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Abstract
Amphetamine dependence, besides its substantial economical consequence, is a serious

cause of mortality and morbidity. By investigations of the neurochemical correlates through

which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine sys-

tem unique targets for treatment of drug addiction can be identified. This reward link con-

sists of a dopamine projection from the ventral tegmental area to the nucleus accumbens

(NAc) suggesting that these brain areas are important for reward. The physiological function

of gut-brain peptides has expanded beyond food intake modulation and involves regulation

of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide

neuromedin U (NMU). We therefore investigated the effects of intracerebroventricular (icv)

administration of NMU on amphetamine’s well-documented effects on the mesoaccumbal

dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In

addition, the effect of accumbal NMU administration on locomotor activity was examined.

The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference

(CPP) was elucidated. Firstly, we showed that icv administration of NMU attenuate the

amphetamine-induced locomotor stimulation, accumbal dopamine release and expression

of CPP in mice. Secondly, we found that a lower dose of NMU (icv) reduce the amphet-

amine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU adminis-

tration into the NAc block the ability of amphetamine to cause a locomotor stimulation in

mice. However, accumbal NMU administration did not attenuate the amphetamine-induced

expression of CPP in mice. Our novel data suggest that central NMU signalling is involved

in development of amphetamine dependence.
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Introduction
Addiction to amphetamine, a common cause of mortality and morbidity, is a major cost for
both the society and the individual [1, 2]. However, effective pharmacological interventions to
treat amphetamine dependence are currently limited. Development of drug dependence,
including amphetamine, is attributed to the ability of addictive drugs to interfere with the
mesoaccumbal dopamine system consisting of midbrain dopaminergic neurons of the ventral
tegmental area (VTA) projecting to the nucleus accumbens (NAc) (for review see [3, 4]).
Through investigations of the neurochemical mechanisms involved in this activation, original
treatment candidates for drug dependence can be developed. Over the last years a pivotal role
of appetite regulatory peptides, such as ghrelin and glucagon-like peptide 1 (GLP-1), in the
development of drug reinforcement has been identified (for review [5]). Given that appetite
regulation is complex and involves numerous peptides the possibility should be considered
that other gut-brain peptides, such as neuromedin U (NMU), could modulate reward.

The highly conserved neuropeptide NMU is detected along the gastrointestinal tract as well
as in the brain. In the rat gut, NMU-like immunoreactivity has been demonstrated in nerve cell
bodies as well as fibers in the submucosal and myenteric plexuses, as opposed to endocrine
cells (for review see [6]). NMU acts via two distinct receptors namely NMUR1 and NMUR2
[7]. NMUR1 is expressed in a vast variety of peripheral tissues including the lungs and intestine
(for review see [6]), as well as in the amygdala [8]. NMUR2 are predominantly expressed in the
brain areas [8], albeit expression in peripheral tissues such as lungs and ovary has been identi-
fied [9]. The divers physiological role of peripheral NMU, via activation of predominantly
NMUR1, involves nociception, smooth muscle stimulation, stress responses and body temper-
ature regulation (for review [10]). However, in agreement with the high expression of NMUR2
along the gut-brain axis, research has shown that NMU serves as a catabolic signal via central
mechanism. Indeed, central administration of NMU decreases whereas NMU antisense
increases food intake in rats [11–15]. The anorexigenic properties of NMU are further
strengthened by the findings that NMU overexpressing mice are hypophagic [16], whereas
NMUR2 knockout mice display increased intake of high fat diet compared to wild type mice
[17]. The anorexigenic properties of NMU are mediated via NMUR2 located in key energy bal-
ance regulating brain areas such as arcuate nucleus and paraventricular nucleus [13, 14, 18].
Data showing that NMU knockout mice display an increased body weight as well as adiposity
[19] and that NMU overexpressing mice are lean [16] support a role for NMU in body weight
regulation. In addition, sub-chronic central NMU administration reduces body weight and
total energy intake in diet-induced obese mice [11, 12]. Despite the fact that NMUR2 are
expressed in reward related areas such as NAc [8], that NMU immunoreactivity fibers are
detected in the NAc and VTA [20, 21] and that NMUR2 knockdown rats display binge-type
food consumption as well as an enhanced preference for higher-fat food [17], the role of NMU
in drug induced reward has not been evaluated. We therefore investigate the possibility that
NMU (icv) may serve as a regulator of amphetamine-induced activation of the mesoaccumbal
dopamine system as measured by locomotor stimulation and accumbal dopamine release.
Given the fact that amphetamine, at least in part, induces reward by reversing the reuptake of
dopamine in NAc, an additional subject for the present study was to investigate the effect of
intra-NAc infusion of NMU on the ability of amphetamine to cause a locomotor stimulation.
In addition, we further investigated the effect of NMU, icv or intra-NAc, on the expression of
conditioned place preference (CPP), a measure of reward-related contextual cues associated
with drug experience and thus of importance for acquiring as well as maintaining drug taking
behaviour.
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Materials and Methods

Animals
Adult post-pubertal age-matched male NMRI mice (8–12 weeks old and 25–40 g body weight;
Charles River, Susfeldt, Germany) were used. The mice were allowed to acclimatize at least one
week before the start of the experiment and were group housed and maintained at a 12/12 hour
light/dark cycle, a temperature at 20°C and a 50% humidity. Tap water and food (normal
chow; Harlan Teklad, Norfolk, England) were supplied ad libitum. The Swedish Ethical Com-
mittee on Animal Research in Gothenburg approved the experiments and all efforts were made
to minimize animal suffering as well as to reduce the number of animals used. Each experiment
used an independent set of mice

Drugs
For studies investigating amphetamine-induced activation of the mesoaccumbal dopamine sys-
tem in mice, dex-amphetamine sulphate (RBI, Natick, USA) was dissolved in vehicle (0.9%
sodium chloride solution) and was administered intraperitoneal (ip) at a dose of 2 mg/kg 10
minutes prior to initiation of the experiments. NMU (Bionuclear, Bromma, Sweden) was
diluted in Ringer solution (NaCl 140 mM, Ca Cl2 1.2 mM, KCl 3.0 mM and MgCl2 1.0 mM;
Merck KGaA, Darmstadt, Germany). A dose of 1 μg in 1 μl for intracerebroventricular (icv)
administration was selected since this dose previously was found to reduce food intake in mice
[12–14] and recently shown to attenuate alcohol mediated behaviours in rodents [22]. Our
recent data showed that central administration of the selected dose of NMU (1 μg, icv) had no
effect per se on locomotor activity, accumbal dopamine release and the expression of CPP in
mice [22]. In addition, we used a lower dose of NMU (0.3 μg in 1 μl, icv) which has been
shown to reduce alcohol intake in rats [22]. For local and bilateral administration into the NAc
a dose repose study was conducted. A dose of 62.5 ng in 0.5 μl (per side) was selected since this
dose had no effect per se on locomotor activity or the expression of CPP in mice.

Guide cannula implantation
In order to administer NMU or vehicle solution guide cannulas (stainless steel, length 10 mm,
with an o.d./i.d. of 0.6/0.45 mm) were implanted four days prior to the experiments. The sur-
gery was conducted as follows: The rodent was anesthetized with isofluran (Isofluran Baxter;
Univentor 400 Anaesthesia Unit, Univentor Ldt., Zejtun, Malta), placed in a stereotaxic appa-
ratus (David Kopf Instruments; Tujunga, CA, USA) and kept on a heating pad to prevent
hypothermia. Two drops of Xylocain adrenalin (5 μg/ml; Pfizer Inic; New York, USA) were
used for local anaesthesia. The skull bone was exposed after an incision and three holes were
drilled, two for the guide cannula and one for the anchoring screw. The coordinates for the
third ventricle (for icv administration) relative to bregma were AP -0.9 mm and ML ±0.0. The
coordinates for NAc were AP +1.4 mm and ML ±0.6. The guide cannulas were placed 1 mm
below the surface of the brain and they were subsequently anchored to the screw and the skull
bone with dental cement (DENTALON1 plus; Agntho’s AB, Lidingö, Sweden). After surgery
the mice were injected with carprofen (Rimadyl1) (Astra Zeneca; Gothenburg, Sweden) at a
dose of 5 mg/kg subcutaneously (sc) to relieve pain and were kept in individual cages (Macro-
lon III). At the time of the experiment, the cannula was extended another 1.1 mm or 3.6 mm
ventrally beyond the tip of the guide cannula aiming for drug administration in the third ven-
tricle and NAc respectively. One hour before initiating the experiment, a dummy cannula was
carefully inserted and retreated into the guide cannula to remove clotted blood and hamper
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spreading depression. The drug was administered over one minute; the cannula was left in
place for another minute and it was then retracted (5 μl Kloehn, microsyringe; Skandinaviska
Genetec AB, V. Frölunda, Sweden). The injection sites were afterwards verified and only mice
with correct placements were included in the statistical analysis.

Locomotor activity experiments
Locomotor activity was performed as previously described [23]. The locomotor activity was
registered in eight sound attenuated, ventilated and dim lit locomotor boxes (420 x 420 x 200
mm). In three of the tests, five by five rows of photocell beams (Kungsbacka mät- och reglerte-
knik AB, Fjärås, Sweden) allowed a computer-based system to register the activity of the mice
by photocell detection. In these experiments locomotor activity was defined as the accumulated
number of new photocell beams interrupted per 5 minutes. A second locomotor activity system
(Open Field Activity System; Med Associates Inc, Gerogia, Vermont, USA) was used when
investigating the effect of central (icv) administration of a low dose (0.3 μg) of NMU on
amphetamine-induced locomotor stimulation. In this system 15 x 15 infrared beams allowed a
computer-based system to register the distance travelled (cm per 5 minutes) by each mouse. In
each experiment the mice were allowed to habituate to the locomotor activity box one hour
prior to drug challenge. NMU was always administrated 20 minutes prior to amphetamine and
the activity registration started ten minutes after the last injection. The locomotor activity was
registered for an additional 60 minutes.

In the first experiment, the effects of NMU (1 μg, icv) on amphetamine-induced (2 mg/kg,
ip) locomotor stimulation were investigated. Each mouse received one treatment combination
(vehicle-vehicle, vehicle-amphetamine, NMU-vehicle or NMU-amphetamine) and was only
subjected to one experimental trial.

In the second experiment, the effects of NMU (0.3 μg, icv) on amphetamine-induced (2 mg/
kg, ip) locomotor stimulation were explored. Each mouse received one treatment combination
(vehicle-vehicle, vehicle-amphetamine, NMU-vehicle or NMU-amphetamine) and was only
subjected to one experimental trial.

The third experiment was conducted to establish a dose for intra-NAc administration with-
out no effect per se on locomotor activity. The effects of local administration of vehicle or
NMU (250, 125 or 62.5 ng in 0.5 μl per side) bilaterally into the NAc were studied in mice.

In the fourth experiment in separate mice the role of accumbal NMUR2 for amphet-
amine-induced reward was investigated. Therefore, the effects of intra-NAc NMU (62.5 ng in
0.5 μl) administration on amphetamine-induced (2 mg/kg, ip) locomotor stimulation were
evaluated. Each mouse received one treatment combination (vehicle-vehicle, vehicle-amphet-
amine, NMU-vehicle or NMU-amphetamine) and was only subjected to one experimental
trial.

In vivo microdialysis and dopamine release measurements
The present experiment investigates the role of central NMU for amphetamine-induced activa-
tion of the mesoaccumbal dopamine system. For measurements of extracellular dopamine lev-
els, mice were implanted with a microdialysis probe positioned in the shell of NAc. Surgeries
were performed as previously described [23] and above (Guide cannula implantation). In these
mice three holes were drilled, one for the probe, one for the guide cannula and one for the
anchoring screw. The probes were custom made as described previously [24] and were ran-
domly alternated to either the left or right side of the brain. The coordinates for the probes
were 1.4 mm AP, ±0.6 ML and 4.7 DV mm [25].
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The effect of central administration of NMU (1 μg, icv) on amphetamine-induced (2 mg/kg,
ip) accumbal dopamine release was investigated using microdialysis in freely moving mice. On
the day of the experiment the probe was connected to a microperfusion pump (U-864 Syringe
Pump; AgnThós AB) and perfused with Ringer solution at a rate of 1.5 μl/minute. After one
hour of habituation to the microdialysis set-up, perfusion samples were collected every 20 min-
utes. The baseline dopamine level was defined as the average of first three consecutive samples
(-40 min until 0 min). After baseline samples, NMU or vehicle was administered (0 minutes).
Amphetamine was administered at 20 minutes later (20 minutes), creating the following treat-
ment groups: vehicle-amphetamine and NMU-amphetamine. Eight consecutive 20-minute
samples were thereafter collected. The challenge-induced increase in accumbal dopamine was
calculated as the percentage of increase from the baseline samples.

Dopamine was separated and quantified using two different high-performance liquid chro-
matography apparatuses with electro chemical detection as described previously [26]. In brief, a
pump (UltiMate 3000 Pump; Thermo Scientific, Darmstadt, Germany), an ion exchange col-
umn (Nucleosil SA, 2.0 x 150 mm, 5 μm diameter, pore size 100 Å; Phenomenex Scandinavia,
Västra Frölunda, Sweden) and a detector (Decade, Kovalent AB, Sweden) operated at 400 mV
versus the cell were used. The mobile phase was delivered at 0.3 ml/min and consists of 58 mM
citric acid, 135 mMNaOH, 0.107 mMNa2–EDTA and 20%methanol. The second system con-
sisted of a pump (UltiMate 3000 Pump; Thermo Scientific, Darmstadt, Germany), a reversed
phase column (2.0 x 50 mm, 3 μm diameter; pore size 100 Å; Phenomenex Scandinavia, Västra
Frölunda, Sweden) and a detector (Dionex, Västra Frölunda, Sweden) operated at 220 mV ver-
sus the cell. The mobile phase was delivered at 0.3 ml/min and consists of f 150 mMNaH2PO4,
4.76 mM citric acid, 3 mM sodium dodecyl sulphate, 50 μM EDTA, as well as 10%MeOH and
15% acetonitrile.

Conditioned place preference
The CPP experiments were designed to evaluate the effects of NMU, icv or accumbal, on the
expression of amphetamine-induced CPP. The CPP test was performed in mice as previously
described [23]. In brief, a 2-chambered conditioned place preference apparatus (45 lux) and
distinct visual and tactile cues was used. The procedure consisted of preconditioning (day 1),
conditioning (days 2 to 5), and postconditioning (day 6). At preconditioning mice were placed
in the chamber with free access to both compartments during 20 minutes to determine the ini-
tial place preference. Conditioning (20 minutes per session) was done using a biased procedure
in which amphetamine (2 mg/kg, ip) was paired with the least preferred compartment and
vehicle with the preferred compartment. All mice received one amphetamine and one vehicle
injection every day and the injections were altered between morning and afternoon in a bal-
anced design. In the first experiment the mice were injected with NMU (1 μg, icv) or an equal
volume of vehicle solution (Ringer) at postconditioning day. 20 minutes later the mice were
placed on the midline between the two compartments with free access to both compartments
for 20 minutes (creating the following treatment groups; amphetamine-vehicle and amphet-
amine-NMU). In the second experiment the mice were injected with NMU (62.5 ng) or an
equal volume of vehicle solution (Ringer) bilaterally into the NAc at postconditioning day.
20 minutes later the mice were placed on the midline between the two compartments with free
access to both compartments for 20 minutes (creating the following treatment groups; amphet-
amine-vehicle and amphetamine-NMU). CPP was calculated as the difference in percentage
(%) of total time spent in the drug-paired (i.e., less preferred) compartment during the post-
conditioning and the preconditioning session. A control experiment for intra-NAc shell
administration of NMU (62.5 ng in 0.5 μl per side) was also conducted. A separate mice group
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was subjected to the same procedure, but received vehicle injections instead of amphetamine
throughout the conditioning (non-amphetamine conditioned control group; creating the fol-
lowing treatment groups; vehicle-vehicle and NMU-vehicle).

Verification of probe and guide cannulas placement
Following each experiment the location of the probe (located in the NAc shell) and/or guide
cannulas (located in the third ventricle (icv, Fig 1A) or in the NAc shell (Fig 1B)) was verified.
The rodents were decapitated and the brains were mounted on a vibroslice device (752 M
Vibroslice; Campden Instruments Ltd., Loughborough, UK). The brains were cut in 50 μm sec-
tions, and the location was determined [25] by observation using light microscopy. Only
rodents with correct placement of the probe and/or guide cannulas were included in the statis-
tical analysis. No animals were excluded due to severe illness. The only exclusion criterion was
misplaced probes/guide cannulas.

Statistical analysis
The locomotor activity experiments as well as microdialysis experiments were evaluated by a
two-way ANOVA followed by Bonferroni post-hoc test for comparisons between different
treatments and specifically at given time points. The CPP data were evaluated by an unpaired
t-test. In addition, the effect of treatment on time spent in drug-paired compartment was ana-
lysed with a one-way ANOVA followed by a Bonferroni post-hoc test for comparisons between
different treatment. Data are presented as mean ± SEM. A probability value of P<0.05 was
considered as statistically significant.

Fig 1. Schematic illustrations of placements. (A) A coronal mouse brain section showing five representative guide
cannula placements (illustrated by vertical lines) aiming at the third ventricle (icv) [25]. In addition, a slice frommouse
brain show one representative placement of a guide cannula in the third ventricle (B) A coronal mouse brain section
showing six representative probe or guide cannula placements (illustrated by vertical lines) in the nucleus accumbens
(NAc) shell [25]. Moreover, a slice from a mouse brain shows one representative placement in the NAc shell. For each
brain section only a few representative placements are illustrated, but all other placements targeted the third ventricle
or were within the NAc shell. Placements outside these areas were not included in the statistical analysis. The number
given in the brain section indicates millimeters anterior (+) or posterior (-) from bregma.

doi:10.1371/journal.pone.0154477.g001
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Results

Effects of icv administration of NMU on amphetamine-induced locomotor
stimulation, accumbal dopamine release and expression of CPP in mice
Analysis of baseline locomotor activity showed no overall main effect of treatment (F(3,41) =
1.18, P = 0.3306), time (F(1,14) = 0.68, P = 0.4236), or of treatment x time interaction (F(3,42) =
0.13, P = 0.9427), indicating that there are no differences in the baseline activity for the future
treatment groups (vehicle-vehicle 508±42; vehicle-amphetamine 619±70; NMU-vehicle 563
±52; NMU-amphetamine 691±40 counts per 60 minutes).

An overall main effect of treatment (F(3,252) = 64.97, P<0.0001) as well as of time (F(11,84) =
2.02, P = 0.0358), but not of treatment x time interaction (F(3,252) = 0.97, P = 0.5209) was
found on locomotor activity in mice following systemic administration of amphetamine (2 mg/
kg) and central injection of NMU (1 μg, icv) (n = 8 for vehicle-vehicle, n = 8 for vehicle-
amphetamine, n = 8 for NMU-vehicle as well as NMU-amphetamine). As shown in Fig 2A,
post-hoc analysis revealed that amphetamine significantly increased locomotor activity com-
pared to vehicle at 10–15 (P<0.01), 20–30 (P<0.001) as well as 35 (P<0.01) minute time
points. This amphetamine-induced locomotor stimulation was significantly blocked by pre-
treatment with icv injection of NMU at 15 (P<0.05), 20 (P<0.01), 25 (P<0.001) as well as 30–
35 (P<0.01) minute time points. There was no difference in locomotor activity response in
vehicle treated mice and NMU-amphetamine treated mice at any time point (P>0.05). The
selected dose of NMU had no effect per se on locomotor activity compared to vehicle treatment
at any time point (P>0.05).

Accumbal microdialysis measurements of dopamine in mice revealed an overall main effect
of treatment (F(1,117) = 23.47, P<0.0001), time (F(12,117) = 5.415, P<0.0001) and of treatment x
time interaction (F(12,117) = 2.209, P<0.0154) (Fig 2B). Post-hoc analysis revealed that icv
NMU (NMU-amphetamine, n = 10) administration significantly attenuated the ability of
amphetamine (vehicle-amphetamine, n = 10) to increase accumbal dopamine at time point 40
(P<0.05), 60 (P<0.001) and 80 minutes (P<0.01).

The amphetamine-induced (2 mg/kg) (amphetamine-vehicle, n = 8) CPP was significantly
attenuated by an acute icv administration of NMU (1 μg, icv) (amphetamine-NMU, n = 7) on
the post-conditioning day (P = 0.0361)(Fig 2C). One-way ANOVA analysis showed that there
was an overall effect of treatment on time (sec) spent in the drug-paired chamber during pre-
and post-conditioning (F(3,26) = 4.096, P = 0.0166). Bonferroni post-hoc test revealed that
there was no difference in time spent in the least preferred compartment at preconditioning
(vehicle 503±28 sec, NMU 523±28 sec, P>0.05). The time spent in the drug-paired compart-
ment was higher in vehicle (680±60 sec) treated mice compared to NMU (343±122 sec) treated
mice during post-conditioning (P<0.05).

Analysis of baseline locomotor activity showed no overall main effect of treatment (F(3,42) =
1.51, P = 0.2250), of time (F(1,14) = 2.52, P = 0.1347), or of treatment x time interaction (F(3,42)
= 0.3985, P = 0.7548), indicating that there are no differences in the baseline activity for the
future treatment groups (vehicle-vehicle 469±122; vehicle-amphetamine 590±141; NMU-vehi-
cle 490±123; NMU-amphetamine 735±110 cm per 60 minutes).

An overall main effect of treatment (F(3,252) = 201.3, P<0.0001), but not of time (F(11,84) =
0.72, P = 0.7187) or of treatment x time interaction (F(33,252) = 0.53, P = 0.9856) was found on
locomotor activity in mice following systemic administration of amphetamine (2 mg/kg) and
icv injection of a low dose of NMU (0.3 μg) (n = 8 for vehicle-vehicle, n = 8 for vehicle-amphet-
amine, n = 8 for NMU-vehicle and n = 8 for NMU-amphetamine). As shown in Fig 3, post-hoc
analysis revealed that amphetamine significantly increased locomotor activity compared to
vehicle at 5–50 (P<0.0001), 55 (P<0.001) as well as 60 (P<0.01) minute time points. In
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addition, NMU-amphetamine treated mice showed an increase in locomotor activity com-
pared to vehicle treated mice at 10 (P<0.05), 15–25 (P<0.01), 30 (P<0.0001), 35–40
(P<0.001), 45 (P<0.01) as well as 50 (P<0.05) minute time points. However, the NMU-
amphetamine treated mice showed no significant response (P>0.05) to amphetamine at 5 as
well as 50–60 minute time points. Indeed, the amphetamine response is lower in NMU-
amphetamine treated mice compared to vehicle-amphetamine treated mice. NMU (0.3 μg, icv)
had no effect per se on locomotor activity (P>0.05) compared to vehicle treatment at any time

Fig 2. Central (1 μg, icv) administration of NMU attenuates amphetamine-induced locomotor stimulation, accumbal dopamine release and
expression of conditioned place preference in mice. (A) Amphetamine-induced (2 mg/kg, ip) locomotor stimulation was blocked by a central
injection of NMU (1 μg, icv) at time point 15–35 minutes. Central NMU administration had no effect per se on locomotor activity. (B) NMU (1 μg, icv)
attenuated amphetamine (2 mg/kg, ip) induced increase in accumbal dopamine release at time point 40–80 minutes. (C) Central NMU (1 μg, icv,
Amph-NMU) administration prevented the amphetamine (2 mg/kg, Amph-Veh) induced expression of conditioned place preference (CPP). Data are
presented as mean ± SEM (*P<0.05, **P<0.01, ***P<0.001 for Veh-Veh versus Veh-Amph and # P<0.05, ## P<0.01, ### P<0.001 for Veh-Amph
versus NMU-Amph).

doi:10.1371/journal.pone.0154477.g002
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point. Collectively, these data show that a low dose of NMU reduces the amphetamine induced
locomotor stimulation, but does not block the effect.

The locomotor activity data in Fig 2A are shown as counts per 5 minutes. The activity
experiment shown in Fig 3 was analysed with a new system and therefore the data are pre-
sented as distance traveller per 5 minutes. Albeit two different systems were used, a robust
amphetamine induced locomotor stimulation was obtained in both experiments.

Effects of accumbal NMU administration on amphetamine-induced
locomotor stimulation and on the expression of amphetamine-induced
CPP in mice
Analysis of baseline locomotor activity showed no overall main effect of treatment (F(3,42) =
1.63, P = 0.1966), time (F(1,14) = 1.26, P = 0.2807), or of treatment x time interaction (F(3,42) =
0.11, P = 0.9913), showing that there were no differences in baseline activity in mice later on
treated with various doses of NMU or vehicle locally into NAc (vehicle-vehicle 142±42; vehi-
cle-amphetamine 130±33; NMU-vehicle 90±36; NMU-amphetamine 163±30 counts per 60
minutes).

There was an overall effect of treatment (F(3,252) = 15.18, P<0.0001), of time (F(11,84) = 5.55,
P<0.0001) and of treatment x time interaction (F(3,252) = 2.45, P<0.0001) following bilateral
administration of NMU (250, 125 or 62.5 ng in 0.5 μl per side) or vehicle into the NAc shell.
Post-hoc test revealed that 250 ng NMU per side reduces the locomotor activity at the 5
(P<0.001), 10 and 20 (P<0.05) minute time points compared to vehicle. In addition, 125
(P<0.01) ng of NMU reduced locomotor activity compared to vehicle treatment 5 minute time
point (P<0.001). NMU at a dose of 62.5 ng per side had no effect per se on locomotor activity
in mice compared to vehicle treatment at any time point (P>0.05) (vehicle 191±46 n = 8;
NMU250 43±20 n = 8; NMU125 23±17 n = 8; NMU62.5 137±23 n = 8 counts per 60 minutes).

Analysis of baseline locomotor activity showed no overall main effect of treatment (F(3,66) =
0.55, P = 0.6521), time (F(1,22) = 1.77, P = 0.1976), or of treatment x time interaction (F(3,66) =

Fig 3. Central (0.3 μg, icv) administration of NMU reduces amphetamine-induced locomotor
stimulation in mice. Amphetamine-induced (2 mg/kg, ip) locomotor stimulation was reduced, but not
blocked, by a central injection of a lower does of NMU (0.3 μg, icv). Central administration of this lower dose
of NMU had no effect per se on locomotor activity. Data are presented as mean ± SEM (n.s. P>0.05,
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 compared to vehicle-vehicle treatment).

doi:10.1371/journal.pone.0154477.g003
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0.08, P = 0.9714), indicating that there are no differences in the baseline activity for the future
treatment groups (vehicle-vehicle 180±22; vehicle-amphetamine 130±20; NMU-vehicle 147
±25; NMU-amphetamine 151±23 counts per 60 minutes).

An overall main effect of treatment (F(3,396) = 36.70, P<0.0001), but not of time (F(11,132) =
1.14, P = 0.3387), or of treatment x time interaction (F(33,396) = 0.28, P = 0.9999) was found on
locomotor activity in mice following systemic administration of amphetamine (2 mg/kg) and
intra-NAc injection of NMU (62.5 ng /side) (n = 12 for vehicle-vehicle, n = 12 for vehicle-
amphetamine, n = 12 for NMU-vehicle and n = 12 for NMU-amphetamine). As shown in Fig
4A, post-hoc analysis revealed that amphetamine significantly increased locomotor activity
compared to vehicle at 25 (P<0.01) minute time point. There was no difference in locomotor
activity response in vehicle treated mice and NMU-amphetamine treated mice at any time
point (P>0.05). NMU into NAc had no effect per se on locomotor activity (P>0.05) compared
to vehicle treatment at any time point.

Mice receiving bilateral vehicle administration into NAc (Fig 4A), compared to the third
ventricle (Figs 2A and 3), showed lower locomotor activity as well as response to amphetamine.
This could be explained by the fact that bilateral administration affects behaviour more than
icv injections. However, this does not interfere with the interpretation of the data since vehicle
controls are treated similarly to mice with drug challenges. A NMU dose response study was
conducted in icv, but not intra-NAc, treated mice. The rational for this is that the amphetamine
response is lower in intra-NAc vehicle treated mice and it would therefore be more difficult to
differentiate a NMU recued amphetamine response, by a yet lower NMU dose, located between
the vehicle-amphetamine and vehicle-vehicle treated mice (Fig 4A).

The amphetamine-induced (2 mg/kg) (amphetamine-vehicle, n = 11) expression of CPP
was not affected by intra-NAc administration of NMU (62.5 ng/side) (amphetamine-NMU,
n = 14) on the post-conditioning day (P = 0.5989)(Fig 4B). Separate experiment showed that
bilateral administration of NMU into NAc shell did not induce a CPP per se (vehicle-NMU,
14 ± 15%; vehicle-vehicle, 5 ± 13%; P = 0.6639, n = 7 in each group).

Fig 4. Accumbal administration of NMU attenuates amphetamine-induced locomotor stimulation, but does not affect the expression
of conditioned place preference in mice. (A) Amphetamine-induced (2 mg/kg, ip) locomotor stimulation was attenuated by an accumbal
injection of NMU (62.5 ng per side). Accumbal NMU administration had no effect per se on locomotor activity. (B) Accumbal NMU (62.5 ng per
side, Amph-NMU) administration did not attenuate amphetamine-induced (2 mg/kg, ip, Amph-Veh) expression of CPP in mice. Data are
presented as mean ± SEM (n.s. P>0.05, *P<0.05).

doi:10.1371/journal.pone.0154477.g004
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Discussion
The present study revealed three principal sets of findings. Firstly, we show for the first time
that activation of the central NMU receptor signalling system inhibited the well-documented
effects of amphetamine on the mesoaccumbal dopamine system [27], namely locomotor stimu-
lation and accumbal dopamine release. In support for a modulatory role of NMU in reward
processes are the previous data demonstrating that icv administration of NMU attenuated alco-
hol-induced locomotor stimulation, CPP and dopamine release as well as decreased alcohol
intake in rodents [22]. In addition, NMU centrally reduced the intake of palatable food and
increased consumption of standard chow [12] and paraventricular NMUR2 knockdown
increased binge-eating behaviour as well as preference for palatable high fat diet [17]. The find-
ings of a genome-wide allelic association study showed that polymorphisms in the NMUR2
gene are associated with alcohol use disorders [28] suggest that the presented data can be trans-
lationally valid. Furthermore, we found that administration of a lower dose of NMU into the
third ventricle reduced, but did not block, the amphetamine induced locomotor stimulation in
mice. In support for a dose dependent effect of NMU on reward regulation are the findings
showing that central injection of this low NMU dose decreased alcohol intake in rodents [22].
When administrating a pharmacological agent into the third ventricle the possibility that the
effects are due to intra-parenchymal mechanisms should be considered. Therefore, a limitation
with the present study is that site-specific effects of icv-NMU could not be determined. We
recently showed that the selected dose of NMU had no effect per se on locomotor activity (60
minutes following injection), accumbal dopamine release (100 minutes following injection)
and the expression of CPP in mice [22], suggesting that the ability to block amphetamine
reward is selective to activation of NMUR rather than other interfering systems. In consistency,
supporting data show that central NMU administration does not affect the dopamine levels in
brain areas including the NAc and does not affect forward locomotion (i.e. total transit time)
in rats [8]. It should however be mentioned that higher doses of NMU increase locomotor
activity in mice [29]. The possibility should also be considered that NMU could potentiate
amphetamine-induced stereotypic behaviour and thereby decreasing total locomotion. Never-
theless, this appears less likely since our observational studies show that NMU does not alter
gross behaviour in mice.

Secondly, we demonstrated that NMU administration into the NAc blocked the ability of
amphetamine to induce a locomotor stimulation, suggesting that accumbal NMUR2 modulate
amphetamine-induced activation of the mesolimbic dopamine system. Supportively preclinical
findings show: i) amphetamine-induced locomotor stimulation is mediated, at least in part, via
its ability to increase accumbal dopamine releases [30], ii) the behavioural effects of amphet-
amine are closely time-locked with accumbal dopamine release [31], iii) the mechanism of
action of amphetamine includes reversal of the dopamine reuptake pump. Consistent with this
concept are the data showing that the highest levels of NMU immunoreactivity are detected in
the NAc [20]. Moreover, the detected distribution of immunoreactive accumbal NMU fibers
[32] and the expression of NMUR2 has been identified in NAc in rats as well as in humans [8,
21]. Furthermore, central NMU administration activates c-fos expression in NAc [8]. The find-
ings that intra-NAc NMU did not attenuate amphetamine-induced CPP raises the possibility
that the obtained results may be influenced by tissue damages caused by local administrations.
However, this appears less likely since we see that higher doses of accumbal NMU reduced the
locomotor activity compared to vehicle treatment as well as that intra-NAc NMU significantly
attenuated the amphetamine-induced locomotor stimulation. In addition, observations of the
brain tissue show no obvious sign of tissue damage. In support for a local effect of NMU in the
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NAc are the previous data showing that administration of ghrelin into the NAc increases palat-
able food intake, but does not regulate sexual behaviour [33].

Thirdly, we showed in mice that icv administration of NMU, but not directly into the NAc,
attenuates the expression of CPP that may reflect a measure of reward-related contextual cues
associated with a drug experience [34]. In support are the recent data showing that icv NMU
administration attenuated alcohol-induced expression of CPP in mice [22]. Collectively, the
present data suggest that NMU, via central unknown mechanism, may alter the acquiring as
well as maintaining of drug taking behaviour in mice. The expression of CPP induced by
amphetamine depends upon a functioning mesocorticolimbic dopamine system, in particular
the release of dopamine in NAc as well as in the prefrontal cortex (for review see [35]). In addi-
tion, the amphetamine induced CPP involves serotonin signalling in particular serotonin 2A/
2B/2C receptors as well as the serotonin reuptake pump (for review see [35]). We here report
that intra-NAc administration of NMU does not block the expression of CPP. One tentative
explanation might be that NMUR2 in the prefrontal cortex or alteration of serotonergic signal-
ling may be involved in the ability of amphetamine to elicit the expression of CPP. Consis-
tently, icv NMU administration increases serotonin levels in brain areas such as the frontal
cortex [8]. It should also be considered that NMUR2 in other brain areas, such as the arcuate
nucleus and paraventricular nucleus, are important for amphetamine-induced activation of the
mesoaccumbal dopamine system since both pharmacological and genetic studies collectively
show that the anorexigenic properties of NMU involves NMUR2 in the arcuate nucleus and
paraventricular nucleus [13, 14, 18]. Moreover, anti-NMU IgG reduces NMU-induced
increased c-fos expression in paraventricular nucleus [36], suggesting that NMU targets the
paraventricular nucleus directly. On the same note, arcuate nucleus and paraventricular
nucleus, which both contain a high density of NMUR2, are highly interconnected [37] and
they regulate the activity of mesolimbic structures via endorphinergic projections [38].

The downstream mechanisms through which central NMU signalling reduces amphet-
amine-induced reward remain unknown and need to be further investigated. The possibility
that NMU attenuates amphetamine-induced reward is secondary to its effect on the hypothala-
mus-pituitary-adrenal (HPA) stress axis should be deliberated. Indeed, central administration
of NMU, in higher doses than presently used, increases stress-like behaviours such as face
washing, scratching and grooming [8] as well as elevates the plasma levels of the stress hor-
mones ACTH and corticosterone [36]. Moreover, the NMU induced stress response is medi-
ated via corticotrophin-releasing hormone [29]. Corticotrophin-releasing hormone knockout
mice are unresponsive to NMU’s anorexigenic effects [39] and corticotrophin-releasing hor-
mone has been attributed a key role for the etiology as well as maintenance of drug addiction
[40]. We however hypothesize that NMUmediated reward does not involve stress repose since
it has been shown that the selected dose, as opposed to higher doses, of icv NMU does not
affect corticosterone levels in rodents [8, 22, 36]. The findings that local administration of
NMU into the paraventricular nucleus causes a release of corticosterone as well as induces
grooming, may indicate that icv administration of the selected dose of NMU does not reach
deeper brain areas such as the paraventricular nucleus and therefore does not activate the HPA
axis. In addition, the possibility that the selected dose of NMU induces an unmeasured stress
response should also be considered. Findings show that central administration of NMU, dose-
dependently, increases the oxytocin plasma levels [36] as well as c-Fos in oxytocin-immunore-
active neurons in the paraventricular nuceus [41] and that exogenous administration of oxyto-
cin attenuates drug reinforcement (for review see [42]). These data provide oxytocin as a
tentative downstream target for NMU regulated activation of the mesolimbic dopamine
system.
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During the last years the traditional role of gut-brain peptides as modulators of energy
homeostasis has been extended and it has been shown that several of these peptides regulate
reward (for review see [5]). Pharmacological or genetical suppression of the receptor for the
orexigenic peptide ghrelin attenuates the ability of several addictive drugs to activate the
mesoaccumbal dopamine system (for review see [5]). In support of this contention is that
peripheral administration of glucagon-like peptide-1 receptor agonist, a satiety hormone,
blocks reinforcement in rodents [43–47]. Moreover, gut-brain peptides such as orexin, galanin,
cholecystokinin and leptin regulate drug reinforcement in rodents [48–51].

Collectively the present series of experiments show that central NMU signalling regulates
amphetamine-induced reward as well as reward-related contextual cues associated with drug
experience in mice. Moreover, accumbal NMUR2 regulate amphetamine induced locomotor
stimulation but not the expression of CPP in mice. We therefore argue that the role of central
NMUR2 in drug dependence should be investigated further. Nevertheless, the multiple func-
tions of NMU should be taken into account when considering targeting NMU signalling for
treatment of drug addiction.

Acknowledgments
Britt-Mari Larsson and Kenn Johannessen are gratefully acknowledged for expert and valuable
technical assistance. The study is supported by grants from the Swedish Research Council
(2009–2782 and 2011–4646 and 2015–03219), Swedish Society for Medical Research, The
Swedish brain foundation, LUA/ALF (grant no. 148251) from the Sahlgrenska University Hos-
pital, Torsten Söderberg, Alcohol research council of the Swedish alcohol retailing monopoly
and the foundations of Adlerbertska, Fredrik and Ingrid Thuring, Tore Nilsson, Längmanska,
Wilhelm and Martina Lundgren, Knut and Alice Wallenberg, Magnus Bergvall, Anérs, Jean-
sons, Åke Wiberg, NovoNordisk, Gothenburg Psychiatry Research Foundation, the Swedish
Society of Medicine. The funding sources had no role in the collection, analysis and interpreta-
tion of data, in the writing of the report or in the decision to submit the article for publication.

Author Contributions
Conceived and designed the experiments: EJ. Performed the experiments: JV DV. Analyzed the
data: DV EJ. Contributed reagents/materials/analysis tools: EJ JAE. Wrote the paper: EJ DV
JAE JV.

References
1. Rawson RA, Condon TP. Why do we need an Addiction supplement focused on methamphetamine?

Addiction. 2007; 102 Suppl 1:1–4. PMID: 17493048

2. Srisurapanont M, Jarusuraisin N, Kittirattanapaiboon P. Treatment for amphetamine dependence and
abuse. Cochrane Database Syst Rev. 2001;(4: ):CD003022. PMID: 11687171

3. Wang GJ, Volkow ND, Thanos PK, Fowler JS. Similarity between obesity and drug addiction as
assessed by neurofunctional imaging: a concept review. J Addict Dis. 2004; 23(3):39–53. PMID:
15256343

4. Tupala E, Tiihonen J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Progress in
neuro-psychopharmacology & biological psychiatry. 2004; 28(8):1221–47.

5. Engel JA, Jerlhag E. Role of gut-brain hormones in the Pathophysiology of Alcoholism: Implications for
Pharmacotherapy. CNS Drugs. 2014; 28(10):875–86. doi: 10.1007/s40263-014-0178-y PMID:
24958205

6. Brighton PJ, Szekeres PG,Willars GB. Neuromedin U and its receptors: structure, function, and physio-
logical roles. Pharmacological reviews. 2004; 56(2):231–48. PMID: 15169928

7. Mitchell JD, Maguire JJ, Davenport AP. Emerging pharmacology and physiology of neuromedin U and
the structurally related peptide neuromedin S. British journal of pharmacology. 2009; 158(1):87–103.
doi: 10.1111/j.1476-5381.2009.00252.x PMID: 19519756

Neuromedin U and Amphetamine Reward

PLOS ONE | DOI:10.1371/journal.pone.0154477 May 3, 2016 13 / 16

http://www.ncbi.nlm.nih.gov/pubmed/17493048
http://www.ncbi.nlm.nih.gov/pubmed/11687171
http://www.ncbi.nlm.nih.gov/pubmed/15256343
http://dx.doi.org/10.1007/s40263-014-0178-y
http://www.ncbi.nlm.nih.gov/pubmed/24958205
http://www.ncbi.nlm.nih.gov/pubmed/15169928
http://dx.doi.org/10.1111/j.1476-5381.2009.00252.x
http://www.ncbi.nlm.nih.gov/pubmed/19519756


8. Gartlon J, Szekeres P, Pullen M, Sarau HM, Aiyar N, Shabon U, et al. Localisation of NMU1R and
NMU2R in human and rat central nervous system and effects of neuromedin-U following central admin-
istration in rats. Psychopharmacology. 2004; 177(1–2):1–14. PMID: 15205870

9. Hosoya M, Moriya T, Kawamata Y, Ohkubo S, Fujii R, Matsui H, et al. Identification and functional char-
acterization of a novel subtype of neuromedin U receptor. J Biol Chem. 2000; 275(38):29528–32.
PMID: 10887190

10. Martinez VG, O'Driscoll L. Neuromedin U: A Multifunctional Neuropeptide with Pleiotropic Roles. Clini-
cal chemistry. 2015; 61(3):471–82. doi: 10.1373/clinchem.2014.231753 PMID: 25605682

11. Jethwa PH, Small CJ, Smith KL, Seth A, Darch SJ, Abbott CR, et al. Neuromedin U has a physiological
role in the regulation of food intake and partially mediates the effects of leptin. American journal of phys-
iology Endocrinology and metabolism. 2005; 289(2):E301–5. PMID: 16014357

12. Egecioglu E, Ploj K, Xu X, Bjursell M, Salome N, Andersson N, et al. Central NMU signaling in body
weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treat-
ment in mice. American journal of physiology Endocrinology and metabolism. 2009; 297(3):E708–16.
doi: 10.1152/ajpendo.91022.2008 PMID: 19584200

13. Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, et al. Identification of receptors for neu-
romedin U and its role in feeding. Nature. 2000; 406(6791):70–4. PMID: 10894543

14. Ida T, Mori K, Miyazato M, Egi Y, Abe S, Nakahara K, et al. Neuromedin s is a novel anorexigenic hor-
mone. Endocrinology. 2005; 146(10):4217–23. PMID: 15976061

15. Kojima M, Haruno R, Nakazato M, Date Y, Murakami N, Hanada R, et al. Purification and identification
of neuromedin U as an endogenous ligand for an orphan receptor GPR66 (FM3). Biochemical and bio-
physical research communications. 2000; 276(2):435–8. PMID: 11027493

16. Kowalski TJ, Spar BD, Markowitz L, Maguire M, Golovko A, Yang S, et al. Transgenic overexpression
of neuromedin U promotes leanness and hypophagia in mice. The Journal of endocrinology. 2005; 185
(1):151–64. PMID: 15817836

17. Benzon CR, Johnson SB, McCue DL, Li D, Green TA, Hommel JD. Neuromedin U receptor 2 knock-
down in the paraventricular nucleus modifies behavioral responses to obesogenic high-fat food and
leads to increased body weight. Neuroscience. 2014; 258:270–9. doi: 10.1016/j.neuroscience.2013.
11.023 PMID: 24269937

18. Nakahara K, Hanada R, Murakami N, Teranishi H, Ohgusu H, Fukushima N, et al. The gut-brain peptide
neuromedin U is involved in the mammalian circadian oscillator system. Biochemical and biophysical
research communications. 2004; 318(1):156–61. PMID: 15110767

19. Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N, et al. Neuromedin U has a
novel anorexigenic effect independent of the leptin signaling pathway. Nat Med. 2004; 10(10):1067–73.
PMID: 15448684

20. Domin J, Ghatei MA, Chohan P, Bloom SR. Neuromedin U—a study of its distribution in the rat. Pep-
tides. 1987; 8(5):779–84. PMID: 3432125

21. Maderdrut JL, Lazar G, Kozicz T, Merchenthaler I. Distribution of neuromedin U-like immunoreactivity
in the central nervous system of Rana esculenta. The Journal of comparative neurology. 1996; 369
(3):438–50. PMID: 8743423

22. Vallof D, Ulenius L, Egecioglu E, Engel JA, Jerlhag E. Central administration of the anorexigenic pep-
tide neuromedin U decreases alcohol intake and attenuates alcohol-induced reward in rodents. Addic-
tion biology. 2016;e-pub ahead of print, doi: 10.1111/adb.12355

23. Jerlhag E, Egecioglu E, Landgren S, Salome N, Heilig M, Moechars D, et al. Requirement of central
ghrelin signaling for alcohol reward. Proceedings of the National Academy of Sciences of the United
States of America. 2009; 106(27):11318–23. doi: 10.1073/pnas.0812809106 PMID: 19564604

24. Blomqvist O, Engel JA, Nissbrandt H, Soderpalm B. The mesolimbic dopamine-activating properties of
ethanol are antagonized by mecamylamine. European journal of pharmacology. 1993; 249(2):207–13.
PMID: 8287902

25. Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press;
1997.

26. Clarke RB, Adermark L, Chau P, Soderpalm B, Ericson M. Increase in nucleus accumbens dopamine
levels following local ethanol administration is not mediated by acetaldehyde. Alcohol and alcoholism.
2014; 49(5):498–504. doi: 10.1093/alcalc/agu047 PMID: 25063803

27. Sanchis-Segura C, Spanagel R. Behavioural assessment of drug reinforcement and addictive features
in rodents: an overview. Addiction biology. 2006; 11(1):2–38. PMID: 16759333

28. Lydall GJ, Bass NJ, McQuillin A, Lawrence J, Anjorin A, Kandaswamy R, et al. Confirmation of prior evi-
dence of genetic susceptibility to alcoholism in a genome-wide association study of comorbid

Neuromedin U and Amphetamine Reward

PLOS ONE | DOI:10.1371/journal.pone.0154477 May 3, 2016 14 / 16

http://www.ncbi.nlm.nih.gov/pubmed/15205870
http://www.ncbi.nlm.nih.gov/pubmed/10887190
http://dx.doi.org/10.1373/clinchem.2014.231753
http://www.ncbi.nlm.nih.gov/pubmed/25605682
http://www.ncbi.nlm.nih.gov/pubmed/16014357
http://dx.doi.org/10.1152/ajpendo.91022.2008
http://www.ncbi.nlm.nih.gov/pubmed/19584200
http://www.ncbi.nlm.nih.gov/pubmed/10894543
http://www.ncbi.nlm.nih.gov/pubmed/15976061
http://www.ncbi.nlm.nih.gov/pubmed/11027493
http://www.ncbi.nlm.nih.gov/pubmed/15817836
http://dx.doi.org/10.1016/j.neuroscience.2013.11.023
http://dx.doi.org/10.1016/j.neuroscience.2013.11.023
http://www.ncbi.nlm.nih.gov/pubmed/24269937
http://www.ncbi.nlm.nih.gov/pubmed/15110767
http://www.ncbi.nlm.nih.gov/pubmed/15448684
http://www.ncbi.nlm.nih.gov/pubmed/3432125
http://www.ncbi.nlm.nih.gov/pubmed/8743423
http://dx.doi.org/10.1111/adb.12355
http://dx.doi.org/10.1073/pnas.0812809106
http://www.ncbi.nlm.nih.gov/pubmed/19564604
http://www.ncbi.nlm.nih.gov/pubmed/8287902
http://dx.doi.org/10.1093/alcalc/agu047
http://www.ncbi.nlm.nih.gov/pubmed/25063803
http://www.ncbi.nlm.nih.gov/pubmed/16759333


alcoholism and bipolar disorder. Psychiatric genetics. 2011; 21(6):294–306. doi: 10.1097/YPG.
0b013e32834915c2 PMID: 21876473

29. Hanada R, Nakazato M, Murakami N, Sakihara S, Yoshimatsu H, Toshinai K, et al. A role for neurome-
din U in stress response. Biochemical and biophysical research communications. 2001; 289(1):225–8.
PMID: 11708803

30. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987; 94(4):469–92.
PMID: 3317472

31. Di Chiara G, Imperato A. Preferential stimulation of dopamine release in the nucleus accumbens by opi-
ates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann N Y Acad
Sci. 1986; 473:367–81. PMID: 3467628

32. Ballesta J, Carlei F, Bishop AE, Steel JH, Gibson SJ, Fahey M, et al. Occurrence and developmental
pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuro-
science. 1988; 25(3):797–816. PMID: 3405430

33. Prieto-Garcia L, Egecioglu E, Studer E, Westberg L, Jerlhag E. Ghrelin and GHS-R1A signaling within
the ventral and laterodorsal tegmental area regulate sexual behavior in sexually naive male mice. Psy-
choneuroendocrinology. 2015; 62:392–402. doi: 10.1016/j.psyneuen.2015.09.009 PMID: 26398679

34. Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding
of drug reward? Psychopharmacology. 2000; 153(1):31–43. PMID: 11255927

35. Prus AJ, James JR, Rosecrans JA. Conditioned Place Preference. In: Buccafusco JJ, editor. Methods
of Behavior Analysis in Neuroscience. Frontiers in Neuroscience. 2nd ed. Boca Raton (FL)2009.

36. Ozaki Y, Onaka T, Nakazato M, Saito J, Kanemoto K, Matsumoto T, et al. Centrally administered neuro-
medin U activates neurosecretion and induction of c-fos messenger ribonucleic acid in the paraventri-
cular and supraoptic nuclei of rat. Endocrinology. 2002; 143(11):4320–9. PMID: 12399428

37. Schwartz MW,Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food
intake. Nature. 2000; 404(6778):661–71. PMID: 10766253

38. Bloom FE. The endorphins: a growing family of pharmacologically pertinent peptides. Annual review of
pharmacology and toxicology. 1983; 23:151–70. PMID: 6307119

39. Hanada T, Date Y, Shimbara T, Sakihara S, Murakami N, Hayashi Y, et al. Central actions of neurome-
din U via corticotropin-releasing hormone. Biochemical and biophysical research communications.
2003; 311(4):954–8. PMID: 14623274

40. Zorrilla EP, Logrip ML, Koob GF. Corticotropin releasing factor: a key role in the neurobiology of addic-
tion. Frontiers in neuroendocrinology. 2014; 35(2):234–44. doi: 10.1016/j.yfrne.2014.01.001 PMID:
24456850

41. Niimi M, Murao K, Taminato T. Central administration of neuromedin U activates neurons in ventrobasal
hypothalamus and brainstem. Endocrine. 2001; 16(3):201–6. PMID: 11954664

42. Burkett JP, Young LJ. The behavioral, anatomical and pharmacological parallels between social
attachment, love and addiction. Psychopharmacology. 2012; 224(1):1–26. doi: 10.1007/s00213-012-
2794-x PMID: 22885871

43. Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA, Jerlhag E. The glucagon-like peptide
1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology.
2013; 38(8):1259–70. doi: 10.1016/j.psyneuen.2012.11.009 PMID: 23219472

44. Erreger K, Davis AR, Poe AM, Greig NH, Stanwood GD, Galli A. Exendin-4 decreases amphetamine-
induced locomotor activity. Physiology & behavior. 2012; 106(4):574–8.

45. Graham DL, Erreger K, Galli A, Stanwood GD. GLP-1 analog attenuates cocaine reward. Mol Psychia-
try. 2013; 18(9):961–2. doi: 10.1038/mp.2012.141 PMID: 23089631

46. Egecioglu E, Engel JA, Jerlhag E. The glucagon-like Peptide 1 analogue, exendin-4, attenuates the
rewarding properties of psychostimulant drugs in mice. PloS one. 2013; 8(7):e69010. doi: 10.1371/
journal.pone.0069010 PMID: 23874851

47. Egecioglu E, Engel JA, Jerlhag E. The Glucagon-Like Peptide 1 Analogue Exendin-4 Attenuates the
Nicotine-Induced Locomotor Stimulation, Accumbal Dopamine Release, Conditioned Place Preference
as well as the Expression of Locomotor Sensitization in Mice. PloS one. 2013; 8(10):e77284. doi: 10.
1371/journal.pone.0077284 PMID: 24204788

48. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of
synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006; 49(4):589–601. PMID:
16476667

49. Lewis MJ, Johnson DF, Waldman D, Leibowitz SF, Hoebel BG. Galanin microinjection in the third ven-
tricle increases voluntary ethanol intake. Alcoholism, clinical and experimental research. 2004; 28
(12):1822–8. PMID: 15608598

Neuromedin U and Amphetamine Reward

PLOS ONE | DOI:10.1371/journal.pone.0154477 May 3, 2016 15 / 16

http://dx.doi.org/10.1097/YPG.0b013e32834915c2
http://dx.doi.org/10.1097/YPG.0b013e32834915c2
http://www.ncbi.nlm.nih.gov/pubmed/21876473
http://www.ncbi.nlm.nih.gov/pubmed/11708803
http://www.ncbi.nlm.nih.gov/pubmed/3317472
http://www.ncbi.nlm.nih.gov/pubmed/3467628
http://www.ncbi.nlm.nih.gov/pubmed/3405430
http://dx.doi.org/10.1016/j.psyneuen.2015.09.009
http://www.ncbi.nlm.nih.gov/pubmed/26398679
http://www.ncbi.nlm.nih.gov/pubmed/11255927
http://www.ncbi.nlm.nih.gov/pubmed/12399428
http://www.ncbi.nlm.nih.gov/pubmed/10766253
http://www.ncbi.nlm.nih.gov/pubmed/6307119
http://www.ncbi.nlm.nih.gov/pubmed/14623274
http://dx.doi.org/10.1016/j.yfrne.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24456850
http://www.ncbi.nlm.nih.gov/pubmed/11954664
http://dx.doi.org/10.1007/s00213-012-2794-x
http://dx.doi.org/10.1007/s00213-012-2794-x
http://www.ncbi.nlm.nih.gov/pubmed/22885871
http://dx.doi.org/10.1016/j.psyneuen.2012.11.009
http://www.ncbi.nlm.nih.gov/pubmed/23219472
http://dx.doi.org/10.1038/mp.2012.141
http://www.ncbi.nlm.nih.gov/pubmed/23089631
http://dx.doi.org/10.1371/journal.pone.0069010
http://dx.doi.org/10.1371/journal.pone.0069010
http://www.ncbi.nlm.nih.gov/pubmed/23874851
http://dx.doi.org/10.1371/journal.pone.0077284
http://dx.doi.org/10.1371/journal.pone.0077284
http://www.ncbi.nlm.nih.gov/pubmed/24204788
http://www.ncbi.nlm.nih.gov/pubmed/16476667
http://www.ncbi.nlm.nih.gov/pubmed/15608598


50. Kulkosky PJ. Effect of cholecystokinin octapeptide on ethanol intake in the rat. Alcohol. 1984; 1(2):125–
8. PMID: 6100356

51. Blednov YA, Walker D, Harris RA. Blockade of the leptin-sensitive pathway markedly reduces alcohol
consumption in mice. Alcoholism, clinical and experimental research. 2004; 28(11):1683–92. PMID:
15547455

Neuromedin U and Amphetamine Reward

PLOS ONE | DOI:10.1371/journal.pone.0154477 May 3, 2016 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/6100356
http://www.ncbi.nlm.nih.gov/pubmed/15547455

