input from these ipRGCs is the SCN,
the master clock in mammals; brain areas downstream of the
SCN also receive direct input from light (Berson et al., 2002;
Warren et al., 2003; Dacey et al., 2005). When the SCN is
lesioned experimentally in nocturnal rodents, a multitude of
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physiological and behavioral outputs become arrhythmic due
to the master clock becoming dysfunctional and unable to
orchestrate behavioral output (Moore and Eichler, 1972; Stephan
and Zucker, 1972).

There has been much debate about whether or not the
SCN contributes to masking, given its important role for
modulating circadian rhythms (reviewed in Morin, 2013). Redlin
and Mrosovsky (1999) have demonstrated that masking to light
persists after the SCN is lesioned experimentally in nocturnal
hamsters, whereas Li et al. (2005) demonstrated quite the
opposite by showing that masking to light is not possible in
hamsters following SCN lesions. While this debate has not
been settled, and more work needs to be done to determine
which hypothesis is correct, evidence from diurnal Nile grass
rats (Arvicanthis niloticus; Gall et al., 2016) supports data
of Redlin and Mrosovsky (1999). It is important to develop
sensitive measures to detect the presence of masking and to
develop sophisticated and thoughtful methodological techniques
to determine whether or not masking persists. On the other
hand, one criticism of these kinds of lesion studies is that it is
difficult to destroy all SCN cells without causing any damage
to nearby areas within the hypothalamus and the retinal fibers
that project downstream, which further complicates the findings
when this is done. In addition, hypothalamic cells are important
for regulating many vital functions of the organism, so if too
many neurons are destroyed, death of the organism can result
(Gall et al., 2016), further complicating lesion studies. One reason
that masking may be able to persist even after significant cell
death of the SCN is that there are other retinorecipient brain
areas that receive direct light input, including the intergeniculate
leaflet (IGL), lateral geniculate nucleus (LGN), olivary pretectal
nucleus (OPT), and superior colliculus (SC), which have been
shown to be heavily involved in masking to light in nocturnal
and diurnal organisms (Morin and Allen, 2005; Gall et al., 2013,
2016, 2017, 2020; Shuboni-Mulligan et al., 2019). These neural
connections and their involvement in the process of masking are
outlined in a later section of this review (see “Neural mechanisms
underlying masking”).

In nocturnal organisms, light pulses are capable of suppressing
activity in very significant ways (Wever, 1989; Aschoff, 1999). On
the other hand, in diurnal organisms, light pulses are capable of
stimulating activity in very significant ways (Shuboni et al., 2012;
Gall et al., 2013; Bonmati-Carrion et al., 2017). Therefore, light is
a powerful environmental stimulus which is capable of affecting
behavior in immediate and profound ways such that organisms
mask to light readily. Importantly, masking to light has been
shown to be adaptive for species such as golden spiny mice which
may have been essential for these organisms to move into and
occupy a diurnal niche (Cohen et al., 2010).

Darkness
Darkness is defined as the absence of light. Therefore, it
could be hypothesized that darkness would result in masking
effects that are opposite to the effects of light. Researchers
have shown that this is not always the case in both nocturnal
and diurnal organisms. Specifically, darkness has less profound
masking effects as compared to light in both nocturnal

(Aschoff and von Goetz, 1988a; Tsai et al., 2009; Shuboni et al.,
2012) and diurnal (Shuboni et al., 2012; Gall et al., 2013, 2017;
Langel et al., 2014) species. It is suggested that light is a more
powerful stimulus than darkness. For nocturnal organisms that
are typically asleep in the light, it would be difficult to respond to a
dark pulse while already asleep–a criticism researchers addressed
by adding gentle handling to the lights-on condition (Mistlberger
et al., 2002). However, this explanation cannot be applied to
diurnal organisms since they are typically awake in the light.
Current experimental evidence suggests that light is a more
powerful stimulus than darkness.

Social Cues
Social cues are less powerful than light or darkness in both
nocturnal and diurnal organisms and are therefore considered
weak zeitgebers. In fact, many studies have demonstrated
minimal masking effects of social cues in nocturnal (Aschoff
and von Goetz, 1988a,b) or diurnal (Castillo-Ruiz et al.,
2018) species. In diurnal grass rats under constant conditions,
circadian rhythms among grass rats housed as pairs together
did not synchronize, whereas ultradian rhythms were capable of
synchronizing, suggesting that masking effects of social cues are
far less powerful than light-dark cues (Castillo-Ruiz et al., 2018).

Congenitally blind humans who are not capable of receiving
light input have been shown consistently to struggle with
entrainment, even when they engage in socialization in a
predictable way that attempts to align with their circadian
rhythm. In fact, blind humans are at a significantly higher risk
of being diagnosed with non-24 disorder (Quera Salva et al.,
2017), suggesting that without the powerful influence of light,
entrainment is challenging. Socialization can certainly mask
circadian rhythms, as one can override the circadian system by
engaging in activity that aligns with others, but it appears that
socialization has a very weak effect on the circadian system, so it
becomes very difficult for blind individuals to have a predictable
rhythm that is aligned with other zeitgebers, especially when the
individual cannot detect changes in light or darkness. Therefore,
social isolation in humans is likely to occur due to a rhythm
that is free-running and misaligned with exogenous stimuli.
Social isolation can have deleterious impacts on behavior. For
example, when other social mammals, such as diurnal degus
(Lee, 2004), become socially isolated, they exhibit dysfunctional
emotional behavior which can be mitigated by an hour a day
of resocialization (Braun et al., 2003; Colonnello et al., 2011;
Rivera et al., 2021). The free-running nature of the circadian
rhythm in congenitally blind humans may lead to depression
due to social isolation that occurs due to being active at times
when others are sleeping. Although social cues appear to be weak
zeitgebers, they have been shown to help re-entrain diurnal degus
following phase advances of the light-dark cycle, suggesting that
there are clear benefits of socialization on the circadian system
(Jechura et al., 2006).

Temperature
Similar to social zeitgebers, ambient temperature appears to
be a weak zeitgeber of the master clock in some species.
Temperature tends to align with an organism’s circadian rhythm
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due to natural fluctuations in ambient temperature that align
with the light-dark cycle. Modern heating and air conditioning
systems have allowed humans to manipulate this weak zeitgeber,
which has been shown to negatively influence the expression
of circadian rhythms, especially if temperature does not follow
the natural cycle. Specifically, when ambient temperature is set
to be significantly warmer during the day and cooler at night,
this can serve as a masking stimulus by increasing time spent
in rapid eye movement sleep (for review, see Okamoto-Mizuno
and Mizuno, 2012). Nocturnal rodents, such as flying squirrels,
exhibit masking behavior to temperature without entraining
to it (DeCoursey, 1960), providing supporting evidence that
temperature can serve as a masking stimulus, but is much
less likely to serve as a strong zeitgeber to entrain circadian
rhythms. In diurnal rodents, such as degus, temperature cycles
are capable of triggering nocturnalism, thereby acting as a
non-photic stimulus and impacting temporal niche preference
(Vivanco et al., 2010). Although temperature may not be as
potent of a zeitgeber as light which acts directly on the SCN,
the master clock, temperature is capable of entraining peripheral
clocks in mammals (Buhr et al., 2010). On the other hand, when
ambient temperature remains constant throughout the day and
night, or worse, if the temperature is set to increase at night
when humans are sleeping, this can be detrimental to circadian
rhythms (for review, see Okamoto-Mizuno and Mizuno, 2012).
Temperature provides another case where when aligned with
circadian rhythms and when avoiding extreme temperatures,
the masking effect can strengthen daily patterns, but when
misaligned, the masking effect can weaken daily patterns. It is
important for all environmental cues to align with the circadian
system whenever possible.

Food
Food intake also appears to be a weak zeitgeber of the master
clock in mammals. This is especially demonstrated when animals
eat at an inappropriate time-of-day. For nocturnal organisms, if
food is only presented during the day when lights are on and
the organism is normally sleeping, this can disrupt sleep-wake
patterns such that the organism becomes active during the day
so that they can receive nourishment (Refinetti, 2015). When
traditionally nocturnal organisms (i.e., mice) are challenged by
hunger (or cold) using a work for food (WFF) protocol combined
with altered ambient temperatures, hormonal, physiological, and
behavioral rhythms are affected in significant ways, including
inducing diurnality, without affecting the SCN (van der Vinne
et al., 2014). In contrast, other studies have detected effects of
caloric restriction on the expression of PER1 and vasopressin
in the SCN in mice (Mendoza et al., 2007; Sen et al., 2017),
or glucose shortage on the dorsomedial oscillator in the SCN
in rats (Yang et al., 2017). Importantly, food restriction to the
inactive phase in nocturnal mice resulted in phase shifts to
peripheral tissue clocks of the liver, pancreas, heart, and kidney,
but the central clock (i.e., the SCN) was not affected, suggesting
that feeding time is capable of entraining other clocks in the
body, which have been described as food-entrainable oscillators
(Damiola et al., 2000; Escobar et al., 2009; Pickel and Sung, 2020).
In humans, it has been demonstrated that midnight snacking

can weaken daily patterns due to the misalignment of eating
and digestion with activity patterns and neural activity of the
SCN (Loh et al., 2015). When humans exhibit inappropriate
and erratic eating patterns, body weight, metabolism, and sleep
patterns can be negatively impacted (Gill and Panda, 2015).
Therefore, it is important that food intake is aligned with
the active phase of the organism, which ideally should align
with other exogenous stimuli such as the light-dark cycle
(e.g., eating during the day for diurnal organisms) in order to
strengthen daily patterns.

Limited evidence suggests that in addition to the food-driven
timekeeping system of peripheral tissues, food is capable of
providing a cue which may result in masking. In nocturnal
rats that were restricted to food access for 3 h during the
lights-on (inactive) phase, the Midline-Estimating Statistic of the
Rhythm (MESOR) and amplitude of temperature, heart rate,
and locomotor activity were attenuated during food restriction,
which the authors interpreted as a masking effect of food
restriction (Boulamery-Velly et al., 2005). In addition, Tanaka
et al. (1999) provided restricted food access for 6 h during
the lights-on (inactive) phase in nocturnal rats and found that
the organisms became more active. It should be noted that a
recent study showed that heart rate variability (HRV) and blood
pressure (BP) are directly affected by changes in blood glucose
levels which rise as a result of food intake, and that various
types of carbohydrates affect heart rate differently, suggesting
that acute changes in food intake affect physiology in humans
(Eckstein et al., 2022). There is also evidence in the literature
suggesting acute meal-induced metabolic changes result in acute
inflammatory responses in humans that may lead to an increased
risk of chronic inflammatory diseases (Mazidi et al., 2021).
Altogether, these studies point to the potential role food may
play as a masking stimulus; more work needs to be done under
constant conditions in order to better understand the effect food
has on masking behavior.

Drugs
Within this section we will examine a sample of over-the-counter
drugs for self-medication and prescribed drugs for medical
purposes that can function as masking agents; this section is not
an exhaustive list of drugs or their effects on behaviors (e.g., sleep,
activity patterns, arousal).

Melatonin is an endogenous hormone released primarily by
the pineal gland, but is also synthesized in retina and other
tissues (Hardeland, 2017). The release of melatonin follows a
circadian rhythm and begins to rise at the beginning of the dark
phase in both diurnal and nocturnal mammals. Importantly, the
endogenous release of melatonin can be inhibited or masked
by light stimulation in both diurnal and nocturnal mammals
so that production is suppressed when light is presented at
night (Kennaway et al., 2002; Claustrat et al., 2005). As society
increases nighttime light usage through environmental lights
and electronic light-emitting devices, melatonin levels are being
inhibited at a time that they should be secreted at the highest
levels. When melatonin levels are inhibited in humans, it
results in a disruption in sleep timing such that sleep onset is
significantly delayed (Zeitzer et al., 2000). One way to overcome
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this delay in sleep onset is to turn electrical lights off and
keep screens off at night as darkness starts to naturally occur.
Another way to overcome this reduction in melatonin levels is
to take an exogenous form of melatonin, often prescribed by
physicians for their patients to fall asleep faster. This exogenous
melatonin has a direct hypnotic effect that can induce masking
of sleep in both humans and primates (Zhdanova, 2005). These
effects, however, are not the same in nocturnal rodents who
do not show the same sleep-inducing effect (Sugden, 1983;
Fisher and Sugden, 2010; Barbosa-Méndez and Salazar-Juarez,
2020) with most laboratory mouse strains also not producing
circulating melatonin (Kennaway, 2019). It is important to note,
however, that while melatonin deficiencies are possible in humans
(Hardeland, 2012), these should be diagnosed by a physician.
Individuals that do not have a melatonin deficiency should first
consider non-invasive treatments such as removing the light
sources at night which prevent the melatonin rise necessary
to help them fall asleep naturally. Melatonin administration
is yet another case where when taken properly and at the
appropriate time of day, it can serve as a zeitgeber to entrain
the endogenous clock, and it can also result in masking behavior
to induce sleepiness. However, when melatonin is taken in the
afternoon, phase shifting can result (Crowley and Eastman,
2013), making it more difficult for individuals to stay asleep at
night, resulting in the opposite effect that the consumer was
hoping to alleviate.

Marijuana is also an exogenous substance that is often used
to help users fall asleep faster. While it has been shown that
marijuana is capable of allowing organisms to fall asleep faster
(Gates et al., 2014), we should also acknowledge that it likely has
masking effects which will in turn affect the circadian system. Less
is known about these effects, but we hypothesize that if marijuana
is taken at random times using random dosages, similar to
melatonin, sleep will be elicited, but circadian desynchrony will
result. On the other hand, if marijuana is taken chronically at
the same time each night using the same dosage in humans,
circadian synchronization can result, making it more likely that
the individual will fall asleep and stay asleep throughout the
night (Whitehurst et al., 2015). Of course, doing so is likely to
result in dependency on the drug, and therefore when the drug is
not taken, withdrawal effects (Budney et al., 1999) and potential
disruptions to the circadian system are likely to result. More work
needs to be done to elucidate the effects of cannabis usage on the
masking and circadian systems.

Alcohol is another exogenous substance that in the population
is commonly used to self-medicate for insomnia (Goodhines
et al., 2019). Consumption of alcohol before sleep can directly
impact body temperature (Kleitman, 1939); these masking effects
on body temperature have been shown to impact not only
homeostatic sleep, but also the circadian system (Danel et al.,
2001). Alcohol directly impacts regions of the brain that are
responsible for homeostatic sleep and alter the expression of sleep
architecture (Williams and Salamy, 1972). Alcohol also affects
entrainment of the SCN to photic and non-photic zeitgebers
(Ruby et al., 2009; Prosser and Glass, 2015) and impacts the
expression of endogenous rhythms in constant conditions (Ruby
et al., 2017). Injections of ethanol in mice can also have

direct effects on peripheral clocks; in the skeletal muscle and
liver, injections changed the expression of core clock genes
(Tice et al., 2021), However, the relationship between sleep
and alcohol consumption is problematic as alcoholism is also
linked to the development of sleep disturbances (Stein and
Friedmann, 2006). Chronic alcohol use can directly impact
the homeostatic sleep response, wildly altering the expression
of sleep architecture (Brower, 2001; Thakkar et al., 2015)
and disrupting responses to sleep challenge (Armitage et al.,
2012). The use of alcohol as a sleep aid should therefore be
considered with great caution as the switch between casual and
chronic use could exacerbate the incidence of sleep disorders.
Clearly, there are immediate masking effects of alcohol on
sleep and impacts on the homeostatic and circadian system
in the short-term with further detrimental effects on both
systems with chronic use. The alcohol literature is vast for
both homeostatic and circadian effects, however, the role of
masking remains unclear (O’Boyle et al., 1995) and deserves
further exploration.

Prescription sleep aids can also be used to treat sleep disorders
in patients (Lie et al., 2015). The United States Food and
Drug Administration (FDA) has approved the following agents
for the treatment of sleep problems: benzodiazepine receptor
agonists (benzodiazepines: e.g., Halcion, Prosom, Restoril, and
Doral); non-benzodiazepines (e.g., Zolpidem and Zaleplon),
melatonin receptor agonists (e.g., Ramelteon), and orexin
receptor antagonists (e.g., Suvorexant). These medications are
designed to help alleviate the effects of chronic sleep disorders
that are prevalent in the population and become more common
with age (Ram et al., 2010; Partinen, 2011). The mechanism
of action for each drug is unique but can have immediate
masking effects with consumption. Benzodiazepines have acute
sedative and anxiolytic effects (Konopka and Zimmerman,
2014). Taken acutely or chronically, these agents also impact
the expression of the homeostatic sleep system, altering sleep
architecture (Holbrook et al., 2001; Ribeiro de Mendonça
et al., 2021). Within the circadian system, benzodiazepines
can produce major shifts in the endogenous rhythm (Turek
and Van Reeth, 1988) and can also impact entrainment to
light (Van Reeth and Turek, 1987). Within the U.S., 12.5%
of the population use benzodiazepines and within this group,
17.1% misuse the drug in many cases to help further treat
sleep issues (Blanco et al., 2018). Like with alcohol, the
use of these substances should be closely monitored by a
physician and the understanding of long-term impacts on
sleep considered. Again, these agents provide a framework
to appreciate the complex relationship between masking,
homeostatic, and circadian systems and should be further
explored in this context.

In contrast to the agents discussed above, some drugs can
function to promote activity rather than sleep. Stimulants
increase the activity of the brain and can be prescribed for
disorders, like ADHD, or used recreationally, such as cocaine,
MDMA, or caffeine (Luethi and Liechti, 2020). Caffeine is
consumed daily by a majority of the population, with 85% of US
adults having at least one caffeinated beverage per day (Mitchell
et al., 2014). Consumption of caffeine can induce an immediate
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thermogenic effect with an increase in body temperature and
metabolism (Wager-Srdar et al., 1983; Koot and Deurenberg,
1995). Locomotor activity is also induced 30 min after injection
of 0.5–16 mg/kg caffeine in mice (Kayir and Uzbay, 2004).
Clearly, caffeine can have a masking effect on several different
behaviors, but again circadian rhythms and homeostatic sleep
are also directly impacted by the drug. Caffeine can impact
the endogenous rhythm (Oike et al., 2011; Burke et al., 2015)
and also alter the response of the SCN to light entrainment
(Ruby et al., 2018). For homeostatic sleep, caffeine has been
shown to attenuate the build-up of sleep propensity during
the waking hours (Landolt et al., 2004). As with other drugs
however, caffeine dependency can also lead to sleep disruption
and daytime sleepiness (Roehrs and Roth, 2008). Stimulants,
like drugs designed to induce sleep, should be consumed with
the understanding that issues with chronic use are possible
and likely.

Any exogenous substance (e.g., melatonin, marijuana, other
drugs) that reliably affects behavior and is taken chronically
has the capability of resulting in masking effects which may
affect the circadian and homeostatic systems. When these drugs
result in phase advancement, phase delay, or misalignment
with circadian rhythms, consequences such as sleep disruption,
changes in mood, altered digestion, altered metabolism, or
hormone dysregulation are possible. It is important to recognize
that when these substances result in circadian desynchrony, long-
term effects can result. On the other hand, when these substances
result in circadian synchronization, this can be beneficial, but
the side effects of the drug and consequences of withdrawal
should be considered.

Stress
Stress is a physiological response to the presentation of an
environmental cue, a condition or agent that disturbs the
physical or mental wellbeing of an organism, which can result
in adaptive behaviors (Selye, 1950). Stressors presented within
the environment directly trigger the autonomic system and the
hypothalamic-pituitary-adrenocortical (HPA) axis, which results
in elevated levels of plasma glucocorticoids (Ulrich-Lai and
Herman, 2009). The activation and expression of stress hormones
is an important factor that regulates many of the physiological
processes listed above, including social interactions, consumption
of food, and the administration of drugs (Ota et al., 2021).
Stressors, such as social stressors, have been shown to affect
the circadian and masking (non-circadian) systems (Meerlo
et al., 2002), but these effects are dependent on the type of
stressor presented, suggesting that for social stress, the output
behavior is strongly masked, and the central pacemaker is not
perturbed. Social cues are considered weak zeitgebers and the
relationship between circadian rhythms and masking may be
different than other stimuli.

Light, a strong zeitgeber, is also directly linked to the secretion
of stress hormone. In nocturnal rodents, light induced increases
in corticosterone occur only during the subjective night when
levels of stress hormone are the highest for animals (Ishida
et al., 2005; Mohawk et al., 2007). Ablation of the SCN in these
animals negatively impacted the daily day-night differences in

the secretion of the hormone, indicating that the SCN is critical
for light induction of the adrenal gland. However, we should
be cautious with interpretations of these findings, as lesions
of the SCN have been shown to also impact the projection of
retinal fibers downstream. For animals with ablated circadian
clock genes, Bmal1 KO mice maintained daily patterns in stress
hormone under LD cycles, indicating that functional clocks
are not required for the daily patterns (Engeland et al., 2018).
The role of these neural structures in light responses to the
secretion of stress hormone should be further explored to better
understand how light is capable of acting as a stressor to affect
masking behavior.

When comparing expression of stress hormones between
temporal niches, there are significant differences in the general
profile of stress hormones between nocturnal and diurnal
organisms, with peak levels secreted during the day for diurnal
animals but at night for nocturnal animals (Mohawk and Lee,
2005; Bohák et al., 2013). The data for light exposure and stress
hormone levels for diurnal organisms has only been performed
in humans and is more inconsistent, with studies finding no
changes (Beck-Friis et al., 1985; McIntyre et al., 1992; Leproult
et al., 1997, 2001; Thalén et al., 1997; Scheer and Buijs, 1999;
Lavoie et al., 2003; Rüger et al., 2006), increases (Figueiro and
Rea, 2012; Rahman et al., 2019), and decreases (Kostoglou-
Athanassiou et al., 1998; Scheer and Buijs, 1999; Jung et al.,
2010) in levels of glucocorticoids with exposure to light. These
studies use varying times and light intensities/durations which
could impact the response of the adrenal gland (Jung et al., 2010).
Indeed, it is important to note that with any masking studies,
the duration of the stimulus along with time of presentation
should be taken into consideration, underscoring the importance
of studies that focus on comparative analyses using careful
consideration of these factors. Further testing in other diurnal
species would be needed to better understand circadian profile
of the masking response to light response in stress hormones;
a diurnal rodent species would be easier to control for other
variables than human subjects. It should be noted that diurnal
grass rats given light at night (LAN) demonstrate alterations in
stress hormones (Ikeno et al., 2016).

MASKING INTERACTS WITH THE
CIRCADIAN AND HOMEOSTATIC
SYSTEMS TO AFFECT BEHAVIOR IN
PROFOUND WAYS

Real-World Consequences of Misaligned
Masking: Jet Lag and Shift-Work
Acute pulses or changes in light intensity clearly have effects
on behavior in an immediate way. Organisms are capable of
responding directly to the change in light intensity, especially
when the light is bright and stimulates melanopsin in intrinsically
photosensitive retinal ganglion cells (ipRGCs) in the retina
which, in turn, stimulate retinorecipient regions of the brain
(Beaulé et al., 2003). What happens to behavior when those
changes in light intensity misalign with circadian rhythms over
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longer periods of time? Misalignment occurs when humans
engage in shift work. The negative consequences of shift work
are especially prevalent and invasive when shift workers attempt
to switch back and forth between working (i.e., being active at
night) while socializing with friends and family on the days off
(i.e., being active during the day). This “misalignment” results in
severe consequences for human health (Åkerstedt and Wright,
2009). When we think about shift workers, we often think about
essential workers such as nurses, doctors, or factory workers
who must stay awake during the night hours in order to keep
society safe. This comes at a great cost to the shift workers,
especially if they flip-flop from being night-active when working
to becoming day-active on their days off (Åkerstedt and Wright,
2009). When this is done, the circadian system is unable to
fully adjust to the shift work, and therefore humans are only
able to stay awake at night because the masking system is
overriding the endogenous circadian rhythm that is misaligned
with behavior (Vokac et al., 1981). Nurses that engage in many
years of shift work have been shown to be at a higher risk
of developing breast cancer (Szkiela et al., 2020), depression
(Booker et al., 2020; Park et al., 2020), and anxiety (Booker
et al., 2020). Animal models of shift work with nocturnal
mice have also revealed the deleterious effects of misaligning
circadian rhythms and behavior which occurs due to effects
of masking, but that these effects are most severe when the
organism is expected to flip-flop their behavior on days of
work vs. days of rest, also known as “circadian desynchrony”
(Barclay et al., 2012).

It is possible for a shift worker to be less negatively affected
if they completely shift their circadian rhythms to being night-
active, even on their days off. Of course, it is difficult to become a
permanent night worker (less than 3% have a complete circadian
adjustment), and this can have negative implications due to
fewer social interactions and isolation, so the benefits are few
and difficult to achieve (Folkard, 2008). It is also important to
recognize that artificial light is far less intense in brightness
than natural light (Remé et al., 1991; Wirz-Justice et al., 1996).
There are many benefits of receiving light input from the
sun to humans, including Vitamin D, benefits to mood, and
strengthening of entrainment (Duffy and Wright, 2005; Mead,
2008). There is no good substitute for natural sunlight, so
even if a shift worker works at night and is able to shift their
circadian rhythms fully to become night-active, they are still
missing out on the beneficial effects that sunlight provides. While
it is important to emphasize that shift workers are necessary
and provide important services to others, it comes at a cost
to health. Although some steps can be taken to reduce the
negative health effects on these shift workers, such as aligning
circadian rhythms with activity on work days and days off, there
are still costs to consider such as social isolation and reduced
natural light.

Wright et al. (2013) have shown that artificial light at night is
harmful to the expression of circadian rhythms in humans, and
that natural light exposure during the day can help strengthen
entrainment. While it is most beneficial for diurnal organisms to
align their behavioral profiles to be active when the sun is out,
we recognize that this is not always possible. Therefore, in order

for shift workers to have the least amount of deleterious effects,
they should continue to have the same sleep–wake schedule
on their days off.

Masking Affects Sleep and Activity
Patterns by Interacting With Circadian
Rhythms and Homeostasis
Evolutionarily, sleep behavior is found across the animal
kingdom and plays an essential role in normal functioning
with deprivation leading to severe symptoms including issues
with development, cognitive functioning, and overall survival
(Miyazaki et al., 2017). A two-process mechanism that regulates
sleep function of mammals was first proposed by Borbély
(1982). They postulated that a sleep-dependent homeostatic
process (Process S) along with a sleep-independent circadian
process (Process C) regulated daily variations in sleep propensity,
duration, and timing. Since this milestone publication, the
authors have updated their model to include new findings
about both the processes and have explored the greater level
of complexity and interconnectivity between the two systems
(Borbély and Achermann, 1999; Borbély et al., 2016). Others have
proposed the addition of more variables to this model (Duhart
et al., 2021); however, here we propose a streamlined addition
of one concise third process to the system–masking behavior
(Process M)–which encompasses many different variables listed
above that all function via similar immediate behavioral changes
and utilize the existing homeostatic and circadian pathways to
help regulate sleep and activity depending on temporal niche
(Figure 1). While the descriptions of these mechanisms in this
section are focused on sleep, the authors would like to propose
that 3-process (homeostatic, circadian, and masking) models
could be applied to other behaviors described in the review.
Our model is based in part on the work of Borbély (1982) and
Borbély et al. (2016) which postulate that Process S and Process
C interact with each other; Borbély’s model, however, does not
consider the effects of masking. Our model is also based in
part on the work of Moore-Ede et al. (1982) which postulates
that exogenous influences (i.e., masking) are passive components
while endogenous oscillations (i.e., circadian rhythms) are active
components to contribute to a measurable daily pattern (i.e., an
overt rhythm); Moore-Ede’s model, however, does not consider
homeostatic influences. We have proposed a model (Figure 1A)
to include all three processes in one model (e.g., Process S, Process
C, and Process M), and we have included the important influence
of chronotype (e.g., nocturnal vs. diurnal species; Figure 1B).

Circadian Rhythms [Process C]
On Earth the 24-h cycling of light and darkness has led
to the development of daily patterns in behavior (Menaker
et al., 1997; Bhadra et al., 2017). These behaviors and
physiological processes are said to have circadian rhythms
when (1) the rhythm persists under constant conditions,
(2) can adapt to environmental zeitgebers by entrainment,
and (3) are temperature compensated (Pittendrigh and Daan,
1976). In mammals, the neuroanatomic regulation of circadian
rhythms was first described with the identification of the
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FIGURE 1 | The contribution of light-induced masking to the two-process sleep regulation model. (A) In the two-model system of sleep regulation, sleep is driven by
the homeostatic process (Process S, Blue Oval) and the circadian process (Process C, Red Oval). Anatomically, these regions can be divided into sleep or wake
promoting regions in Process S and Central pacemaker (SCN) or Extra-SCN/peripheral Oscillators in Process C. Here we also propose a third component to the
model, masking (Process M, Yellow Oval). In this depiction, the systems share some overlap between all three processes as extra-SCN oscillators, regions of the
brain that promote wakefulness/sleep, and masking activation of the brain can all occur within the same region. Additionally, different stimuli that govern sleep and
circadian rhythms, such as light (depicted as a light bulb), can induce opposing effects in nocturnal versus diurnal species. Light for a nocturnal rodent induces
sleep, causing a negative masking response in activity; while for a diurnal human, light increases arousal and produces a positive masking effect on activity. (B) A
model of changes in sleep pressure are depicted for nocturnal species (left panel) and diurnal species (right panel). Process S represents the homeostatic system
and how sleep pressure builds at night for nocturnal organisms and during the day for diurnal organisms, with sleep pressure dissipation when the organism is
sleeping. Sleep pressure peaks at opposite times of day for nocturnal vs. diurnal organisms. Process C represents the circadian system. Sleep pressure peaks at the
beginning of the day for nocturnal organisms, whereas it peaks at the beginning of the night for diurnal organisms. Process M represents the masking system. The
yellow line depicts sleep pressure, which peaks during the day for nocturnal organisms, and at night for diurnal organisms; light at night is capable of increasing
sleep pressure in nocturnal organisms, whereas it is capable of decreasing sleep pressure in diurnal organisms. Panel (B) (Process S and Process C) is redrawn from
Borbély (1982) and Borbély et al. (2016). Panel (B) (Process M) is modeled based on masking data from Shuboni et al. (2015).
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suprachiasmatic nucleus of the hypothalamus (SCN) which
after ablation eliminated the expression of many behavioral
and physiological circadian rhythms (Moore and Eichler, 1972;
Stephan and Zucker, 1972). For many years, the SCN was
thought of as a master clock controlling circadian rhythms
via endogenous patterns originating solely within the nuclei.
However, with the discovery of a self-sustained transcription
translation feedback loop of clock genes, which are present
and cycling beyond the SCN in most tissue and cell types
across the body, the idea of peripheral oscillators and their
autonomy has become a popular topic of research in the
field (Yoo et al., 2004; Mure et al., 2018). The regulation of
behaviors like sleep and activity relies on distinct interactions
between circadian rhythms from the SCN (central pacemaker)
and peripheral oscillators with the masking and homeostatic
systems working to produce a final profile of behavior. Till
Roenneberg and Merrow (1998) discuss the relationship between
the circadian pacemaker and environment cues which they
call zeitnehmer, “time takers” that act as both inputs and
outputs of the circadian system and function to feedback
and strengthen the clock. These zeitnehmers, which includes
light, sleep, feeding, and activity (Roenneberg et al., 2013),
are masking stimuli and complements the argument made for
the interconnection between circadian rhythms, masking and
homeostatic sleep.

Circadian rhythms generated in the SCN of an intact animal
influence the expression of homeostatic sleep (Deboer, 2009;
Guillaumin et al., 2018) and masking (Shuboni et al., 2012) based
on time-of-day. When the SCN is ablated, these two systems
(Mistlberger et al., 1983; Edgar et al., 1993; Gall et al., 2016)
continue to function independent of the central pacemaker; in the
case of homeostatic sleep processes, sleep becomes fragmented in
constant conditions. Masking maintains a 24 h profile similar to
the LD cycle that is presented with the animal only becoming
arrhythmic if placed in constant conditions or if the RHT is
damaged during lesion, as demonstrated using a diurnal rodent
model (Shuboni, 2013; Gall et al., 2016). Importantly, as noted
earlier, further experimentation is required to show that the
SCN is not required for masking. However, evidence of the
dissociation between the circadian and masking system in their
responses to light can be observed in the nocturnal California
mouse (de Groot and Rusak, 2002), where one animal did not
entrain to light but was still capable of negatively masking.
A key feature to note in all the discussions of circadian rhythms,
homeostatic sleep, and masking is that under natural conditions,
daily patterns of light/dark exposure are maintained. Because
light is a consistent, rhythmic daily stimulus and all three
systems are responsive to their presentation, we hypothesize
that brain regions important for regulating homeostatic sleep
and extra-SCN circadian rhythms are critical for inducing
masking and rely on the behavior to promote timing of sleep
and activity. Our work has shown that light directly activates
regions of the brain important for the regulation of homeostatic
sleep and in our diurnal rodent model these regions have
also shown rhythmic daily patterns of activation (Shuboni
et al., 2015; Shuboni-Mulligan et al., 2021). Lesions of some of
these regions have been shown to have dramatic implications

for masking behavior (see Neural mechanisms of underlying
masking below).

When examining the impact of clock gene deletion and
the relationship between the three processes there are also
some interesting findings. Masking behavior persisted in BMAL1
(Bunger et al., 2000; Pfeffer et al., 2015; Yang et al., 2019),
PER1/2 (Zheng et al., 2001), and CRY1/2 (van der Horst
et al., 1999; Papachristos et al., 2011) mouse knockouts, as
each showed daily activity patterns in LD conditions and only
became arrhythmic in DD. Yang et al. (2019) further suggested
that the lack of circadian rhythmicity and sole dependence on
masking improved the health of mice when the deletion was
introduced at adulthood and animals were experiencing circadian
disruption protocols. Another situation where circadian rhythms
are not necessarily advantageous is in animals found around
the arctic circle or in deep underwater caves that no longer
express circadian rhythms and depend on masking to other
cues to govern behavior (Lu et al., 2010; Beale et al., 2016).
This does not however remove the possibility that extra-SCN
oscillators and clock genes may be independently sensitive to
light and strengthen the masking response (Shuboni-Mulligan
et al., 2019). Homeostatic sleep, on the other hand, seems to
show a direct impact of clock gene knockouts on NREM sleep
and other factors (Franken, 2013; Deboer, 2018). A further
exploration of clock genes in the circadian visual system and the
homeostatic sleep circuitry of the brain in LD and under constant
conditions is necessary in order to provide an understanding
of these regions with and without SCN mediation. Circadian
rhythms are an important mediator of sleep and masking; these
three systems work together to result in the complex behavioral
phenotype (Figure 1).

Homeostasis [Process S]
Sleep homeostasis can be conceptualized by monitoring sleep
debt; across the wake period, the level of sleep pressure
accumulates across time until sleep is initiated, then it decreases
during the sleep phase until the subject wakes (Borbély et al.,
2016). When the homeostatic system is tested using sleep
deprivation protocols, the variable that best quantifies sleep
debt is slow-wave activity using EEG measures in humans
(Achermann et al., 1993; Borbély, 2001). From the forced
desynchrony literature, scientists were able to disentangle the
effects of circadian rhythms from the homeostatic sleep process
as sleep occurred at different portions of the free running human
circadian rhythm (Daan et al., 1984; Dijk and Czeisler, 1995).
Above we discussed the impact of circadian rhythms on the
expression of homeostatic sleep. Conversely, sleep deprivation
can also directly impact the sensitivity to light of the circadian
system to phase shifting, caused by a decrease in light sensitivity
in nocturnal animals (Mistlberger et al., 1997; van Diepen
et al., 2014) or an increase in light sensitivity in diurnal
animals (Jha et al., 2017). Sleep deprivation also impacts the
expression of circadian clock genes in mice (Husse et al.,
2012; Curie et al., 2013), demonstrating the interconnectivity
of these systems.

Altogether, the circadian system and the homeostatic system
are separate systems with interconnections that influence sleep
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and wakefulness (Figure 1). In the subsequent sections we will
discuss the anatomical regions that are involved in the masking
response; both the circadian visual systems and regions of the
brain associated with the homeostatic sleep process will be
examined in their relationship to masking.

NEURAL MECHANISMS UNDERLYING
MASKING

As noted above in the “light” section of this review, light is
a powerful zeitgeber that is capable of entraining circadian
rhythms. Light enters the visual system by striking intrinsically
photosensitive retinal ganglion cells (ipRGCs) which send neural
signals to retinorecipient brain areas via the retinohypothalamic
tract (RHT) and via the release of glutamate and pituitary
adenylate cyclase activating polypeptide (PACAP) from those
ipRGCs. Some of these retinorecipient brain areas that have been
studied extensively with respect to their masking effects are the
IGL, SCN, OPT, and SC.

The IGL has been shown to play an important role in the
expression of circadian rhythms and masking behavior to light
in both nocturnal and diurnal rodents. In nocturnal rodents, IGL
lesions are capable of enhancing negative masking responses to
light (Redlin and Mrosovsky, 1999), and modifying the period
of free running rhythms along with altering the phase angle
of entrainment (Pickard et al., 1987; Harrington and Rusak,
1988; Johnson et al., 1989; Pickard, 1989). In diurnal rodents,
IGL lesions reverse the way these organisms respond to light
pulses and result in a night-active phenotype, even in constant
conditions (see Figure 2A; Gall et al., 2013). Converging evidence
suggests that the IGL is critical for both circadian rhythmicity and
the direct behavioral responses to light (i.e., masking).

In nocturnal animals, some reports suggest that the SCN is
necessary for masking responses to light, while other reports
suggest that it is not. The only report in diurnal species suggests
that the SCN is not necessary for masking responses to light (see
Figure 2B; Gall et al., 2016). More work needs to be done to
elucidate the role of the SCN with respect to masking, but given
that multiple reports suggest that the SCN is not required for
masking responses to light, we hypothesize that this is the case
for nocturnal and diurnal species. Therefore, it is our belief that
the SCN is necessary for the expression of circadian rhythms, but
not for masking behavior to light.

It is important to note that lesions of the IGL and SCN
are technically challenging, especially due to their proximity to
image-forming visual pathways, including the lateral geniculate
nucleus (LGN) which lies immediately dorsal and ventral to the
IGL, and the optic chiasm which lies immediately ventral to the
SCN. As Hatori et al. (2008) have shown, melanopsin-containing
ipRGCs project to non-image forming brain areas, and are critical
for entrainment, the pupillary light reflex, and masking behavior.
In the studies we did using diurnal Nile grass rats, we were
careful to note that in cases that included extensive damage to
these nearby areas involved in image-forming vision, we observed
effects that were inconsistent with damage to only the IGL or
SCN. For example, when the LGN was damaged but the IGL was

intact, we did not observe the effects on masking or circadian
rhythmicity that we observed when the IGL was damaged. When
the optic chiasm was damaged but the SCN was intact, we
observed free-running behavior, which was not observed when
the SCN was damaged alone. Therefore, based upon the available
evidence, it appears that the IGL and SCN play important roles in
non-image forming vision (e.g., masking and entrainment) that
cannot be explained by damage to image-forming brain areas
(e.g., LGN, optic chiasm).

The OPT and SC are both midbrain structures that have
been shown to play an important role in masking to light,
but not for the expression of circadian rhythms. In nocturnal
organisms, the OPT and SC have been shown to be involved
in mediating behavioral responses (e.g., sleep) in response to
changes in illumination (Miller et al., 1998, 1999; Zhang et al.,
2019). In diurnal organisms, when the OPT and SC are lesioned,
masking behavior to light is disrupted, but circadian rhythms are
not (see Figures 2C,D; Gall et al., 2017, 2020).

Altogether, it is clear that several brain areas are involved in
masking effects to light (e.g., IGL, OPT, SC), whereas only the
SCN and IGL appear to affect circadian rhythms in significant
ways. We hypothesize that retinorecipient thalamic brain regions,
such as the IGL, are the only ones capable of modulating both
circadian rhythms and masking.

Beyond the circadian visual system, our work also
demonstrated that other brain regions important for homeostatic
sleep and wakefulness (Saper et al., 2005) are also stimulated via
light exposure during masking responses (Shuboni et al., 2015).
These regions include the lateral hypothalamus (LH), dorsal
raphe (DR), locus coeruleus (LC), and ventrolateral preoptic
area (VLPO), which all exhibited higher levels of cFOS labeling
after light exposure in diurnal grass rats but not nocturnal mice.
Activation of these sleep regions by light may be important
in regulating issues with mood (Bedrosian and Nelson, 2017).
A diurnal model of seasonal affective disorder (SAD), a mood
disorder that leads to depressive episodes during the winter
months, involves an orexin-DR pathway that is responsive
to light and regulates mood in grass rats (Adidharma et al.,
2012, 2019; Deats et al., 2014). Taken together, light exposure
in diurnal mammals is capable of stimulating arousal and
improving mood via activation of these brain areas that are part
of the masking system.

SLEEP DISTURBANCES AND MASKING

Sleep disturbances are a common occurrence in the healthy
population (Bliwise et al., 1992; Lindberg et al., 1997; Essien
et al., 2018) and become more prevalent with illness (Altman
et al., 2017; Pisani and D’Ambrosio, 2020), increasing the
severity of other symptoms (Irwin et al., 2013) and impacting
the disease trajectory of individuals (Innominato et al., 2015a;
Gottfried et al., 2020). In a systematic review of patients that
were chronically ill and hospitalized, the most common patient-
reported factors which lead to disrupted sleep during care were
noise and light (Honarmand et al., 2020). In the hospital setting,
the impact of light on patient outcomes has been extensively
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FIGURE 2 | Lesions of retinorecipient brain areas in Nile grass rats, a diurnal species, results in differential effects on masking and circadian rhythms.
(A) Intergeniculate leaflet (IGL) lesions in Nile grass rats result in negative masking to light and increased nocturnal activity persists in DD (figure redrawn from Gall
et al., 2013). Of the 4 retinorecipient brain areas lesioned thus far in Nile grass rats, the IGL is the only brain region that affects both masking and circadian rhythms in
significant ways. (B) Suprachiasmatic nucleus (SCN) lesions in Nile grass rats result in arrhythmia in constant darkness (DD), but does not affect masking to light
(figure redrawn from Gall et al., 2016). (C) Olivary pretectal nucleus (OPT) lesions in Nile grass rats result in negative masking to light, but circadian rhythms are
unaffected (figure redrawn from Gall et al., 2017). (D) Similar to OPT lesions, lesions of the superior colliculus (SC) in Nile grass rats result in negative masking to light,
but circadian rhythms are unaffected (figure redrawn from Gall et al., 2020).

studied and alterations to the design of facilities to better support
healthy sleep have been proposed and successfully implemented
(Acosta et al., 2017; Vethe et al., 2021). Light exposure to ill
patients has a duality of effects: outcomes improve with more
natural light during the day (Park et al., 2018; Lusczek and
Knauert, 2021) but light can have detrimental effects if presented
at night (Craig and Mathieu, 2018; Albala et al., 2019). Currently
the literature lauded the circadian system as the main perpetrator
of these risks and benefits; however, masking is also key to
promoting these immediate effects of light on sleep. In fact,
Hubbard et al. (2021) argue that sustained light in mice
can directly affect non-circadian photic regulation to influence
behavior in profound ways, especially sleep and wakefulness; they
conclude by arguing that the non-circadian system is just as
important as the circadian system for influencing behaviors such
as the sleep-wake cycle. In fact, their results strongly support our
main argument that sustained direct light effects (i.e., masking in
the way we define it here in this review) must be considered, in
addition to the circadian system, to understand the deleterious
health consequences of improper timing and amount of light
exposure in society. It is also important to note that patients live

in a natural environment with a light-dark cycle under which
masking, homeostatic sleep, and circadian rhythms all work
together in synchrony to promote activity and sleep cycles. When
this light-dark cycle becomes disrupted, as it may in a hospital
setting where lights are constantly on, patients may suffer from
a debt of sleep.

Beyond the environmental influences that arise in the hospital
setting, patients that suffer from chronic illness can develop
sleep issues associated with their disease or the therapies
used for their treatment (Davidson et al., 2002; Berger et al.,
2005; Lui and Ancoli-Israel, 2015). These sleep disturbances
manifest as different sleep problems (e.g., insomnia, daytime
sleepiness), and their causes may vary based on the disease,
treatment, and pre-existing sleep disorders (Foley et al., 2004).
In oncology, sleep issues can also present as fatigue, a more
loosely defined variable described as a feeling of tiredness or
weakness (Ancoli-Israel et al., 2001). In other peripheral cancers,
treatment-related fatigue is hypothesized to be associated with
the activation of proinflammatory cytokines, such as IL-1β and
TNF-α (Collado-Hidalgo et al., 2006). The mechanisms by which
this inflammation triggers the onset of fatigue is still being
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elucidated, as the definition of fatigue is multidimensional and
therefore different treatments may impact the development of the
symptom via many routes (Karshikoff et al., 2017). While cancer
treatments in general appear to cause fatigue, those undergoing
treatment for brain cancer may experience further additional
causes of fatigue related to changes in the sleep-wake regulation
and masking. Researchers in neuro-oncology suggested that
fatigue is a form of daytime sleepiness called hypersomnolence
(Armstrong et al., 2017). Treatment-related hypersomnolence
within the brain tumor population is associated with radiation
therapy that targets the brain (Powell et al., 2011; Khan et al.,
2018). Clearly, patients experiencing hypersomnia because of
radiation are unable to maintain wakefulness during the daytime,
which suggests a faltering of the masking pathway’s ability to
suppress sleep urges in the light. As treatment in these patients
is directed to the brain, we have hypothesized that changes in
the neuroanatomy of sleep circuits may be directly impacted by
therapy, including the circadian visual pathway that brings light
information to the circadian and masking systems (Young et al.,
2019; Shuboni-Mulligan et al., 2021).

This idea is further bolstered by two studies that examined
the alteration in secreted melatonin after exposure to radiation
in mice (Kassayova et al., 1999) and humans (Armstrong
et al., 2017). Armstrong et al. (2017) suggested that patients
experiencing sleep issues post-radiotherapy experienced
heightened daytime melatonin levels. Melatonin is known as
the hormone of darkness, as it is secreted during the night and
production is actively suppressed with light exposure (Utiger,
1992). Light information to the pineal gland, where the majority
of circulating melatonin is synthesized (Tan et al., 2018), is
signaled through the circadian visual pathway (Lockley et al.,
1997; Schwartz et al., 2009; Amaral and Cipolla-Neto, 2018);
again, suggesting that this pathway, key for light-induced
masking behavior, may be damaged during treatment in brain
tumor patients leading to dysfunction of hormone regulation and
sleep behavior. Further studies in the brain tumor population
are merited, as these were small studies not designed to examine
melatonin secretion specifically.

In patients with non-central nervous system (CNS) cancers,
sleep disturbances have been shown to be associated with lower
levels of this nighttime hormone, melatonin (Schernhammer
and Schulmeister, 2004; Li et al., 2019). Melatonin in diurnal
primates and humans is known to have a somnolence effect; when
melatonin is given to subjects exogenously, body temperature is
decreased immediately while there is also an increased sleepiness
(Dollins et al., 1994; Zhdanova et al., 1995). We had previously
proposed this as a masking effect that is separate from the
circadian drive (Shuboni et al., 2016); additionally, melatonin has
also been suggested to help mediate the light-induced masking
response (Quay, 1970; Vilaplana et al., 1994; Burgess et al., 2001).
In cancer patients that lack melatonin, issues with nighttime sleep
maintenance would also be expected to be similar to individuals
with removed pineal glands (Krieg et al., 2012; Slawik et al.,
2016) or spinal injuries that prevent hormone secretion (Scheer
et al., 2006; Whelan et al., 2020). Exogenous administration of
melatonin as a method to prevent fatigue and overcome sleep
issues has been proposed in patients with non-CNS cancers, with

positive results in small sample studies (Innominato et al., 2015b)
and clinical trials (Palmer et al., 2020; Sedighi Pashaki et al., 2021).
The use of melatonin in the treatment of brain tumor patients
undergoing radiotherapy, however, should be considered closely
as some have proposed the hormone as a radiosensitizer, which
are agents that enhance the lethal effects of radiation (Farhood
et al., 2019). Both light and melatonin are agents that produce
a clear immediate masking response to the presentation and are
avenues by which sleep issues in patients can be treated, causing
immediate relief, and will feed back into the circadian system to
help strengthen entrainment of the master clock.

AGING EFFECTS OF MASKING

Age is an important factor in the expression of sleep and activity
(Dijk et al., 1999, 2000; Mander et al., 2017). When homeostatic
sleep or circadian rhythms are disrupted in older individuals
there can be detrimental effects on survival (Tafaro et al., 2007;
Davidson et al., 2008; Smagula et al., 2016; Hou et al., 2020).
Within these systems, biological age impacts the physiological
integrity of the structures important for regulating behavior
(Pyrkov and Fedichev, 2019; Elliott et al., 2021). In the SCN,
in particular, plasticity has been shown to decrease between the
cells of the nuclei resulting in dampened circadian rhythms of
behavior in older animals (Van Someren et al., 2002; Nakamura
et al., 2016). The masking process, too, is impacted by age, as
older mice have been shown to recover from masking pulses
to light faster, resulting in less impactful and shorter-lasting
masking effects on behavior, and exhibit structural changes
within retinal ipRGCs and the circadian visual system of the
brain (Adhikari et al., 2015; Shuboni-Mulligan et al., 2021). The
pupillary light reflex (PLR), which like masking is also dependent
on the circadian visual system and ipRGCs, is negatively impacted
by age, resulting in a decreased change in pupillary size after
exposure to light in humans (Bitsios et al., 1996; Lobato-Rincón
et al., 2014). Clearly, old age is detrimental for many biological
processes and impacts all the components of the homeostatic
sleep, circadian rhythms, and masking processes. Therefore, the
elderly population is positioned to develop sleep disturbances
caused by disease. This further emphasizes the need to align sleep
with the proper phase of the pacemaker and to obtain as much
natural light during the day and to avoid light sources at night to
keep masking in synchrony with these other systems.

CONCLUSION

Environmental cues (e.g., light-dark cycle, temperature, food,
socialization, drug usage) have an immediate and direct effect
on behavior–a process called “masking.” Masking is capable of
complementing entrainment if the cues align with the circadian
system (e.g., in diurnal mammals, if lights are on during the
day when the SCN is active), but can also work independently
of entrainment (e.g., in diurnal mammals, if lights are on at
night when the SCN is inactive). Similarly, masking is capable
of complementing homeostatic sleep processes if the cues align
with sleep (e.g., in diurnal mammals, if lights are on when the
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organism is awake, alert, and active during the day), but can also
work independently of the homeostatic system (e.g., in diurnal
mammals, if the lights are on when the organism is trying to
sleep at night). Therefore, we argue in this review that masking is
capable of complementing the circadian and homeostatic systems
when synchrony and alignment between environmental cues is
achieved (Figure 1), which is adaptive for the organism, but when
these cues are misaligned with one or more of these systems,
the systems are at odds promoting opposite behaviors, which is
maladaptive for the organism. It should be noted that the type
of environmental stimulus, time-of-day when it is presented, and
the temporal niche of the organism should all be considered, as
different effects occur in each circumstance.

In this review, we have discussed the importance of masking,
highlighting the critical need for masking to complement
the circadian and homeostatic systems in order to result in
improved health. We have also considered the important role
of development, and how aging is associated with dampening
of the circadian, homeostatic, and masking systems. But
again, when these three systems are synchronized with one
another, they are capable of supporting one another resulting
in benefits to health. We hypothesize that when elderly

humans get as much natural light as possible during the day,
socialize during the day, live in warmer ambient temperatures
during the day (and all of these things opposite at night),
the circadian, homeostatic, and masking systems will be in
alignment resulting in improved sleep quality and quantity,
therefore improving health overall. Altogether, when done at
the appropriate time-of-day, masking can be used as a non-
invasive treatment option to help prevent suffering from sleep-
related disorders.
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