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Abstract: : Alzheimer’s disease (AD) is a neurodegenerative disorder closely associated
with aging, and its pathogenesis involves the interaction of multidimensional pathophys-
iologic processes. This review outlines the core mechanisms linking aging and AD. The
amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) trig-
gers neuronal damage and synaptic dysfunction, which is exacerbated by aging-associated
declines in protein clearance. Neuroinflammation, a synergistic pathogenetic factor in AD,
is mediated by microglia activation, creating a vicious cycle with Aβ and tau pathology.
The cholinergic hypothesis states that the degeneration of cholinergic neurons in the basal
forebrain can lead to acetylcholine deficiency, which is directly associated with cognitive de-
cline. Endothelial disorders promote neuroinflammation and metabolic waste accumulation
through blood–brain barrier dysfunction and cerebral vascular abnormalities. In addition,
glutamate-mediated excitotoxicity and mitochondrial dysfunction (e.g., oxidative stress
and energy metabolism imbalance) further lead to neuronal death, and aging-associated
declines in mitochondrial autophagy exacerbate such damage. This review also explores
the application of animal models that mimic AD and aging in studying these mechanisms
and summarizes therapeutic strategies targeting these pathways. Future studies need to
integrate multi-targeted therapies and focus on the role of the aging microenvironment in
regulating AD pathology in order to develop more effective early diagnosis and treatment
options.

Keywords: Alzheimer’s disease; amyloid cascade hypothesis; neuroinflammation; endothelial
dysfunction; mitochondrial dysfunction animal models; therapies

1. Introduction
Alzheimer’s disease (AD), also known as senile dementia, is the most common chronic

neurodegenerative disease in the elderly. It is caused by widespread cerebral cortical
atrophy and degenerative lesions and is mainly characterized by cognitive decline, as well
as behavioral and personality disorders. Aging is the greatest risk factor for AD, accounting
for more than 95% of cases [1]. It is a process in which the physiological integrity of an
organism will gradually be lost over time, and the structure and function of tissues and
organs will change, leading to the weakening of its adaptive ability to the internal and
external environments, as well as the decline in survival ability [2].

Cellular senescence is considered to be a key marker of aging. In this process, cells will
stop dividing and enter a state of permanent growth arrest. Senescent cells will accumulate
in different tissues and organs and eventually have different physiological and pathological
functions [3]. During the aging process, the body’s susceptibility to diseases increases
significantly, and a variety of diseases occur frequently, including diabetes, cardiovascular
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diseases, musculoskeletal disorders, cancer, and neurological disorders. From a genetic
or pharmacological perspective, eliminating senescent cells could extend the health span
and lifespan of natural aging mice [4]. Through this method, various diseases with similar
symptoms caused by aging could be treated [5].

There is an extremely strong multidimensional connection between aging and AD.
During aging, neurodegenerative changes, dysregulation of neurons (especially cholinergic
neurons), and synaptic dysfunction are highly similar to the aggregation of β-amyloid (Aβ)
and hyperphosphorylation of tau proteins in AD. In addition, the inflammatory response
associated with aging provides a facilitating environment for the development of AD.
Inflammatory factors will disrupt the blood–brain barrier and promote the aggregation
of Aβ and the phosphorylation of tau proteins. Mitochondrial dysfunction also exists
in both aging and AD [6–10]. In this review, we focus on the mechanisms connecting
Alzheimer’s disease (AD) and aging (Figure 1), describing therapeutic strategies based on
these connections. Additionally, we summarize some novel concepts that have emerged in
recent years regarding AD, offering further perspectives into the research and development
of diagnostic and treatment approaches. In view of the close and complex association
between AD and aging, an in-depth study of the interactions between the two is conducive
to exploring the pathogenesis of AD and developing more effective treatments. In this
review, we will focus on the common influencing factors between AD and aging (as shown
in Figure 1) and briefly overview the current research status of treatment.

Figure 1. Common research areas between AD and aging. Amyloid cascade hypothesis, neuroinflam-
mation, endothelial disorders, cholinergic hypothesis, glutamatergic hypothesis, and mitochondrial
dysfunction. Neuroinflammation is mainly manifested in microglia and astrocytes; endothelial
disorders describe the effects of the blood–brain barrier (BBB); the cholinergic and glutamatergic
hypotheses express neuronal and synaptic effects; and mitochondrial disorders have many mani-
festations, such as metabolic disorders, mitochondrial autophagy, and others. This figure is created
by FigDraw.
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2. Amyloid Cascade Hypothesis
Since the discovery of the amyloid precursor protein in 1987, it has triggered research

into the molecular mechanisms of AD. Aβ and tau proteins have been intertwined in the
pathogenesis of AD [11,12]. Various assays based on them are used in patients to observe
the progression of AD. They are also found during the aging process.

2.1. Aβ

Aβ is thought to be involved in the pathogenesis of AD. In 1987, an amyloid precursor
protein (APP) containing 695 amino acids was isolated from the cerebral cortex of AD
patients [11]. It is mainly concentrated in the synapses of neurons and plays a key role
in brain development, synaptic plasticity, and the brain’s intrinsic immune system [12].
After APP is produced by neurons, it can be decomposed by proteases. There are two main
decomposition pathways: the α-decomposition pathway and the β-catabolic pathway. The
production of Aβ is strictly dependent on the β-catabolic pathway, which is regulated by
the enzyme β-secretase (BACE1) [13,14]. In a normal organism, β- amyloid is maintained
at very low levels.

Aβ monomers are the individual molecules of Aβ, which further aggregate into
clusters to form Aβ oligomers. Aβ oligomers are highly neurotoxic [15]. Researchers have
proposed the amyloid cascade hypothesis, which states that β-amyloid deposition can lead
to tau phosphorylation and tangle formation, in turn causing neuronal death. Meanwhile,
tangles aggregate into neurotoxic amyloid plaques, leading to neuronal dysfunction and
death [11,16]. Apolipoprotein E4 (APOE 4) is shown to be the largest genetic risk factor
for late-onset AD, as it can impair Aβ clearance and promote Aβ accumulation in the
brain [17]. In early-onset familial AD, human genetics indicates that mutations tend to
cluster in the APP gene or presenilin (the catalytic subunit of γ-secretase). These mutations
can modify the proteolytic processing of APP, leading to an increased Aβ42/Aβ40 ratio
or enhancing the tendency for Aβ peptides to self-aggregate [18,19]. Meanwhile, post-
translational modifications of key proteins during Aβ processing also play an important
role in the pathogenesis of AD. Increased BACE1 SUMOylation has been demonstrated to
be a significant factor in the progression of AD pathology [20].

Currently, detection of Aβ is focused on the reduction of Aβ42 in cerebrospinal fluid
(CSF) and PET imaging of cerebral amyloid. In order to increase the generalizability
of the assay, more minimally invasive and cost-effective blood-based biomarkers have
been developed, and plasma biomarkers have also been developed for prediction at the
individual level [21]. Based on some other research findings, researchers have reduced the
emphasis on the direct influence of Aβ in the pathogenesis of AD and gradually shifted the
focus to tau proteins [22].

2.2. Tau

Tau is a member of the microtubule-associated protein (MAP) group. It has been
shown that tau is a typical “naturally unfolded” protein [23]. In normal neurons, tau pro-
teins play important roles in microtubule stabilization, axonal transport, neuronal activity,
ion transport, and neurogenesis. However, any deleterious alteration that triggers unusual
folding and aggregation leads to the development of neurodegenerative diseases, collec-
tively known as tau proteinopathies [24]. Hyperphosphorylation leads to the formation
of hyperphosphorylated and self-aggregating tau (known as p-tau), which is a hallmark
feature of various tau proteinopathies. In AD, more than 30 residues in tau are phospho-
rylated by various kinases, the most notable is GSK3β [25]. The hyperphosphorylated
state of tau induces conformational and charge changes, leading to the presentation of
microtubule-binding structural domains and the promotion of oligomerization and self-



Int. J. Mol. Sci. 2025, 26, 4974 4 of 25

aggregation. Over time, aggregation of these tau forms neurogenic fiber tangles (NFTs) [26].
The truncated form of tau tends to fold and self-aggregate rapidly and immediately aligns
to form oligomers, thereby increasing the propagation of amyloid toxicity [27,28].

Mutations in the tau gene can disrupt normal tau function. For example, the ∆K280
mutation can reduce the ability of tau to interact with microtubules, increase the tendency
of tau to self-aggregate, and, therefore, promote the formation of PHF and NFT [29]. This
mutation has been observed not only in AD, but also in other neurodegenerative diseases,
such as chromosome 17-associated hereditary frontotemporal dementia and Parkinson’s
disease (FTDP-17) [30]. The overexpression of ApoE4 in neurons, rather than in astrocytes,
can increase tau phosphorylation in mice [31].

Phosphorylated tau protein (pTau181) levels have been used to differentiate plasma
samples from control subjects and AD patients, while Tau and pTau181 can be measured in
plasma to predict brain tau load and neurodegenerative changes [32,33]. Recently, plasma
p-tau217 has been found to have excellent diagnostic performance for AD, especially in
early-onset AD or atypical dementia, which is assessed in a specialized setting [34]. In
addition, blood levels of a protein called MTBR-tau243 can accurately reflect the degree
of tau protein aggregation in the brains of AD patients and correlate with the severity of
disease progression [35].

2.3. AD Deteriorates with Aging

Myelin is a multilayered cell membrane structure wrapped around axons in the
nervous system. Myelin structure deteriorates with age. In 2023, researchers found that
myelin damage promoted Aβ production and reduced its clearance through two types of
myelin dysfunction in mice. These mice showed typical symptoms of AD-like behavioral
deficits [36]. This means that age-related myelin defects can directly or indirectly promote
the formation of Aβ plaques. This study ties the relationship between aging and AD in a
firm bond.

On the other hand, it was recently found that pathogenic soluble tau can be readily
transmitted to primary astrocytes in vitro and in vivo, and pathogenic tau delivery can
trigger phosphorylation of endogenous astrocyte tau, leading to microtubule cytoskeleton
instability. Furthermore, pathogenic tau delivery to astrocytes effectively upregulated
several markers of cellular senescence, demonstrating pathogenic tau-induced astrocyte
senescence for the first time [37]. Aβ and Tau, recognized as the earliest important markers
of AD, play a significant role in clinical diagnosis and reinforce the evidence of the additive
effects of AD during aging.

3. Nerve Damage
The pathological process of AD is characterized by β-amyloid deposition and tau

phosphorylation, which can lead to neuronal dysfunction when exceeding a certain thresh-
old, resulting in neuronal dysfunction. This leads to a systemic collapse of neurological
damage [37]. This cascade of events, involving neuroinflammation, vascular collapse,
attenuation of cholinergic signalling, and synaptic deficits, culminates in a comprehensive
decline in cognitive function.

3.1. Neuroinflammation

Neuroinflammation is triggered by astrocytes and microglia and is associated with
amyloid and tau protein pathology. Microglia are brain-resident immune cells of the central
nervous system, which are activated in response to threats and play an important role in
clearing Aβ and maintaining the dynamic homeostasis of Aβ [38]. The current hypothesis
is that in early AD, microglia are activated by Aβ and then microglia phagocytose Aβ.
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However, after a period of time, microglia become enlarged and are no longer able to
process Aβ. Chronic activation of microglia can continuously trigger neuroinflammation,
and then exacerbate neuronal damage and increase amyloid deposition through the pro-
duction of pro-inflammatory cytokines (i.e., IL-1, TNF-α, IL-6) and toxic products, leading
to neuronal cell death and increased amyloid deposition [39]. These cytokines, especially
IL-6, can promote hyperphosphorylation of tau. Thus, gliotic proliferation is also associated
with the regional distribution of NFT [40–42].

In addition, activated microglia can be divided into two types: M1 (pro-inflammatory)
and M2 (reparative), which can switch phenotypes during AD [43]. Neuroinflammatory
plaques are more abundant in the M2-dominant state, whereas NFT burden is higher in the
M1 state [44]. Several studies have shown that microglia display two peaks of activation
during the process of AD. One is during the early stages of AD, such as the preclinical
and mild cognitive impairment (MCI) stages, and the other is during the progression of
dementia, especially near the NFT [45]. However, whether their activation has a protective
effect in response to amyloid deposition has not been fully elucidated.

Inflammatory plaques are also surrounded by reactive astrocytes [46]. Astrocytes can
ensure the functional integrity of neurons and synapses and respond to injury. Microglia-
induced IL-1 activates astrocytes, which mediate neuron and oligodendrocyte apoptosis.
In individuals affected by AD, astrocyte degeneration and increased reactive astrocytes
can be found. It is recognized that abnormal astrocyte proliferation can exacerbate the
pathophysiology of AD [47]. Among these genetic factors, the APOE gene is also associated
with neuroinflammation in microglia and astrocytes [48].

Positron emission tomography (PET) and translocator protein (TSPO) signals have
long been used to detect cognitive domains and can certainly be used to detect cognitive
abnormalities in AD. PET imaging is used to visualize and quantify molecular brain
changes in patients, especially microglia activation and reactive astrocyte proliferation [49].
TSPO signal intensity can be co-localized with tau distribution in the brain [50]. It also
correlates with the rate of cognitive decline and may serve as a biomarker to predict disease
progression [51].

Furthermore, senescent cells can also be observed in the context of human age-related
diseases, which are usually considered as part of the inflammatory response [52]. The
old-associated secretory phenotype (SASP) is a fundamental feature of cellular senes-
cence [53]. In AD, SASP occurs in different cell types, leading to the secretion of various pro-
inflammatory cytokines. Researchers have found that exogenous NAD+ supplementation
can attenuate microglia and astrocyte activation and reduce the release of pro-inflammatory
cytokines [54]. In addition, immune senescence can lead to impaired immune function,
thereby reducing the clearance of senescent cells, resulting in the accumulation of senescent
cells, and further exacerbating inflammation [55,56]. Therefore, inflammation strengthens
the link between AD and aging.

3.2. Endothelial Dysfunction

Numerous studies have shown that vascular damage is an important contributor
to cognitive impairment, frequently occurring with aging in the elderly population [57].
Amyloid deposition and tau phosphorylation have been shown to exacerbate vascular
damage [58,59]. Endothelial cells are a layer of cells on the inner wall of blood vessels with
multiple important functions. They can regulate vascular tone, vascular smooth muscle
cell (VSMC) proliferation, immune cell adhesion, and vascular inflammation through the
production of biologically active factors in order to maintain vascular homeostasis [60–62].
Single-cell RNA-seq studies have revealed that endothelial cells are distributed in different
vascular segments and brain regions. After analysis, it was found that they are functionally
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consistent with the artery wall-remodeling properties, the transport function of capillaries,
and the sensitivity of veins to inflammatory signals [63,64]. Selective permeability imbal-
ance caused by structural or functional abnormalities in the endothelial cell layer of blood
vessels is called endothelial dysfunction.

The molecular mechanisms of endothelial dysfunction are complex, which involve the
influence of multiple pathological stimuli, such as inflammatory factor-mediated processes
and oxidative stress. Endothelial dysfunction manifests as damage of the blood–brain
barrier (BBB) in brain tissues [65]. Disruption of the BBB is now recognized as an early
indicator of neurodegenerative diseases. The collapse of BBB usually precedes demen-
tia [66]. BBB dysfunction is also associated with AD. The co-occurrence of inflammation
and cognitive impairment has been demonstrated in mouse models [67].

In AD patients, Aβ plaques are widely distributed in the brain parenchyma and within the
cerebral blood walls, and the abnormal accumulation in cerebral blood walls can directly dam-
age endothelial cells [68–70]. This will further increase the permeability of BBB, making it easier
for Aβ and other harmful substances to enter brain tissue and trigger neuroinflammation [71].
BBB dysfunction can increase the permeability and leakage of peripheral inflammatory fac-
tors (e.g., TNF-α, IL-1β) into the brain parenchyma and activate microglia and release more
pro-inflammatory factors, creating a positive feedback loop [72,73]. Therefore, inflammatory
signals can further exacerbate neuroinflammation [74].

The damaging effects on endothelial cells include impaired energy metabolism and
accelerated apoptosis. These effects are caused by oxidative stress, disrupting the structure
of BBB and leading to vascular injury [75]. Oxidative stress increases the permeability
of BBB to harmful substances and promotes neuroinflammation. This, in turn, has been
shown to amplify oxidative damage through inflammatory cytokine release and glial
activation [76,77]. Thus, damage of BBB caused by endothelial dysfunction further leads to
neuroinflammation, oxidative stress, and neurotoxicity, exacerbating pathological deposits
in the brain. Meanwhile, accompanying the aging process, endothelial cells gradually
deteriorate, with morphological changes of the corresponding cells and a gradual loss
of normal function. This will affect endothelium-dependent diastolic capacity, vascular
permeability, and barrier dysfunction, and then trigger vascular leakage [78]. The above
changes are caused by the impairment of vascular microcirculation, Aβ deposition, and
leakage of pro-inflammatory factors [79]. Depending on the disease process, the degree
of BBB damage can be reflected by soluble platelet-derived growth factor receptor-β in
the blood [66]. Cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1
(ICAM-1) have been used to assess vascular endothelial cell damage and inflammatory
response and to detect the level of endothelial dysfunction, which can help to diagnose and
monitor the progression of AD at an early stage [80].

3.3. Cholinergic Hypothesis

Cognitive decline, the main presenting symptom of AD, has long been associated
with dysregulation of the cholinergic system. Cholinergic neurotransmission processes
mainly occur in the forebrain, nucleus basalis meynert (NBM), and hippocampus, and they
play a key role in various cognitive functions [81]. The central cholinergic nervous system
can influence acetylcholine (ACh) levels by regulating ACh synthesis and release [82].
Acetylcholine (ACh), a key excitatory neurotransmitter involved in learning, memory, and
other higher cognitive functions, is synthesized by the enzyme choline acetyltransferase
(ChAT) [83]. The cholinergic hypothesis states that lesions of cholinergic neurons impair
ACh production and affect neuronal communication, leading to memory deficits and other
cognitive deficits [84,85]. This is because severe damage to cholinergic neurons in the NBM
can result in a significant decrease in ChAT activity within the primary projection areas,
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namely the cerebral cortex and the hippocampus-regions associated with learning and
memory. This has been observed in the cadavers of AD patients [86].

Furthermore, in the process of cholinergic neuron degeneration, the decline of cogni-
tive ability and memory is accompanied by various other complications. Hypoglycemia
can be detected even before the onset of AD symptoms [87]. Insulin resistance is observed
in brain tissue affected by AD, particularly in the hippocampus and cerebral cortex. As a
result of insulin resistance, AD patients with type II diabetes mellitus (T2DM) experience
cognitive deterioration at twice the rate of AD patients without complications [88,89]. In
this process, intracellular glucose availability is reduced, ACh synthesis is blocked, signal
transduction is inhibited, tau hyperphosphorylation is activated, and oxidative stress is
induced, further leading to cognitive decline [90]. Brain hypometabolism in AD patients
can be detected using 18F-FDG PET, which measures the regional glucose consumption
associated with the strength of glutamatergic synapses in local cerebral tissues [91,92]. It
can show the characteristic patterns of AD neurodegeneration earlier than MRI in people
with mild cognitive impairment [93].

3.4. Glutamatergic Hypothesis

Synaptic degeneration is one of the main causes of cognitive impairment. Glutamate
is the most abundant excitatory neurotransmitter in the central nervous system (CNS) of
mammals. It can be synthesized through various metabolic pathways and is involved in
synaptic plasticity, learning, and memory formation [94–97]. The regulation of glutamate in
the brain is thought to be controlled primarily through the glutamate/glutamine cycle, and
excessive glutamate remaining after excitation can be taken up by astrocytes [98,99]. After
depolarization of the presynaptic neuron, synaptic vesicles storing glutamate first fuse
with the membrane and then release glutamate into the synapse. Subsequently, glutamate
activates various ionotropic and metabotropic receptors on postsynaptic and presynaptic
neurons, as well as glial cells [100,101]. In AD, impaired N-methyl-D-aspartic acid receptor
(NMDA) receptor function is associated with abnormal synaptic gap glutamate concentra-
tions, leading to synaptic loss, neuronal excitotoxicity and impairment, and neural network
imbalance [96]. When glutamatergic signaling overactivates NMDA receptors, it stimulates
excess Ca2+ to enter the mediator, leading to excitotoxicity [102]. Autopsy samples from
the brains of AD patients clearly show the accumulation of Aβ oligomers in synapses and
the loss of excitatory synapses in these regions [103,104].

Physiological aging is accompanied by decreased activity of glutamatergic neurons
and reduced expression of postsynaptic NMDA receptors, leading to impaired synaptic
plasticity and reduced neuronal excitability and synaptic transmission efficiency [105].
During aging, oxidative stress accumulation and neuroinflammation can further inhibit
glutamate reuptake, generate excitatory neurotoxicity, and accelerate the onset of neurode-
generative disorders such as AD. Aβ and hyperphosphorylated tau proteins can further
amplify this pathologic process by enhancing presynaptic glutamate release and interfer-
ing with NMDA receptor function [106]. CSF biomarkers such as NfL, neural granule
protein (NG), synaptosome-associated protein 25, and visinin-like protein 1 can be used
to assess axonal damage and synaptic dysfunction [107]. Recently, large-scale proteomic
analyses have revealed that synaptic proteins are most strongly associated with cognitive
impairment, and this correlation is independent of amyloid and tau proteins [108].

Aβ and hyperphosphorylated tau proteins can impair axonal transport, leading to
disturbed vesicle release from glutamatergic presynaptic terminals, further disrupting
neural network synchronisation. Combined with the description of cholinergic-induced
dysfunction above, these effects gradually indicate that synaptic dysfunction is a central
driver of AD, leading to dementia.
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4. Mitochondrial Dysfunction
Mitochondrial state and function are markedly differentiated from the normal state

in both the AD process and the aging process [9]. Mitochondrial dysfunction is closely
related to both. This section focuses on the connection between mitochondrial dysfunction
and metabolism, introducing the concept of ferroptosis into the pathogenic mechanism. It
further amplifies the apoptotic cascade signaling to demonstrate the role of mitochondria
in both physiological and pathological states.

4.1. Metabolic Dysregulation

Mitochondria are important organelles for calcium homeostasis and neuronal
metabolism. In AD, mitochondrial energy metabolism is significantly impaired, mani-
fested by the reduced activity of key enzymes in the tricarboxylic acid cycle (TCA) and
abnormal function of the respiratory chain complexes [109]. Ca2+ activates the activity of
these key enzymes and manifests itself as homeostasis dysregulation in AD. Therefore, it
leads to a decrease in ATP synthesis [110]. In mouse models, significant hypometabolism of
glucose and reduced expression of mitochondrial complex I–V were found in the parietal
and insular regions of the cerebral cortex [111,112].

In the brain, approximately 90% of the oxygen-dependent ATP required for neurons
to perform their functions is supplied by the mitochondrial electron transport chain (ETC),
which undergoes oxidative phosphorylation. Thus, impairment of oxidative phosphory-
lation affects the CNS earlier than any other system [113]. Reduced activity of the ETC
complexes in the cerebral mitochondria of the AD patients was found in postmortem
brain specimens [114,115]. Both of these conditions can result in blockage of the electron
transport chain and reduced ATP production. ApoE4, which has been mentioned many
times before, can also interact with mitochondria, reducing the mitochondrial membrane
potential and causing mitochondrial fragmentation, thereby impairing energy production
and leading to AD [116,117]. In addition, the brain is the second-most lipid-rich organ in
the human body, second only to adipose tissue [118]. Therefore, fatty acid metabolism
in mitochondria is also an important source of energy metabolism. In AD, the activity of
enzymes related to fatty acid metabolism is altered, leading to the blockage of oxidative
processes and abnormal fatty-acid metabolism [119]. In conclusion, there is an inextricable
relationship between mitochondrial dysfunction and metabolic disorders, both of which
produce effects on AD.

There were many studies linking mitochondrial dysfunction to the aging process 20
years ago [120]. With age, the function of mitochondria gradually decreases, which is mani-
fested by a decrease in the number, an increase in the size, and a decrease in the membrane
potential. This loss of function leads to a decline in cellular energy metabolism, affecting
the normal physiological function of cells and, thus, promoting the aging process [121].
Although mitochondria have self-protective mechanisms during the aging process, mito-
chondrial dysfunction can exacerbate aging when these mechanisms are insufficient to
cope with injury. At the same time, mitochondrial DNA (mtDNA) mutations accumulate
with age, leading to respiratory chain dysfunction and increased production of oxygen
free radicals, which, in turn, will further accumulate mtDNA mutations, creating a vicious
cycle [122].

4.2. Other Factors About Mitochondrial Homeostasis

In recent years, iron death has been found to play an important role in the pathologic
process of AD. Iron imbalance leads to senile plaque (SP) deposition and NFT [123]. Excessive
accumulation of ROS and intracellular lipid peroxides can induce iron death. High levels of
free radicals (ROS/RNS) affect biomolecules and DNA and alter the expression of various
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stress-responsive genes, thereby impairing cell integrity and causing cell death [124,125]. Mito-
chondrial respiration and synthesis of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase are the main sources of ROS [126–130]. Excess ROS acts synergistically with Aβ to en-
hance neuronal membrane permeability and promote calcium ion overload and mitochondrial
membrane potential collapse [131]. Lipid peroxidation products also amplify the neuroin-
flammatory response by activating NLRP3 inflammatory vesicles in microglia, thus forming
a vicious cycle [132]. In a study, Aβ inhibits complex IV function and promotes cytochrome
C release by binding to ABAD (Aβ-binding alcohol dehydrogenase) on the mitochondrial
membrane, triggering the apoptotic pathway [133].

In addition, mitophagy is an important component of mitochondrial function in
normal physiological and biochemical exercise. Mitophagy is a key mechanism for the
clearance of damaged mitochondria. Under physiological conditions, the PINK1/Parkin
pathway triggers ubiquitylation and recruits autophagosomes to clear injured mitochondria
by recognizing the breakdown of the mitochondrial membrane potential [134]. However, in
AD patients, Aβ and tau proteins weaken the localization of PINK1 at the outer mitochon-
drial membrane, leading to the failure of Parkin recruitment and impaired autophagosome
formation [135,136]. In addition, the disruption of the acidic environment and decreased
tissue protease activity lead to abnormal lysosomal function and impaired autophagosome–
lysosome fusion, resulting in the accumulation of damaged mitochondria and the release of
more ROS [137]. Recent studies have pointed out that abnormal retention of stress granules
in early AD can further exacerbate mitochondrial fragmentation and energy metabolism
collapse by inhibiting mitochondrial autophagy-associated mRNAs (e.g., PINK1, Parkin)
and suppressing their translation [138]. Together, these mechanisms lead to the accumula-
tion of damaged mitochondria within neurons, driving the amplification of oxidative stress
and apoptotic-signaling cascades.

In the context of aging, as time goes by, the accumulation of oxidative damage over-
whelms cellular defensive mechanisms and ROS attacks mitochondrial components, lead-
ing to progressive tissue and organ decline and dysfunction. Lipid peroxidation, protein
oxidation, and DNA damage directly disrupt cellular homeostasis, while impaired mito-
chondrial autophagy hinders damage repair [77]. These processes are tightly intertwined
with the molecular features of aging (telomere depletion, epigenetic disorders), leading to
impaired cell function, increased inflammation, DNA mutations, and systemic oxidative
stress, further exacerbating the aging process and collectively contributing to the onset of
neurodegenerative diseases.

5. Therapeutic Strategies for Aging and AD
Before entering clinical trials, therapeutic strategies must be validated in model ani-

mals. These models provide a manipulable experimental system for studying the mecha-
nisms and treatments of human diseases by simulating physiological and pathological pro-
cesses. In this review, we have compiled a list of commonly used aging animal models and
AD animal models. Current therapeutic approaches primarily focus on anti-inflammatory
and antioxidant strategies, as well as nerve damage repair. Additionally, precisely targeted
interventions using gene editing technology, nerve repair through the differentiation poten-
tial of stem cells, and mitochondrial-targeted repair strategies are being explored. These
efforts are complemented by scientifically guided exercise, healthy diet, and lifestyle. By
integrating model animals with therapeutic strategies, final drug screening and efficacy
validation can be effectively achieved.
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5.1. Animal Models
5.1.1. Animal Models of Aging

As a complex biological process, aging involves changes in multiple physiological
functions. The construction of animal models that can simulate the characteristics of human
aging is important for analyzing the molecular mechanisms related to aging, revealing
the pathological basis of aging-related diseases, and screening intervention strategies for
anti-aging and treating age-related diseases. Currently, common animal models of aging
can be divided into three categories: natural aging models, induced accelerated aging
models, and gene editing aging models.

Natural aging models can reflect the time-dependent characteristics of physiological
aging but require a long experimental period [3]. Accelerated aging models can rapidly
simulate aging phenotypes through oxidative stress or metabolic interventions and are
suitable for drug screening. Gene-editing models focus on specific pathways (e.g., telomere
depletion, DNA repair defects) and provide precise tools for mechanism studies [139].

In animal models of aging, central nervous system degeneration is highly correlated
with mitochondrial dysfunction. In naturally aging mice, the accumulation of mtDNA mu-
tations in brain tissue is directly associated with reduced complex I/IV activity, which can
further disrupt energy metabolism and activate apoptotic pathways [140]. In D-galactose-
induced mice, chronic oxidative stress leads to the activation of NLRP3 inflammatory
vesicles, which can trigger microglial overactivation and the downregulation of synaptic
protein expression [141]. In telomerase-deficient zebrafish, telomere depletion triggers
impaired proliferation of neural stem cells, which can exacerbate cognitive decline [139].
These pathological phenotypes can be treated by targeting mitochondrial function, as
described in the therapeutic section of this article.

5.1.2. Animal Models of AD

Transgenic animal models of AD mimic core pathological features of AD by intro-
ducing human mutant genes (e.g., APP, PSEN1). Commonly used models include the
APP transgenic model, Aβ transgenic model, APP/PS1 double transgenic model, and tau
transgenic model. The APP transgenic mouse model, which is the most widely used model
and initially constructed based on the transgenic expression of the human APP gene, can
develop robust amyloid pathology with memory deficits [142–147]. The Aβ transgenic
mouse model can develop amyloid pathology [148]. But there are currently no data on
cognitive deficits. The APP/PS1 double transgenic mouse model, in which Aβ plaque
deposition and neuroinflammation start at 6 months of age and are accompanied by spatial
memory deficits at 12 months of age, is widely used for anti-Aβ drug evaluation [54].

Tau transgenic mice (e.g., JNPL3 and 3 × Tg mice) can mimic neuroprotectin fibril
tangles by expressing mutant tau proteins to reveal the relationship between tau pathology
and synapse loss [149–151]. These models promote the resolution of AD molecular mecha-
nisms and the validation of intervention targets by accurately simulating Aβ deposition,
abnormal tau phosphorylation, and neuroinflammation.

Hybrid models of aging and AD simulate the age-dependent AD deterioration process
by integrating transgenic phenotypes with aging-related metabolic disorders. Generally, we
can breed AD transgenic mice to old age, or induce accelerated senescence in such mice to
obtain the hybrid model of senescence and AD. The aged APP/PS1 mouse model, SAMP8
rapid-aging mouse model, and D-galactose-induced aging-AD hybrid mouse model have been
constructed [141,152]. By superimposing aging and AD phenotypes, these models elucidate how
age-related metabolism, inflammation, and mitochondrial dysfunction synergistically accelerate
neurodegeneration and provide a theoretical basis for the development of intervention strategies
to delay the dual phenotypes. These models mentioned above are summarized in Table 1.
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Table 1. Animal models related to aging and AD.

Model Animals Method Refs.

Natural aging models

Nematode worm Natural growth to senescence stage;
typical lifespan: 1 month. [153]

Fruit fly Natural growth to senescence; typical
lifespan: 3 months. [154]

Danio rerio Natural growth to senescence; typical
life span: 36–42 months. [155]

Mice Natural growth to senescence; typical
life span: 2–4 years. [144,156,157]

Accelerated-aging model
Mice

Rapidly aging (SAMP) mice; rapidly
developing aging characteristics after

4–6 months of age.
[152]

Rats D-galactose induction [158,159]

Gene editing models of aging

African killifish (Medaka) Breeding with gene editing reduces
lifespan to 9–26 weeks. [160]

Danio rerio Telomerase-deficient; median life
expectancy reduced to 9 months. [139]

Mice

Rps9 D95N mutation [161]

Hyperactivation of the tumor
suppressor P53. [162]

INK-ATTAC type
(knockout P16) [163]

PolgA gene proofreading functionally
defective phenotype. [164]

hAPP transgenic AD model Mice

PDAPP type
(V717F mutation introduced in APP) [142]

Tg2576.
(Introduction of the K670N/M671L

mutation in APP)
[143,144]

APP23 type.
(K670N/M671L and V717I double

mutation in the APP gene)
[145]

TgCRND8 type
(K670N/M671L and V717I double

mutation in APP gene)
[146,147]

Aβ transgenic AD model Mice
BRI-Aβ42 Type A

(BRI protein was used as a carrier to fuse
Aβ42 to its C-terminus)

[148]

APP/precocene double-turn AD model Mice

PSAPP type (Tg2576 × PSI) [165]

APPswe/PS1 ∆E9 type.
(synergistic expression of APP with the

K670N/M671L double-site mutation
and deletion of exon 9 of PSEN1 (∆E9))

[54,166,167]

5 × FAD type
(APP triple mutation and PSEN1 double

mutation hybridization)
[168,169]

2 × KI type
(APP and PSEN1 double knock-in

mutation)
[170,171]

hTau transgenic AD model Mice

JNPL3 type
(introduction of the tau gene carrying

the P301L mutation)
[149]

3 × Tg type
(Integration of APP double mutation,
single mutation in PSEN1 gene, triple

mutation in Tau gene P301L)

[150]

TAPP type (Tg2576 × JNPL3) [151]

Aging-AD hybrid model Mice D-galactose induction [141]
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5.2. Therapeutic Strategies
5.2.1. Preclinical Strategies

In recent years, gene-editing technologies have emerged, demonstrating significant
advancements in accuracy, stability, and applicability. These technologies hold great
promise for gene therapy related to aging and AD [172]. Meanwhile, stem cells have
strong differentiation ability, and different types of stem cells show different advantages in
repairing nerve injury. Preclinical therapies enable restorative treatments through precise
gene-editing techniques and stem cells with enhanced differentiation capabilities.

In targeting the APOE gene, the strong genetic risk factor for AD, gene-editing tech-
nology can reduce the genetic risk of AD by converting APOE4 to APOE3 [173]. By editing
the APP gene or repairing progerin (PSEN1/PSEN2) mutations, the production of toxic
Aβ is reduced [174]. Preclinical studies have validated the effectiveness of these strategies
in mouse models. Knocking out the BACE1 gene can reduce Aβ plaques and improve
cognitive function [175]. CRISPR technology can also be used to interfere with aging-
related genes to slow or reverse AD progression. Genome-wide CRISPR screening revealed
that the inhibition of the neddylation pathway can accelerate neuronal senescence and
exacerbate AD neurodegeneration, suggesting that this pathway may be a potential target
for regulating AD progression [176]. Additionally, autophagy is impaired in senescence
and AD, resulting in the aggregation of aberrant proteins. Related genes (e.g., TFEB) can be
repaired by CRISPR technology to enhance cellular clearance [177]. CRISPR technology
also provides a tool for resolving multigene networks. Screening revealed that modulation
of the co-expression network of genes such as CD48/CD40 can ease the condition [178].
These findings provide a theoretical basis for multi-targeted combined interventions.

Neural stem cells (NSCs) have the ability to differentiate into neurons, astrocytes,
and oligodendrocytes, which can replace lost neurons in AD due to Aβ deposition and
tau protein hyperphosphorylation and are suitable for repairing hippocampal and cortical
neuronal damage in AD [179,180]. Moreover, NSCs also inhibit neuroinflammation [181].
Spatial transcriptomics studies have demonstrated that transplanted NSCs can modulate
the expression of genes related to synaptic plasticity and metabolism and promote the
reconstruction of neural circuits in the hippocampal region [182]. In addition, the trans-
plantation of NSCs, in combination with a cholinesterase inhibitor, significantly improves
cognitive function in a 5 × FAD mouse model, suggesting that the combination therapy
enhances the efficacy of treatment [183].

Other types of stem cells also demonstrate distinct advantages in repairing nerve damage.
Induced pluripotent stem cells (iPSCs) can be guided to differentiate into specific neuronal
subtypes (e.g., cholinergic neurons), which are used to accurately replace lost cells in AD [184].
In addition, adipose-derived stem cells can secrete enkephalinase (Neprilysin), which can
directly degrade Aβ plaques [185]. The transplantation of bone marrow mesenchymal stem
cells (BMMSCs) ameliorates memory impairment in the AD mouse model through activation
of the Wnt/β-catenin pathway [186]. The phase 2a study results of laromestrocel, the first
mesenchymal stem cell (MSC) therapy to enter the clinical stage of AD, were recently published.
The findings indicate that both single and multiple doses of laromestrocel, in patients with mild
AD, can help reduce the rate of brain atrophy and address underlying cognitive decline, all
with a favorable safety profile [187]. Compared to lecanemab, aducanumab, and donanemab,
the therapy exhibited a superior safety profile. Although the primary objective of the study
was to focus on safety, exploratory analysis revealed a trend towards a slower rate of cognitive
decline in the laromestrocel treatment group. In the future, larger phase 3 clinical trials could be
conducted to confirm both the long-term safety and the significance of the cognitive protective
effect [188]. Thus, stem cell therapy provides a new direction for AD treatment. However,
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issues such as low post-transplantation survival rates, long-term safety, and standardized
treatment processes still need to be addressed.

5.2.2. Interventions

Neuroinflammation is a key factor in accelerating disease and aging progression,
as well as a key to therapeutic interventions. Moreover, mitochondrial dysfunction is
a prominent feature of aging and AD. By reducing neuroinflammation and enhancing
mitochondrial function, the disease process can be effectively intervened.

Modulation of the myeloid triggering receptor 2 (TREM2)-signaling pathway and
the vascular endothelial growth factor (VEGF)-signaling pathway can improve neuroin-
flammation by inhibiting microglia overactivation and maintaining blood–brain barrier
integrity [189,190]. A recent study by Brandao et al. reported that xenon (Xe) can re-
duce amyloidosis and inflammation and protect against microglia activation in AD. This
was demonstrated by the mouse model 5xFAD and APP/PS1 [191]. The natural product
ginkgolide B (GB) can modulate the phenotype of microglia (M1 to M2 polarization) and
inhibit the NLRP3 pathway to reduce the Aβ-induced inflammatory response [192]. NLRP3
inflammatory vesicles are a core component of the innate immune system in microglia.
The sustained activation of NLRP3 not only promotes the deposition of Aβ and tau but
also disrupts the blood–brain barrier by releasing inflammatory factors and attracting
peripheral immune cells infiltration, resulting in a self-amplifying inflammatory cycle [193].
Compounds such as NLRP3-IN-2 and JC124 can block the interaction of NLRP3 with
ASC and inhibit the inflammatory vesicles [194]. Some Chinese herbal compounds (e.g.,
bovine cerebroside and iguanodine) can exert synergistic anti-inflammatory effects through
simultaneous inhibition of the NLRP3, NF-κB, and MAPK pathways [195]. In addition,
supplementation with folic acid or betaine can enhance the metabolic buffering capacity
and alleviate inflammation in AD [196].

Recent studies have shown that the genetic ablation of IL-12 signaling can reverse
the loss of mature oligodendrocytes, restore myelin homeostasis, and rescue the amyloid-
dependent reduction in β-protein-positive interneurons. This finding indicates that neu-
roinflammation can not only serve as an intervention for AD but also as a viable therapeutic
target for this disease [197].

To realize the therapeutic potential of targeting mitochondria, intervention strategies focus-
ing on antioxidants and their dynamic homeostasis have been explored from the perspective of
mitochondrial biological functions and mechanisms. To date, a significant number of therapeutic
approaches and pharmacological studies have been conducted using mouse models.

In terms of antioxidants, studies have shown that CoQ10 can help alleviate oxidative
damage caused by mitochondrial dysfunction in AD, but its clinical efficacy still needs
to be further verified. Idebenone, as a CoQ10 analog, can effectively scavenge a variety
of free radicals [198]. NAC (N-acetylcysteine), on the other hand, can neutralize free
radicals and repair oxidative damage by elevating intracellular glutathione (GSH) levels.
It has been shown that NAC can significantly improve mitochondrial complex activity
and gene expression and promote the recovery of mitochondrial function in a rat model of
diabetes [199]. Thus, in AD, NAC has the potential to alleviate mitochondrial oxidative
stress and impaired energy metabolism through similar mechanisms. This is also the case
for PPARγ/PGC-1α agonists (e.g., pioglitazone) [200]. Additionally, SS-3 is a mitochondrial-
targeted antioxidant that can reduce oxidative stress in mitochondria, thereby reducing
neuronal damage [201].

Apelin-13 can exert neuroprotective effects through the PPARγ/PGC-1α-signaling
pathway and has the potential to activate mitochondrial biosynthesis [202]. In addition
to enhancing mitochondrial biosynthesis, enhancing mitochondrial autophagy is also an



Int. J. Mol. Sci. 2025, 26, 4974 14 of 25

aspect. Two substances, urolithin A and spermidine, can activate the PINK1/Parkin-
dependent mitochondrial autophagy pathway to clear damaged mitochondria. PPARγ
activation can be used to inhibit iron death and delay AD through this pathway [203].
Mdivi-1 is a mitochondrial division inhibitor. In AD models, mitochondrial division/fusion
imbalance is closely related to neuronal injury, and the application of Mdivi-1 can reduce
mitochondrial fragmentation and improve neuronal survival [204]. S89 can specifically
activate the mitochondrial fusion protein, MFN1, and promote mitochondrial fusion [205].
Blarcamesine, an oral small molecule agonist targeting the Sigma-1 receptor, is effective in
improving the level of mitochondrial activation and ameliorating neuroinflammation in
neuronal cells [206]. Currently, Blarcamesine has completed Phase 2a and Phase 2b/3 clini-
cal trials for AD [207,208]. In addition, Ebselen can inhibit the formation of mitochondrial
permeability transition pore (mPTP), thereby improving mitochondrial function. Ebselen
can also improve mitochondrial biocompetence, synaptic function, and learning memory,
as well as inhibit neuroinflammation in an AD mouse model [209].

In the clinical process, anti-inflammatory measures and improvements in mitochon-
drial function are employed to intervene in disease progression and slow down its deteri-
oration. However, these intervention strategies only target one aspect of AD and cannot
serve as the sole backbone of its treatment.

5.2.3. Prevention

The role of exercise in promoting health and longevity has long been widely recognized.
In addition to exercise, a daily diet is an important factor. To achieve optimal prevention of
AD, it is recommended to pay attention to both exercise and dietary structure.

Appropriate exercise can enhance cognitive function, improve memory, and help
prevent AD [210]. A meta-analysis noted that exercise can reduce the risk of dementia and
AD by 28% and 45%, respectively, and higher levels of daily exercise are associated with
a lower risk of AD [211]. Exercise can explicitly improve or maintain physical fitness in
terms of aerobic capacity, muscle strength and endurance, as well as balance, coordination,
and flexibility [212,213]. Appropriate and moderate amounts of exercise can help delay the
onset and progression of AD.

Epidemiologic studies have provided evidence for the relationship between dietary
patterns and AD. Relevant studies have shown that excessive intake of saturated fat (SF),
simple carbohydrates, and high glycemic index foods is associated with an increased risk of
AD onset [214]. Low-circulating choline is associated with the neuropathologic progression
of AD, illustrating the importance of adequate dietary choline intake in counteracting the
disease [215]. The gastrointestinal tract is colonized by a range of microorganisms, which
are referred to as the “gut microbiota” [216,217]. According to recent studies, an increase
in Actinobacteria and Ascomycetes, and a significant decrease in thick-walled bacteria
and bifidobacteria, have been observed with age [218,219]. That is to say, in addition to
their own roles, some nutrients in the food also have an impact on the structure, function,
and secretion of metabolites in the intestinal flora. More and more research is focused on
elucidating the bidirectional communication pathway between gut bacteria and the CNS,
the microbiota–gut–brain axis [220]. Perhaps, in the future, it may become the root of a
major treatment for AD or aging.

Overall, the therapeutic strategy for AD is based on genetic and stem cell research,
supplemented by anti-inflammatory and antioxidant studies, while also incorporating
a healthy lifestyle. This approach aims to maximize interdisciplinary and multifaceted
synergies for the effective treatment of the disease.
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6. New Perspectives on AD
In recent years, many new perspectives on the factors affecting AD have emerged

(Figure 2), focusing on susceptibility to induced disease and new fields. Since the 2020
COVID-19 pandemic, researchers have found that people infected with COVID-19 are
more susceptible to AD, and this year, changes in plasma levels were also found as evi-
dence [221]. In addition to COVID-19, it has also been found to have a strong association
with herpesvirus [222].

Figure 2. In recent years, new perspectives on AD include COVID, herpesvirus, cancer, lifestyle,
microplastic, and gender differences. Dietary structure and physical activity are the main influencing
factors of lifestyle, while gender differences are reflected in the susceptibility of females to AD. The
material comes from biorender.

In terms of gender differences, women are more susceptible to the disease than men.
Some studies have shown that one of the main disparities is the level of plasma-free
carnitine. This level of reduction may be responsible for women being more susceptible to
neurodegenerative diseases such as AD [223]. In addition, this study implicates that plasma
LAC and free carnitine may be considered as valid biomarkers for the early diagnosis of AD.
Ma et al. found that, in cancer survivors, the probability of developing AD was significantly
lower than that in normal individuals, and the reduction rate varied across cancers. This
finding suggests that cancer patients have a more stable cognitive state [224]. Recently,
scientists have creatively discovered the presence of microplastics in the body, and the
accumulation in the brain is significantly higher than in other tissues, especially in AD
patients [225]. This reveals that plastics/nanoplastics have an impact on human health.

7. Conclusions and Future Prospects
AD, as a neurodegenerative disease, is inextricably linked to aging. They share a

complex molecular network and a highly intertwined pathological process. In the context
of aging, aberrant aggregation of Aβ and Tau is amplified, and aging increases susceptibility
to neuroinflammation, as well as decreases synaptic plasticity. Mitochondria may serve as
the critical link between aging and AD, and their dysfunction can lead to an energy crisis,
exacerbating protein misfolding and neuronal death. Aging is not only a risk factor for AD
but also a “catalyst” for its pathological cascade.
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People with AD not only pose challenges to themselves, but also to their families.
AD hinders personal development and gradually has a lasting negative effect on societal
function. While exploring potential therapies, animal models exhibit certain limitations, as
they cannot fully replicate the complexity of human aging. Future studies should integrate
multi-omics techniques and promote interdisciplinary collaborations to bridge the gap
between mechanism understanding and clinical application.

We should investigate the common pathways between aging and AD to identify interven-
tion targets that address multiple issues simultaneously. We can promote lifestyle interventions
that emphasize better dietary management and exercise routines. Additionally, leveraging the
current advancements in artificial intelligence can help integrate multi-omics data, establish
AD risk-prediction models, and incorporate AD research into a broader framework of “health
and aging”. By incorporating AD research into the “Healthy Aging” paradigm, we can share
insights on anti-aging with fields like cancer and metabolic diseases.
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