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Abstract: Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to
cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases
are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic
purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we
employed our spider venom library and uncovered that Avicularia spec. (“Amazonas Purple”, Peru)
tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and
mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally
amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major
peak in the venom. Both native (4.1 µM) and syntheticω-Avsp1a (10 µM) inhibited 90% of CaV3.1
and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we
generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our
results suggest that domain-1 of CaV3.3 is important for the inhibitory effect ofω-Avsp1a on T-type
calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the
inhibitory effect ofω-Avsp1a.

Keywords: voltage-gated calcium channel; CaV3 subtype; T-type; venom peptide synthesis;
theraphosid spider; tarantula; peptide structure

1. Introduction

Dynamic changes in the intracellular calcium concentration ([Ca]i) are used to regulate
various biological processes [1], with abnormal homeostasis of [Ca]i leading to a diverse
spectrum of diseases [2]. Both high-voltage-activated calcium channels (CaV1 and CaV2
subtypes) and low-voltage-activated calcium channels (CaV3 subtypes) are involved in
regulation of [Ca]i in both excitable and non-excitable cells. CaV3 channels (also known as
T-type channels) are expressed in a variety of tissues, including the heart, nervous system,
smooth muscle, kidney, sperm, and endocrine organs. The differences in biophysical
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properties and pharmacological responses recorded for T-type currents from various cell
types are partially due to differences in tissue-specific expression of the three CaV3 subtypes
—CaV3.1, CaV3.2 and CaV3.3 [3]. For example, CaV3.1 contributes to low-threshold calcium
spikes in the thalamus [4], whereas CaV3.2 mediates coronary vessel relaxation in mice [5].

Increased T-type calcium currents are found in various pathological conditions due
to upregulation of specific CaV3 subtypes. For example, CaV3.1 mRNA and protein are
upregulated in vascular smooth muscle cells during injury-induced neointimal formation.
Knockout of CaV3.1, but not CaV3.2, prevents neointimal formation in injured carotid
arteries [6]. Mice lacking CaV3.1 are also resistant to high-fat diet-induced weight gain [7]
but have fragmented sleep and reduced slow-wave sleep [8,9]. In contrast, CaV3.2 mRNA
and currents are upregulated in cardiomyocytes in a mouse model of pressure-overload
induced cardiac hypertrophy. Knockout of CaV3.2, but not CaV3.1, inhibits pathological
cardiac hypertrophy [10]. In addition, CaV3.2 but not CaV3.1 are highly expressed in
dorsal root ganglion (DRG) sensory neurons [11]. Enhanced CaV3.2 activity is seen in
DRG neurons during neuropathic and inflammatory pain [12]. Silencing or knockout of
CaV3.2, but not CaV3.1, inhibits the development of neuropathic, inflammatory or muscle
pain [11–13]. These knockout animal studies indicate the potential therapeutic benefit
of CaV3 channel blockers. However, CaV3.1 and CaV3.2 play different, even opposite,
roles in the cardiovascular and nervous systems [14]. For example, CaV3.1 may have a
protective role in pathological cardiac hypertrophy [15], whereas CaV3.2 is involved in the
development of pathological cardiac hypertrophy [10]. Thus, for treating some of these
CaV3-related diseases, it will be essential to develop subtype-specific inhibitors to avoid
undesired side-effects.

Given the important role of CaV channels in many physiological processes, venomous
animals have evolved CaV channel inhibitors to interfere with normal physiological pro-
cesses for assisting with prey capture or defence against predators [16,17]. Spider venoms
are well known for containing inhibitors of both insect and vertebrate CaV channels [18–20].
Therefore, the aim of this study was to identify potential CaV3-subtype specific modula-
tors from our in-house collection of arachnid venoms. In preliminary experiments, we
screened a panel of 1 scorpion and 26 spider venoms (Supplementary Table S1) for their
activity against human CaV3.1, CaV3.2, and CaV3.3 using patch-clamp electrophysiology
The venom of an uncharacterized Peruvian tarantula (Avicularia spec.) was found to specif-
ically inhibit CaV3.1 and CaV3.3 subtypes. This venom was therefore chosen for further
characterisation with the aim of isolating and characterising the active venom component
(Supplementary Figure S1).

2. Materials and Methods
2.1. Venoms

All arachnid venoms used for this study (for details see Supplementary Table S1) were
isolated by light electrical stimulation as previously described [21], then lyophilised and
stored at −20 ◦C prior to use.

2.2. Reversed-Phase High Pressure Liquid Chromatography

Avicularia spec. (“Amazonas Purple”, Peru) venom was fractionated via reversed-
phase high-performance liquid chromatography (RP-HPLC) on a Prominence HPLC system
(Shimadzu Scientific Instruments, Rydalmere, NSW, Australia). Venom was loaded onto a
C18 RP-HPLC column (Phenomenex Jupiter; 250 Å, 250 × 4.6 mm, 5 µm), and fractionated
using the following gradient: 5% solvent B (0.043% trifluoroacetic acid (TFA) in 90%
acetonitrile) in solvent A (0.05% TFA in H2O) for 5 min, 5–20% solvent B over 5 min,
20–40% solvent B over 40 min, then 40–80% solvent B for 5 min (flow rate 1 mL/min).
The peak containing the active peptide (termedω-Avsp1a, see Section 3.1 for details) was
further purified by Hydrophilic Interaction Liquid Chromatography (HILIC) using a Grace
VisionHT HILIC column (150 × 4.6 mm, 5 µm) on a Shimadzu Prominence HPLC system
with a flow rate of 1 mL/min and using the same solvents as for the initial RP-HPLC run.
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After 3 min at 95% solvent B, a linear gradient of 95–75% B was run over 20 min, followed
by a decrease from 75 to 5% B within 2 min.

2.3. Mass Spectrometry

All molecular masses were determined by using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS) using a Model 4700 Triple
TOF mass spectrometer (Applied Biosystems, Foster City, CA, USA). Toxin samples were
mixed 1:1 (v:v) with α-cyano-4-hydroxy-cinnamic acid matrix (7 mg/mL in 50/50 aceton-
itrile/H2O with 5% formic acid) and MALDI-TOF spectra were acquired in positive reflector
mode. All reported molecular masses unless otherwise stated refer to the monoisotopic
uncharged peptide.

2.4. N-Terminal Edman Sequencing

ω-Avsp1a was solubilised in 25 mM ammonium bicarbonate, reduced using dithiothre-
itol (25 mM) at 56 ◦C for 30 min, then alkylated using iodoacetamide (55 mM) at room tem-
perature for 30 min. Fully reduced and alkylated Avsp1a was then purified via RP-HPLC
using a Zorbax 300SB-C18 column (3 Å, 150 × 3 mm). The purified reduced/alkylated
Avsp1a was then loaded onto a precycled Biobrene disc and N-terminal sequencing via
Edman degradation was performed by the Australian Proteome Analysis Facility (Sydney,
NSW, Australia) using an Applied Biosystems 494 Procise Protein Sequencer.

2.5. C-Terminal Sequencing Using Carboxypeptidase Y

The C-terminal sequence of native Avsp1a was determined by incubation with car-
boxypeptidase Y (CPY) according to the method previously described [22]. In short, 4.4 µg
of native Avsp1a was digested with CPY (2 ng) for various time points (1, 2, 5, 15, 30, 60,
120, and 240 min), before the reaction was quenched by adding 1 µL of 1% formic acid. The
resulting fragments were then analysed via MALDI–TOF MS as described in Section 2.3.

2.6. Chemical Synthesis of ω-Avsp1a

ω-Avsp1a was assembled manually using standard Fmoc solid-phase peptide syn-
thesis protocols. The peptide was assembled on 0.1 mmol scale and Fmoc-Rink-amide
polystyrene resin (loading 0.67 mmol/g). Side chains of Fmoc-amino acids were protected
as follows: Arg(Pbf), Asp(tBu), Cys(Trt), Glu(tBu), His(Trt), Lys(Boc), Ser(tBu), Thr(tBu)
and Trp(Boc). Fmoc deprotections were accomplished by treatment with 30% piperi-
dine/dimethlylformamide (DMF) (1 × 1.5 min then 1 × 3 min). Fmoc-amino acids (5 equiv.)
were coupled in DMF using O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate (HCTU) (5 equiv) and N,N-diisopropylethylamine (DIEA) (5 equiv)
for 1 × 1 min then 1 × 5 min. The peptide resin was cleaved with TFA/triisopropylsilane
(TIPS)/H2O (38:1:1) for 2 h with stirring at room temperature. Following evaporation
of most of the cleavage solution, the product was precipitated and washed with cold di-
ethylether then lyophilised from 0.05% TFA in ACN/H2O (1:1). The crude linear peptide
with correct mass for reducedω-Avsp1a was purified via preparative RP-HPLC.

The purified reduced peptide was oxidatively folded in 0.33 M ammonium acetate,
2 M guanidine hydrochloride (pH 8.0), in the presence of 10- or 100-fold molar equivalents
of oxidised and reduced glutathione respectively, stirring at 4 ◦C for 3 days. The single
major product was isolated by preparative RP-HPLC, then co-eluted with nativeω-Avsp1a
on analytical RP-HPLC to confirm that the correct fold had been achieved.

2.7. Cell Culture and Transient Expression

Human embryonic kidney (HEK) 293 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) containing 5% fetal bovine serum and penicillin/streptomycin at 37 ◦C
in a 5% CO2 incubator. Cells were transiently transfected with 3 µg plasmid DNA using
the calcium-phosphate method. Plasmids of Cav3.1, Cav3.2 or Cav3.3 were separately
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transfected into three individual plates of HEK-293 cells. After transfection, cells were
incubated at 37 ◦C for 48 h prior to whole-cell voltage-clamp recordings.

2.8. Electrophysiology

Patch pipettes with a tip resistance of 2.8~3.5 MΩ were pulled from borosilicate glass
capillary tubes (Warner Instruments, Holliston, MA, USA) using a P-97 Flaming-Brown type
micropipette puller (Sutter Instrument, Novato, CA, USA). Ionic currents were recorded
using an Axon Multiclamp 700B microelectrode amplifier (Molecular Devices, San Jose, CA,
USA). The sampling frequency for acquisition was 50 kHz and data were low-pass filtered
at 2 kHz. Voltage and current commands and digitisation of membrane voltages and
currents were controlled using a Digidata 1440A interfaced with Clampex 10.4 (Molecular
Devices, San Jose, CA, USA). Data were analysed using pCLAMP10.4 software (Molecular
Devices, San Jose, CA, USA).

To measure CaV3 currents, cells were incubated with the following bath solution
(in mM): 145 TEA-Cl, 5 CaCl2, 3 CsCl, 1 MgCl2, 5 glucose, and 10 HEPES, adjusted to
pH 7.4 with TEA-OH, osmolarity ~300 mOsm. The pipette solution was as follows (in
mM): 130 CsCl, 20 HEPES, 10 EGTA, 5 MgCl2, 3 Mg-ATP, and 0.3 Tris-GTP, adjusted
to pH 7.3 with CsOH, osmolarity ~310 mOsm. All recordings were performed at room
temperature (21–24 ◦C). For Cav3.1- or Cav3.2-transfected cells, their membrane potentials
were initially held at −90 mV for 20 ms and then depolarized to −30 mV for 150 ms.
For Cav3.3-transfected cells, the membrane potentials were initially held at −90 mV for
20 ms and then depolarized to −20 mV for 150 ms. Application of venom fractions or
synthetic peptide was via a Picospritzer III dispenser (Parker Hannifin, Hollis, NH, USA).
Puffed pressure and duration were 8–10 psi and 60 s, respectively. The peak values of Cav3
currents were recorded before and after addition of venom fractions or synthetic peptide.
The toxin-reduced peak amplitudes represent the changes of peak values before or after
addition of the toxin. The inhibition was calculated by dividing the toxin-reduced peak
amplitudes by the peak amplitudes before additions of the toxin.

2.9. Construction and Mutagenesis of Plasmid cDNA

All plasmid constructs were made using a QuikChange site-directed mutagenesis kit
(Agilent Technologies, Santa Clara, CA, USA). After mutagenesis, constructs were verified
by sequencing. Chimeric constructs were combined by using the GeneArt Seamless Cloning
and Assembly Enzyme Mix (Thermo Fisher Scientific, Waltham, MA, USA).

2.10. Determination of Three-Dimensional (3D) Structure of ω-Avsp1a by NMR

The 3D structure ofω-Avsp1a was deterg 2D NMR spectroscopy. Lyophilisedmined usin
synthetic peptide was reconstituted to a final concentration of 1 mM in buffer containing
20 mM sodium phosphate at pH 6 and 5% D2O. All NMR spectra were recorded at 25 ◦C on
a 600 MHz Bruker Advance II spectrometer (Billerica, MA, USA) equipped with a cryogenic
probe. A combination of 2D spectra including natural abundance 1H-15N HSQC, 1H-13C
HSQC, 1H-1H TOCSY and 1H-1H NOESY were acquired for resonance assignments. The
spectra were processed using Topspin 3.2 (Bruker) and analysed using CcpNmr Analysis
2.4.1 [23]. Chemical shift assignments were deposited in BioMagResBank (BMRB) under
the accession number 30872. The 2D 1H-1H NOESY acquired with a mixing time of
250 ms provided interproton distance restraints for the structure calculations. The spectrum
was manually peak-picked and CYANA (v.3.97) was employed to automatically assign the
peak list and extract distance restraints [24]. Dihedral-angle restraints were derived from
chemical shifts using TALOS-N [25], with the restraint ranges for structure calculations
set to twice the standard deviation. CYANA was used to calculate 200 structures based
on 565 interproton distance restraints, 52 dihedral-angle restraints and 9 disulfide-bond
restraints. The 30 structures with the lowest final target-function values were selected and
were subjected to MolProbity analysis [26]. The 20 structures with the best stereochemical
properties as judged by MolProbity were chosen to represent the structure of ω-Avsp1a.
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The atomic coordinates of the final structure ensemble have been deposited in the Protein
Data Bank (PDB) under accession code 7LVN. A summary of the restraints used in the
structure calculation and the final structure statistics are presented in Table 1.

Table 1. Structural statistics for the NMR ensemble ofω-Avsp1a a.

PDB ID 7LVN

Experimental restraints
Inter-proton distance restraints

Total 565
Intra-residue (i = j) 137

Sequential (|i − j| = 1) 178
Medium range (1 < |i − j| < 5) 88

Long range (|i − j| ≥ 5) 162
Disulfide bond restraints 9
Dihedral-angle restraints 52
ϕ dihedral angle restraints 23
ψ dihedral angle restraints 21

χ1 angle restraints 8
Total number of restraints per residue 17.4
Violations of experimental restraints 0

RMSD from mean coordinate structure (Å) b

All backbone atoms 0.43 ± 0.10
All heavy atoms 0.74 ± 0.12

Backbone atoms (Residue 3–34) 0.16 ± 0.06
Heavy atoms (Residue 3–34) 0.63 ± 0.11

Stereochemical quality c

Ramachandran plot statistics
Residues in most favoured Ramachandran region (%) 76.0 ± 2.6

Disallowed regions [%] 2.4 ± 1.2
Unfavourable sidechain rotamers [%] 7.8 ± 1.9

Clashscore, all atoms d 0.0 ± 0.0
Overall MolProbity score 1.95 ± 0.09

a All statistics are given as mean ± S.D; b Mean RMSD calculated over the entire ensemble of 20 structures;
c Sterochemical quality according to MolProbity (http://helix.research.duhs.duke.edu, accessed on 9 February
2022); d Clashscore is defined as the number of steric overlaps > 0.4 Å per 1000 atoms.

3. Results
3.1. Toxin Isolation and Purification

An initial screen of a panel of arachnid venoms (Supplementary Table S1) revealed
that crude venom (200 ng/µL) from the tarantula Avicularia spec. (“Amazonas Purple”,
Peru) specifically inhibited CaV3.1 and CaV3.3 subtypes. Avicularia spec. venom was then
fractionated via RP-HPLC, with the largest peak (highlighted in red Figure 1A) reproducing
the CaV3 inhibition seen with crude venom. Further purification of the active fraction by
HILIC-HPLC (Figure 1B) yielded a pure peptide with a molecular mass of 4224.91 Da.

N-terminal Edman sequencing of the purified active peptide yielded the sequence
GDCHKFLGWCRGEPDPCCEHLSCSRKHGWC with the predicted molecular mass being
785.50 Da less than that observed for the native toxin. We therefore performed further
C-terminal sequencing using digestion with CPY. These experiments revealed a C-terminal
sequence of VWDWTV-NH2 (Figure 2). Together with the N-terminal sequence obtained by
Edman (GDCHKFLGWCRGEPDPCCEHLSCSRKHGWC), the resulting complete sequence
can be deduced as GDCHKFLGWCRGEPDPCCEHLSCSRKHGWCVWDWTV-NH2. This
sequence has a calculated monoisotopic molecular mass of 4224.80 Da, only 0.11 Da less
than the observed mass of the native peptide. We therefore conclude that this is the
complete sequence of the peptide. Based on the rules for the rational nomenclature of
venom peptides [27] and its activity on CaV channels, we propose the following toxin name:
ω-theraphotoxin-Avsp1a (orω-TRTX-Avsp1a as the official abbreviation). Henceforth, for
simplification, we refer to this toxin asω-Avsp1a.

http://helix.research.duhs.duke.edu
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Figure 1. Isolation and purification ofω-Avsp1a. (A) Chromatogram resulting from fractionation of
crude venom from Avicularia spec. (“Amazonas Purple”, Peru; inset shows photo of representative
specimen by V.H.) using C18 RP-HPLC. (B) Chromatogram resulting from further purification of the
red fraction shown in panel A using HILIC-HPLC. Inset shows a MALDI-MS spectrum of purified
ω-Avsp1a with the molecular mass indicated as [M + H]+. The dashed line indicates the gradient of
solvent B (90% ACN/0.05% TFA). The red peak contains the peptideω-Avsp1a that is active on CaV3.
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zoomed spectra for the relevant fragments. The C-terminal sequence obtained from this data is
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3.2. Chemical Synthesis of ω-Avsp1a

ω-Avsp1a was synthesised using solid-phase peptide synthesis, and oxidatively folded
to yield the correct disulfide-bond isomer as confirmed by co-elution with nativeω-Avsp1a
(Figure 3).
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Figure 3. Analytical RP-HPLC chromatograms resulting from injection of (A) syntheticω-Avsp1a;
(B) native ω-Avsp1a, and (C) both the native and synthetic forms. The two forms co-elute, indicating
that the synthetic peptide is correctly folded. Column: Thermo Hypersil C18 GOLD 100 × 2.1 mm,
3 µm, 175 Å. Conditions: 10 to 55% solvent B over 30 min, column heated at 40 ◦C, UV detection at
214 nm.
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3.3. Sub-Type Specific Inhibition of T-Type Calcium Channels by ω-Avsp1a

In order to determine the CaV3 selectivity of ω-Avsp1a, we tested native ω-Avsp1a
isolated from A. spec. venom on CaV3.1, CaV3.2 and CaV3.3 expressed in HEK-293 cells.
Nativeω-Avsp1a (4.1 µM) inhibited CaV3.1 and CaV3.3 currents by ~90%, but it was much
less effective against CaV3.2 (~25% current inhibition) (Figure 4A,C). Similar results were
obtained with 10 µM syntheticω-Avsp1a, which inhibited CaV3.1 and CaV3.3 currents by
~90%, but reduced CaV3.2 currents by only ~32% (Figure 4B,C).
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Figure 4. Comparison of the effect of native and syntheticω-Avsp1a on CaV3.1, CaV3.2, or CaV3.3
expressed in HEK-293 cells. Plasmids of Cav3.1, Cav3.2 or Cav3.3 were separately transfected into
HEK-293 cells. (A) ω-Avsp1a purified from venom potently inhibited CaV3.1 and CaV3.3 but it was
only a weak inhibitor of CaV3.2. The native toxin concentration was 4.1 µM. n = 5 for CaV3.1 and
CaV3.2 and n = 3 for CaV3.3. The voltage-clamp protocols to elicit Cav3.1, Cav3.2 or Cav3.3 are
indicated above (B) synthetic ω-Avsp1a replicates the inhibitory effects of the native toxin, with
potent inhibition of CaV3.1 and CaV3.3 and weak inhibition of CaV3.2. The concentration of synthetic
ω-Avsp1a was 10 µM. n = 9 for CaV3.1 and CaV3.3, and n = 6 for CaV3.2. (C) Quantification of the
inhibitory effects of native and syntheticω-Avsp1a on human CaV3 channels. * p < 0.001 vs. Cav3.1
and # p < 0.001 vs. Cav3.3 according to one-way ANOVA with Tukey’s post hoc test.
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3.4. Identification of T-Type Calcium Channel α1-Subunit Domains Involved in ω-Avsp1a Activity

We assume that the domain structure and amino acid sequence differences between
the various CaV3 subtypes underlie their differential sensitivity to ω-Avsp1a. The pore-
forming α1-subunit of all CaV channels, including CaV3.1, CaV3.2 and CaV3.3, is comprised
of four homologous domains (D1–D4), with each domain containing six transmembrane
segments denoted S1–S6 (Figure 5A). In order to identify the amino acid(s) critical for
channel inhibition caused by ω-Avsp1a, we generated chimeric channels from the less
inhibited CaV3.2 and more affected CaV3.3. Chimeric channels were constructed by linking
the D1, D2, and D3 domains of CaV3.3 with D4 of CaV3.2 (CaV3.3-D1-D3/CaV3.2-D4), D1
and D2 of CaV3.3 with D3 and D4 of CaV3.2 (CaV3.3-D1-D2/CaV3.2-D3-D4) and D1 of
CaV3.3 with D2, D3, and D4 of CaV3.2 (CaV3.3-D1/CaV3.2-D2-D4) (Figure 5B). We found
that the replacement of domains D1–D3 of CaV3.2 with the homologous domains of CaV3.3
increased the sensitivity of CaV3.2 toω-Avsp1a to that of CaV3.3 (Figure 5B). We further
reduced the number of replaced domains to two (CaV3.3-D1-D2/CaV3.2-D3-D4) or one
(CaV3.3-D1/CaV3.2-D2-D4) and found that replacing just D1 of CaV3.2 with the equivalent
domain from CaV3.3 is sufficient to enhance the inhibitory effect ofω-Avsp1a on CaV3.2
(Figure 5B). We conclude that domain D1 of CaV3.3 is critical for the inhibitory effect of
ω-Avsp1a.
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Figure 5. Activity of native ω-Avsp1a on CaV3 chimeras expressed in HEK-293 cells. (A) The
pore-forming α1-subunit of CaV3 channels is comprised of four homologous domains (D1, D2, D3, D4),
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each containing six membrane-spanning α-helices (S1–S6) connected by two cytoplasmic and three
extracellular loops (S1–S2, S3–S4, S5–S6). The extracellular S3–S4 loop is of particular interest as a
well-documented site for binding venom peptides, and it is highlighted in red. (B) Identification
of domains important for inhibition CaV3 channels by native ω-Avsp1a. The toxin concentration
was 4.1 µM. n = 3, 3 and 4 for CaV3.3-D1-D3/CaV3.2-D4, CaV3.3-D1-D2/CaV3.2-D3-D4 and CaV3.3-
D1/CaV3.2-D2-D4, respectively. (C) Identification of domain-1 sub-regions important for inhibition
of T-type calcium channel by 4.1 µM nativeω-Avsp1a. n = 3 for each group.

3.5. Identification of ω-Avsp1a Binding Site on T-Type Calcium Channels

To narrow down the region within the D1 domain of CaV3.3 required forω-Avsp1a in-
hibition, we generated additional chimeric channels. Each of the four homologous domains
of CaV channels contains six transmembrane helices (S1–S6) connected by two cytoplasmic
and three extracellular loops (S1–S2, S3–S4 and S5–S6) as shown in Figure 5A. Replacement
of D1-S1-S5 of CaV3.2 with the homologous S1–S5 helices of CaV3.3 D1 increased the inhi-
bition induced byω-Avsp1a from 25% to 71% (see CaV3.3-D1-S1-S5/CaV3.2 in Figure 5C).
However, replacement of D1 S1–S3 of CaV3.2 with the equivalent region from CaV3.3
only increased the level of inhibition to 38% (see CaV3.3-D1-S1-S3/CaV3.2 of Figure 5C).
These data suggest that the S3–S6 region of CaV3.3 is important for inhibition byω-Avsp1a.
Interestingly, it was previously shown that the D1 S3–S4 extracellular loop of CaV3.2 is im-
portant for sensing nickel and reducing agents [28,29]. We therefore replaced the D1 S3–S4
loop of CaV3.2 with the homologous extracellular loop from CaV3.3 and found that it is
sufficient to make CaV3.2 as sensitive toω-Avsp1a as CaV3.3 (see CaV3.3-D1-S3-S4/CaV3.2
in Figure 5C). These results suggest that amino acid residues in the D1 S3–S4 loop of CaV3.3
are critical for the inhibitory effect ofω-Avsp1a.

Next, we tried to pinpoint residues within the D1 S3–S4 loop involved in interaction
with ω-Avsp1a. Alignment of the D1 S3–S4 loops of CaV3.1–3.3 revealed a high level of
similarity, but notably a hydrophobic branched-chain leucine residue at position 169 in
CaV3.3 and position 171 in CaV.3.1 is replaced by a small glycine residue at the equivalent
position in CaV3.2 (Figure 6A). To examine the role of this leucine residue in the interaction
with ω-Avsp1a, we mutated G190 in CaV3.2 to leucine and found that this single mutation
markedly increased the toxin sensitivity of CaV3.2 (Figure 6B,D). In contrast, when L171 in
CaV3.1 or L169 in CaV3.3 was replaced by glycine,ω-Avsp1a failed to effectively inhibit the
mutant channels (Figure 6B,D). Using synthetic rather than native ω-Avsp1a recapitulated
these effects (Figure 6C,D). Conversely, the neighbouring glutamine in position 172 does
not seem to be involved in toxin binding (Supplementary Figure S2). We therefore conclude
that ω-Avsp1a differentially inhibits CaV3 isoforms by making a crucial interaction with a
leucine residue in the extracellular D1 S3–S4 loop. Moreover, sinceω-Avsp1a modulates
the activity of CaV3.1/CaV3.3 by binding to the voltage sensor domain, it is clearly an
allosteric modulator of channel activity rather than a pore blocker.
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Figure 6. Activity of native and syntheticω-Avsp1a on CaV3 channel chimeras expressed in HEK-293
cells. (A) Alignment of the sequences of the D1 S3-S4 extracellular loops of CaV3.1, CaV3.2 and CaV3.3.
The G190 of CaV3.2 is an equivalent position to L171 in CaV3.1and L169 in CaV3.3. (B) Identification
of residues involved in the inhibitory effect of native ω-Avsp1a. The native toxin concentration was
4.1 µM. n = 5 for CaV3.1/L171G and n = 4 for CaV3.2/G190L and CaV3.3/L169G. (C) Mutations
of key residues in CaV3.1, CaV3.2 and CaV3.3 channels reversed the inhibitory effect of synthetic
ω-Avsp1a. The concentration of synthetic ω-Avsp1a was 10 µM. n = 6, 9 and 4 for CaV3.1/L171G,
CaV3.2/G190L and CaV3.3/L169G, respectively. (D) Quantification of the inhibitory effect of native
and synthetic ω-Avsp1a on the mutant channels. * p < 0.001 vs. Cav3.1 and # p < 0.001 vs. Cav3.3
according to one-way ANOVA with Tukey’s post hoc test.
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3.6. Quantification of the Potency of Synthetic ω-Avsp1a against CaV3.1 and CaV3.3

We examined the inhibitory potency of a range ofω-Avsp1a concentrations (10, 5, 1,
and 0.1 µM) on CaV3.1 (Figure 7A) and CaV3.3 (Figure 7B) in order to quantify the toxin’s
potency. Here, only the syntheticω-Avsp1a was used because of the difficulty of obtaining
native toxin from the spider. The calculated IC50 values for CaV3.1 and CaV3.3 were
5.06 ± 0.16 and 4.32 ± 1.21 µM, respectively. Because 10 µMω-Avsp1a inhibited CaV3.2 by
only 19%, we increased the concentration to 25 µM, but still only observed 31% inhibition.
We were unable to further increase the working concentration of ω-Avsp1a because of
limited solubility. Thus, the IC50 forω-Avsp1a inhibition CaV3.2 remains undetermined,
but it is >25 µM.
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Figure 7. Concentration-response relationship for inhibition of CaV3.1 and CaV3.3 by ω-Avsp1a.
Currents mediated by (A) CaV3.1 and (B) CaV3.3 expressed in HEK-293 cells were recorded before
and after treatment with the indicated concentration of syntheticω-Avsp1a. The IC50 values were
estimated by fitting a Hill Equation to the data.

3.7. The 3D Structure of ω-Avsp1a

The solution structure of ω-Avsp1a was determined using NMR spectroscopy. We
obtained chemical shift assignments for 99.5% of the proton resonances, and the structure
was calculated based on 565 interproton-distance restraints, 52 dihedral-angle restraints
and 9 disulfide-bond restraints. The final ensemble of 20 structures is highly precise, with
a root-mean-square deviation of 0.16 ± 0.06 Å over the backbone atoms of residues 3–34,
which excludes the flexible N- and C-terminal regions. The peptide conforms to the in-
hibitor cystine knot (ICK) motif which is commonly found in spider-venom peptides [30,31].
This motif is recognisable by three disulfide bonds with C1–C4, C2–C5, C3–C6 connectiv-
ity [32] that form a “pseudo-knot” architecture in which two of the disulfide bonds and
the intervening sections of the peptide backbone form a ring that is pierced by the third
disulfide bond (Figure 8). In addition to the core cystine knot, the ICK motif is characterised
by an antiparallel β sheet which in ω-Avsp1a is formed by residues L21–S24 (β1) and
W29–W32 (β2). Interestingly, there is a highly ordered network of hydrophobic residues
adjacent to β2 which includes all of the aromatic (F6, W9, W29, W32, W34) and leucine (L7,
L21) residues in the peptide. These hydrophobic residues stack like the rungs of a ladder
on one face of the peptide, whereas the charged residues, in contrast, are more evenly
distributed over the surface of the peptide.



Biomedicines 2022, 10, 1066 13 of 17Biomedicines 2022, 10, x FOR PEER REVIEW 13 of 16 
 

 

Figure 8. Structure of ω-Avsp1a. (A) Primary and secondary structure of ω-Avsp1a. Disulfide bonds 

are indicated by red lines and the secondary structure of the peptide is shown above the sequence, 

with orange arrows representing β-strands. (B) Ensemble of 20 ω-Avsp1a structures determined 

using solution-state NMR spectroscopy. β-strands are orange and disulfide bonds are indicated by 

red tubes. The N- and C-termini and disulfide bonds are labelled. (C) Structure of ω-Avsp1a high-

lighting the ladder of hydrophobic residues. The sidechains of the seven residues that contribute to 

this hydrophobic ladder (F6, L7, W9, L21, W29, W32 and W34) are shown as orange tubes. (D) Se-

quence alignment of the three C-terminally amidated Avicularia toxins ω-Avsp1a, κ-Aa1a and μ/κ-

Ap1a made using CLUSTAL Omega 1.2.4 (www.ebi.ac.uk/Tools/msa/clustalo/; accessed 

01/05/2022). The seven hydrophobic residues specified in (C) are highlighted in orange in (D). 

Amino acid sequence conservation is indicated by (*) = fully conserved residues, (:) = conservation 

of residues with strongly similar properties, (.) = conservation of residues with weakly similar prop-

erties. 

4. Discussion 

ω-Avsp1a, the dominant component of Avicularia spec. (“Amazonas Purple”, Peru) 

venom, was initially isolated from the venom based on its inhibition of CaV3. Edman se-

quencing revealed only the N-terminal 30 residues of the peptide, while the remaining six 

C-terminal residues were determined via MALDI-TOF MS following digestion of the pep-

tide with CPY. Together, the Edman sequencing and MS data suggested the following 

amino acid sequence for ω-Avsp1a: GDCHKFLGWCRGEPDPC-

CEHLSCSRKHGWCVWDWTV-NH2. Given that (i) synthetic ω-Avsp1a corresponding to 

this sequence co-elutes with native ω-Avsp1a on RP-HPLC; (ii) the molecular mass pre-

dicted from this sequence matches that of native ω-Avsp1a; and (iii) the activity of syn-

thetic ω-Avsp1a on the various CaV3 subtypes recapitulates that of the native peptide, we 

are confident that the sequence we determined for ω-Avsp1a is correct. 

NMR analysis revealed that the structure of ω-Avsp1a conforms to the ICK motif, 

which is commonly found in spider-venom peptides. The ICK architecture endows pep-

tides with resistance to proteases, harsh chemicals, and high temperatures [33], which 

generally provides them with high levels of stability in human serum [34–36]. This prop-

erty makes this class of peptide an attractive source of peptide-drug leads. The structure 

of ω-Avsp1a revealed a narrow hydrophobic strip composed of a stack of aromatic and 

leucine residues. Such hydrophobic patches are commonly found in spider toxins that 

GDCHKFLGWC RGEPDPCCEH LSCSRKHGWC VWDWTV-NH
2

10 20 30

C’

N’

W34

W32

L21

F6 L7

W29

W9

C’

N’

C3-C18

C10-C23
C17-C30

A

B C

         10            20            30

ω-Avsp1a: GDCHKFLGWCRGEPDPCCEHLSCSRKHGWCVWDWTV-NH2

κ-Aa1a: GDCHKFLGWCRGEKDPCCEHLTCHVKHGWCVWDGTI-NH2

µ/κ-Ap1a: GDCHKFWGWCRDEPDPCCEHLTCSTKHGWCVWDGSF-NH2

****** ****.* *******:*  ******** :.

D

Figure 8. Structure of ω-Avsp1a. (A) Primary and secondary structure of ω-Avsp1a. Disulfide bonds
are indicated by red lines and the secondary structure of the peptide is shown above the sequence,
with orange arrows representing β-strands. (B) Ensemble of 20 ω-Avsp1a structures determined
using solution-state NMR spectroscopy. β-strands are orange and disulfide bonds are indicated
by red tubes. The N- and C-termini and disulfide bonds are labelled. (C) Structure of ω-Avsp1a
highlighting the ladder of hydrophobic residues. The sidechains of the seven residues that contribute
to this hydrophobic ladder (F6, L7, W9, L21, W29, W32 and W34) are shown as orange tubes.
(D) Sequence alignment of the three C-terminally amidated Avicularia toxinsω-Avsp1a, κ-Aa1a and
µ/κ-Ap1a made using CLUSTAL Omega 1.2.4 (www.ebi.ac.uk/Tools/msa/clustalo/; accessed on
1 May 2022). The seven hydrophobic residues specified in (C) are highlighted in orange in (D). Amino
acid sequence conservation is indicated by (*) = fully conserved residues, (:) = conservation of residues
with strongly similar properties, (.) = conservation of residues with weakly similar properties.

4. Discussion

ω-Avsp1a, the dominant component of Avicularia spec. (“Amazonas Purple”, Peru)
venom, was initially isolated from the venom based on its inhibition of CaV3. Edman
sequencing revealed only the N-terminal 30 residues of the peptide, while the remaining six
C-terminal residues were determined via MALDI-TOF MS following digestion of the pep-
tide with CPY. Together, the Edman sequencing and MS data suggested the following amino
acid sequence forω-Avsp1a: GDCHKFLGWCRGEPDPCCEHLSCSRKHGWCVWDWTV-
NH2. Given that (i) syntheticω-Avsp1a corresponding to this sequence co-elutes with na-
tive ω-Avsp1a on RP-HPLC; (ii) the molecular mass predicted from this sequence matches
that of nativeω-Avsp1a; and (iii) the activity of syntheticω-Avsp1a on the various CaV3
subtypes recapitulates that of the native peptide, we are confident that the sequence we
determined forω-Avsp1a is correct.

NMR analysis revealed that the structure of ω-Avsp1a conforms to the ICK motif,
which is commonly found in spider-venom peptides. The ICK architecture endows peptides
with resistance to proteases, harsh chemicals, and high temperatures [33], which generally
provides them with high levels of stability in human serum [34–36]. This property makes
this class of peptide an attractive source of peptide-drug leads. The structure ofω-Avsp1a
revealed a narrow hydrophobic strip composed of a stack of aromatic and leucine residues.
Such hydrophobic patches are commonly found in spider toxins that modulate ion channel
activities via interaction with one or more of the voltage-sensing domains of the channel.

www.ebi.ac.uk/Tools/msa/clustalo/
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These hydrophobic patches have been proposed to facilitate interaction of the toxin with
the plasma membrane so that it can diffuse laterally within the lipid bilayer to interact with
the membrane-embedded voltage-sensor domain [37,38].

Interestingly, a similar distribution of hydrophobic residues (with only W34 missing;
see Figure 8D) is present in two other Avicularia toxins (κ-Aa1a and µ/κ-Ap1a) that inhibit
the human ether-à go-go voltage-gated potassium channels hEAG1 (KV10.1). ω-Avsp1a
is 83.3% identical to κ-Aa1a and 80.6% identical to µ/κ-Ap1a [39]. Thus, it would be
interesting in future studies to determine whetherω-Avsp1a targets Kv10.1 and whether
κ-Aa1a and µ/κ-Ap1a are active on CaV3 channels.

It is well documented that the three CaV3 subtypes participate differentially in a
variety of physiological and pathological conditions. Selective pharmacological inhibition
is therefore important for dissecting the pathophysiological functions of CaV3 channel
subtypes and for the development of therapeutically useful subtype-selective inhibitors.
CaV3 inhibitors such as ethosuximide and zonisamide are used clinically as anti-epileptic
drugs, but they are not subtype-specific and not effective in all patients [40]. Preclinical data
suggest that CaV3.2 might be a viable analgesic target, but none of the CaV3 blockers that
have advanced to human clinical trials have been successful [41]. Thus, there is urgent need
to identify new subtype-selective CaV3 inhibitors. In this study, we showed that ω-Avsp1a
has 10-fold or higher selectivity for CaV3.1/CaV3.3 over CaV3.2, suggesting that it might
be a useful pharmacological tool for dissecting out the role of CaV3 channels in various
human pathophysiologies and for developing selective inhibitors of CaV3.1/CaV3.3.

Our chimeric channel experiments clearly demonstrate thatω-Avsp1a interacts with
the extracellular S3–S4 loop of CaV3 and that Leu171 in this loop is essential for its inhibitory
activity. Replacement of this Leu residue by Gly, the amino acid in the homologous position
of CaV3.2, massively diminished the inhibitory activity of the peptide. The structure of
ω-Avsp1a determined using NMR spectroscopy revealed a narrow hydrophobic strip,
which is likely to be the region of the toxin that mediates its interaction with Leu171 in
CaV3.1 and Leu169 in CaV3.3. In the Cryo-EM structure of CaV3.1 [42], an α-helix formed
by the sequence around Leu171 of CaV3.1 is located in the most extracellular portion of
the channel, providing a possible site for interaction with ω-Avsp1a. Our data suggest
that targeting the D1 S3–S4 loop of CaV3 channels might be a good strategy for developing
subtype-selective inhibitors of these channels.

5. Conclusions

A bioassay-guided fractionation strategy was used to isolate peptideω-Avsp1a from
venom of the Peruvian tarantula Avicularia spec. (“Amazonas Purple”). ω-Avsp1a was
found to be a selective inhibitor of CaV3.1 and CaV3.3, with at least five-fold weaker activity
on CaV3.2. By engineering chimeric CaV channel constructs, we narrowed theω-Avsp1a
binding site on CaV3.3 to the D1 S3–S4 extracellular loop and showed that Leu171 in this
loop is crucial for the toxin–channel interaction. Despite the low potency of ω-Avsp1a,
its selectivity for CaV3.1/CaV3.3 over CaV3.2 makes it a useful pharmacological tool for
dissecting out the role of these different CaV3 subtypes in disorders such as epilepsy or pain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051066/s1. Table S1: Crude arachnid venoms
screened by patch-clamp electrophysiology for inhibitory activity (indicated in percent inhibition)
against three CaV3 subtypes. n.d. = not determined. The venom of the Avicularia spec. that was used
for the isolation ofω-Avsp1a is highlighted in red. Figure S1: Screening for CaV3 channel subtype
specific inhibitors from arachnid venoms. Figure S2: Q172 of CaV3.1 is not important for inhibition
function ofω-Avsp1a. CaV3.1/Q172 was mutated to histidine as the homologous residue in CaV3.2.
There is no statistically significant difference between CaV3.1 and CaV3.1/Q172H mutant (CaV3.1
vs CaV3.1/Q172H, P = 0.70 according to two-tailed T-test). n = 5, 3, 5, 3, for CaV3.1, CaV3.1/Q172H,
CaV3.2, CaV3.2/H191Q, respectively.
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