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Abstract: Beef is a source of essential fatty acids (EFA), linoleic (LA) and alpha-linolenic (ALA)
acids, which protect against inflammatory and cardiovascular diseases in humans. However, the
intramuscular EFA profile in cattle is a complex and polygenic trait. Thus, this study aimed to identify
potential regulatory genes of the essential fatty acid profile in Longissimus thoracis of Nellore cattle
finished in feedlot. Forty-four young bulls clustered in four groups of fifteen animals with extreme
values for each FA were evaluated through differentially expressed genes (DEG) analysis and two
co-expression methodologies (WGCNA and PCIT). We highlight the ECHS1, IVD, ASB5, and ERLIN1
genes and the TF NFIA, indicated in both FA. Moreover, we associate the NFYA, NFYB, PPARG, FASN,
and FADS2 genes with LA, and the RORA and ELOVL5 genes with ALA. Furthermore, the functional
enrichment analysis points out several terms related to FA metabolism. These findings contribute
to our understanding of the genetic mechanisms underlying the beef EFA profile in Nellore cattle
finished in feedlot.

Keywords: Bos taurus indicus; differential co-expression; RIF; DH; PCIT; WGCNA

1. Introduction

Beef is a source of fats, proteins, vitamins, and minerals necessary in several metabolic
pathways in humans [1]. Among the fatty acids (FA), the basic unit of lipids, the beef
provides essential fatty acids (EFAs) such as linoleic (LA—C18:2 n6) and alpha-linolenic
(ALA—C18:3 n3). These FA are not naturally synthesized by mammals and have been asso-
ciated with lower incidences of inflammatory and cardiovascular diseases in humans [2].
The lipid absorption and deposition in cattle are influenced by the effects of genetic and
ruminal metabolism [3–6].

Moreover, based on genetic parameters and variability, the FA profile, especially LA
and ALA, can improve their concentration in beef through genomic selection [7,8]. This is
an important feature since the FA profile is a difficult and expensive trait to measure.

Although genomic-wide association studies (GWAS) have provided information to
support the understanding of complex traits, i.e., FA profile and intramuscular fat (IMF)
deposition in cattle [9–11], this approach has displayed some limitations in pointing out
genomic regions that explain a high proportion of genetic variance, as well as the cause-
and-effect relationship among the single-nucleotide polymorphism (SNP) genotypes and
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EFA profile. This can be explained due to the complex and polygenic features of the FA
profile. To address these limitations, the results generated by transcriptomic analyses such
as differentially expressed genes (DEG), co-expression (COE), and differential co-expression
(DCO) could be used.

Notwithstanding that the DEG analysis has been widely used to achieve a better
understanding of genetic mechanisms, it is not sufficient to fully identify the gene groups
related to complex traits since it does not allow the identification of potential genes that
are not differentially expressed [12]. Hence, the DCO emerges due to the capacity to
evaluate the global gene expression and its interrelationships to indicate sub-networks and
better-connected genes to the phenotype [12–14].

The combined use of two co-expression algorithms, weighted gene co-expression
network analysis (WGCNA) and partial correlation information theory (PCIT), can point
out potential gene groups related to complex traits through different ways [15,16]. The
WGCNA clusters genes in co-expression modules based on gene expression patterns be-
tween the samples, indicating gene groups correlated to the trait evaluated [15]. Otherwise,
the PCIT incorporates theoretical information about transcription factors, which allows,
through different metrics, the indication not only of hub genes but also the identification of
transcription factors responsible for modulating the expression of differentially expressed
genes between contrasting groups [12]. Moreover, the DCO can also assist the GWAS to
indicate genomic regions with higher accuracy in integrated -omics studies [17,18].

Nevertheless, studies evaluating the beef FA profile of EFAs in indicine cattle (Bos
taurus indicus) are incipient, especially incorporating different methodologies of differential
co-expression analysis. Therefore, we aimed to identify potential regulatory transcription
factors and hub gene groups related to the EFA profile in the Longissimus thoracis muscle
of Nellore cattle finished in feedlot based on two methodologies, WGCNA and PCIT.

2. Results
2.1. Differentially Expressed Genes Analysis

The DEG were identified among the contrasting groups for LA and ALA. The LA groups
encompassed 151 genes differentially expressed and enriched in 36 GO:Terms (2 BP, 2 MF,
34 CC) and six KEGG pathways, while the ALA groups displayed 352 DEG in 207 GO:Terms
(102 BP, 18 MF, 87 CC) and 10 KEGG pathways (Supplementary Tables S1 and S2). Among the
genes identified, we can highlight the acyl-CoA oxidase 2 (ACOX2) and 3-hydroxybutyrate
dehydrogenase type 1 (BDH1), listed as upregulated in the LA-H group and enriched in the
terms “oxidation-reduction process” (GO:0055114) and “metabolic pathways” (bta01100).
The genes succinate dehydrogenase complex iron sulfur subunit B (SDHB), enriched in
the terms “oxidation-reduction process” (GO:0055114) and “oxidative phosphorylation”
(bta00190), and the fat storage inducing transmembrane protein 1 (FITM1), inserted in the
“metabolic process” (GO:0008152), were found upregulated in the ALA-H group. More-
over, the gene acyl-CoA synthetase long-chain family member 3 (ACSL3), also enriched
in the GO:0008152, was found downregulated in the ALA-H group. Furthermore, the
enoyl-CoA hydratase, short-chain 1 (ECHS1), and isovaleryl-CoA dehydrogenase (IVD)
genes, involved in “oxidation-reduction processes” (GO:0055114) and “metabolic path-
ways” (bta01100), were upregulated in both groups (LA-H and ALA-H).

2.2. Differential Co-Expression Analysis (PCIT—DH)

The correlation matrices for each FA group were performed using the PCIT algo-
rithm and only the correlations ≥|0.9| were used for the identification of DH genes
between the contrasting groups. A total of 5649 genes inserted in 732 GO:Terms (419 BP,
115 MF, 198 CC) and 68 KEGG pathways were identified between LA-H and LA-L groups
(Supplementary Files S3 and S4). For the ALA-H and ALA-L, a total of 5559 differential
hubbing genes and 774 GO terms (454 BP, 106 MF, 214 CC) and 73 KEGG pathways were
described (Supplementary Tables S5 and S6). Of these, we can underscore the genes WD re-
peat domain (WDR43)—“regulation of catalytic activity” (GO:0050790) and “RNA binding”
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(GO:0003723); ankyrin repeat and SOCS box containing 5 (ASB5)—“protein ubiquitina-
tion” (GO:0016567); ER lipid raft associated 1 (ERLIN1)—“regulation of gene expression”
(GO:0010468); and TRAF-type zinc finger domain containing 1 (TRAFD1), which pre-
sented a high number of connections in the LA-H and ALA-H groups (Supplementary
Tables S3–S6 and Table 1). However, when considering the low concentration groups, no
common genes were found between LA and ALA.

Table 1. List of extreme differential hubbing genes for the linoleic acid (LA—C18:2) and alpha-
linolenic (ALA—C18:3) fatty acids.

Groups Gene Symbol DH Groups Gene Symbol DH

WDR43 68 ASB5 40

ASB5 63 TRAFD1 35

LA-H ORC4 60 ALA-H WDR43 31

ERLIN1 57 NAA15 30

TRAFD1 50 ERLIN1 30

FSTL1 −70 DEK −91

FN1 −66 PRPF38B −89

LA-L DAB2 −63 ALA-L KMT2E −77

LRP1 −62 USP8 −77

MMP14 −60 SEC62 −75
LA-H: Samples with the 15 highest values/phenotypes for the linoleic acid; LA-L: Samples with the 15 lowest
values/phenotypes for the linoleic acid; ALA-H: Samples with the 15 highest values/phenotypes for the alpha-
linoleic acid; ALA-L: Samples with the 15 lowest values/phenotypes for the alpha-linoleic acid.

2.3. Differential Co-Expression Analysis (PCIT—RIF)

In the RIF analysis, 20 potential TF were listed for each FA (Supplementary Tables S7 and S8).
Such TF were enriched in 86 GO:Terms (52 BP, 28 MF, 6 CC) to LA and 81 GO:Terms (38
BP, 31 MF, 12 CC) to ALA; in none of the fatty acids were there enriched KEGG pathways
(Supplementary Table S9). Six TF were common to both fatty acids, in which we can
highlight the nuclear factor IA (NFIA) and histone H4 transcription factor (HINFP), both
enriched in the term “regulation of gene expression” (GO:0010468), as well as the zinc finger
protein 473 (ZNF473), which was ranked with the more expressive RIF scores (Tables 2
and 3).

More specifically to the LA, the enriched TF nuclear transcription factor Y subunit
alpha (NFYA) and beta (NFYB)—“gene expression” (GO:0010467), as well as the BTB
domain and CNC homolog 1 (BACH1) and nuclear factor of activated T cells 5 (NFAT5)—
“regulation of biological process” (GO:0050789) positively impacted the target genes’ (DEG)
expression in the LA-H group (Supplementary Table S9; Table 2). The presence of the TF
zinc finger protein 134 (ZNF134), zinc finger protein 584 (ZNF584), zinc finger and BTB
domain containing 43 (ZBTB43), and SLC2A4 regulator (SLC2A4RG) was also pointed out
in the RIF analysis (Table 2). On the other hand, impacting more the DEG in LA-L, we
highlight the TF WIZ zinc finger (WIZ)—“regulation of biological process” (GO:0050789)
(Supplementary Table S9; Table 2).

With the emphasis on the ALA, the TF RAR-related orphan receptor A (RORA), nuclear
transcription factor X-box binding 1 (NFX1), melanocyte inducing transcription factor
(MITF), and activating transcription factor 6 (ATF6)—“gene expression” (GO:0010467)—
and HIVEP zinc finger 2 (HIVEP2) impacted the expression of DEG for the ALA-H group
(Supplementary Table S9; Table 3). The DnaJ heat shock protein family (Hsp40) member
C1 (DNAJC1), TSC22 domain family member 2 (TSC22D2), and zinc finger protein 800
(ZNF800) were also ranked, although they were not listed within any significant GO:Terms
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(Supplementary Table S11; Table 3). In contrast, the TF forkhead box S1 (FOXS1), upstream
binding protein 1 (UBP1), and nuclear receptor subfamily 2 group C member 1 (NR2C1)—
“gene expression” (GO:0010467); GDNF inducible zinc finger protein 1 (GZF1)—“DNA
binding” (GO:0003677); and the zinc finger protein FOG family member 1 (ZFPM1) were
indicated with the lowest values for RIF1 and RIF2 (Supplementary Table S9; Table 3).

Table 2. List of genes with the highest and lowest regulatory impact factor (RIF) scores (RIF1 and
RIF2) between the contrasting linoleic acid (LA—C18:2) groups.

Groups Gene Symbol RIF1 RIF2

RIF1 (+) ZNF134 4.91 −1.01

NFIA 4.50 −0.39

NFYA 4.07 −0.84

NFAT5 4.02 0.78

ZNF584 3.54 0.07

RIF2 (+) ZBTB43 −0.46 2.95

ZNF473 −0.09 2.83

SLC2A4RG −0.34 2.77

BACH1 −0.17 2.73

NFYB 2.87 2.68

RIF2 (−) HINFP 1.02 −2.70

WIZ −0.63 −2.65

Table 3. List of genes with the highest and lowest regulatory impact factor (RIF) scores (RIF1 and
RIF2) between the contrasting alpha-linoleic acid (ALA—C18:3) groups.

Groups Gene Symbol RIF1 RIF2

RIF1 (+)
NFIA 7.43 −1.05

DNAJC1 5.11 0.67

RORA 4.94 0.46

NFX1 4.80 2.27

MITF 4.75 1.14

RIF1 (−) FOXS1 −3.18 0.15

UBP1 −2.81 0.14

GZF1 −2.68 0.73

RIF2 (+)
TSC22D2 −0.46 2.95

ZNF800 −0.09 2.83

ATF6 −0.34 2.75

HIVEP2 −0.17 2.73

ZNF473 2.87 2.68

RIF2 (−) NR2C1 0.16 −3.57

HINFP −0.32 −2.68

ZFPM1 0.19 −2.65

2.4. Differential Co-Expression Analysis (WGCNA)

The DCO-WGCNA identified 521 genes inserted in six modules significantly correlated
(p ≤ 0.1) with values higher than |0.4| in the LA-H group (Supplementary Table S10 and
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Supplementary Figure S3). However, only the lightgreen (−0.59, p = 0.02, n = 123 genes)
and skyblue (−0.47, p = 0.08, n = 126 genes) modules had genes enriched in some GO:Terms.
It pointed out seven unique component cellular terms, but no KEGG pathway, biological
process, or molecular function (Supplementary Table S14). Among these terms, we highlight
the “intracellular” (GO:0005622), in which the ATP binding cassette subfamily A member 6
(ABCA6) gene—light green module—was inserted.

Under the same parameters, five modules were identified, harboring 1682 co-expressed
genes in the LA-L group (Supplementary Table S11 and Supplementary Figure S4) enriched
in unique 245 GO:Terms, 174 BP, 15 MF, 56 CC (Supplementary Table S14), and 9 unique
KEGG pathways. We can highlight the SREBF chaperone (SCAP) gene in the darkseagreen4
module (−0.46, p = 0.08, n = 248 genes) enriched in “intracellular” (GO:0005622), as well
as the fatty acid desaturase 1 (FADS1) and 2 (FADS2), fatty acid synthase (FASN), and
peroxisome proliferator activated gamma receptor (PPARG) genes in the purple module
(0.45, p = 0.10, n = 800 genes), enriched in the term “cell differentiation” (GO:0030154)
(Supplementary Table S14).

For the ALA, a total of 852 genes were listed in six modules (ALA-H, Supplementary
Table S12 and Supplementary Figure S5) enriched in 111 GO:Terms (69 BP, 5 MF, 37 CC)
and 17 KEGG pathways (Supplementary Table S14), and 247 genes were inserted in two
modules (ALA-L, Supplementary Table S13 and Supplementary Figure S6) enriched in
19 GO:Terms (1 BP, 18 CC). Among them, we can emphasize the ELOVL fatty acid elongase
5 (ELOVL5)—“single-organism metabolic process” (GO:0044710) in the dark olive-green
module (−0.49, p = 0.07, n = 474 genes, ALA-H) and the acetyl-CoA carboxylase beta
(ACACB) and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) inserted in the floral-
white module (−0.44, p = 0.10, n = 177 genes, ALA-L) enriched in the term “intracellular”
(GO:0005622) (Supplementary Table S14).

3. Discussion
3.1. Differentially Expressed Genes

Among the DEG described for the LA, we can highlight the ACOX2, BDH1, ECHS1,
and IVD genes, enriched in the term “oxidation-reduction process” (GO:0055114), with
higher expression in the LA-H group. The ACOX2 gene corroborates with results from
Lim et al. [19], in which it was also identified in Hanwoo cattle with a high marbling score.
This gene was also associated with the BDH1 gene’s overexpression in Nellore cattle [10],
which suggests a relationship with higher concentrations of FA. This relationship can still be
justified by the regulatory action of such genes due to the high concentration of unsaturated
fatty acids, as can be seen with the oxidative action genes ECHS1 and IVD [20,21], which
were also pointed out as differentially expressed between ALA groups.

Particularly in the ALA-H group, the SDHB gene, enriched in the BP “oxidation-
reduction process” (GO:0055114), was identified as upregulated. This gene encodes a
subunit that forms the SDH enzyme, responsible for ATP synthesis steps through the Krebs
cycle [22]. Moreover, this same enzyme was related to FA concentration in cattle. According
to Jeong et al. [23], the SDH enzyme was overexpressed in samples of Longissimus dorsi
muscle in Korean cattle after castration, which had a higher rate of IMF compared to
non-castrated animals. This fact reiterates the relationship of some genes with the oxidative
action and FA profile (i.e., SDHB gene), and it suggests a possible regulatory mechanism
associated with a high FA concentration.

The ACSL3 and FITM1 genes, enriched in the “metabolic process” (GO:0008152), were
identified as differentially expressed between the ALA groups. The ACSL3 gene has reg-
ulatory potential in the lipogenesis process due to its relationship with the intracellular
uptake of FA, as well as the enzymatic action triggered by its protein product by provid-
ing substrate for the triglyceride synthesis and β-oxidation steps [24,25]. This gene was
downregulated in the ALA-H group, a finding justified by the high FA rate. On the other
hand, the FITM1 gene was correlated with small deposits of lipids in muscle cells [26] and
higher fat accumulation in cell cultures [27]. This fact corroborates our results that showed
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it to be more expressed in the ALA-H group and suggests a relationship with the high
FA concentration.

3.2. Differential Co-Expression Analysis (PCIT—DH)

For the DCO analysis aiming to identify DH genes (PCIT-DH), we highlighted the
WDR43, ASB5, TRAFD1, and ERLIN1 genes due to their implications in the LA-H and
ALA-H groups. The WDR43 gene acts in the transcriptional control by binding to RNA
polymerase II modulating proteins and promoter regions for mRNA formation [28]. Mem-
bers of the same gene family were related to the FA profile in Nellore cattle [9,11,29], as
well as in the marbling score in Hanwoo cattle [30]. The ASB5 gene was associated with
cell differentiation and proliferation in muscle tissue [31], besides being related to the mar-
bling score in the Nellore [10] and crossbred Wagyu × Hereford cattle [32]. Although the
function of the TRAFD1 gene is not clear, it regulated the DEG expression for IMF content
in Iberian swine [33]. The appointment of these genes as DH in the ALA-H and LA-H
groups is justified not only by their potential function by regulating gene expression but
also because of their impact on lipid metabolism. A similar explanation can be attributed to
the ERLIN1 gene, enriched in the term “regulation of gene expression” (GO:0010468), due
to its relationship with the ER lipid raft associated 2 (ERLIN2), SCAP, and insulin induced
gene 1 (INSIG1) and 2 (INSIG2) for the modulation of the SREBF1 gene, and consequently,
to cholesterol homeostasis establishment [34]. This fact is also related to fat deposition,
as observed by Huber et al. [35], when indicating the ERLIN1 gene as responsible for
triglyceride formation in a cell culture study.

The ORC4 gene—“DNA metabolic process” (GO:0006259) and NAA15—“positive reg-
ulation of gene expression” (GO:0010628) were highlighted as some of the most expressive
DH in the LA-H and ALA-H groups, respectively. The protein encoded by the ORC4 gene
belongs to a protein complex associated with DNA replication [36]. Complementarily, the
NAA15 gene was associated with cell proliferation in tumor cells [37], indicating a possible
relationship between these genes and the mechanisms underlying cell proliferation and
differentiation in the high groups due to the high cell activity in fat synthesis and storage.

Although no common DH genes were identified between the LA-L and ALA-L groups,
the FN1, MMP14, FSTL1, LRP1, and DAB2 genes can modulate the gene expression in the
LA-L group. Among them, FN1 and MMP14 are closely related to extracellular matrix
formation, a fundamental step for cell proliferation and fat deposit formation in muscle
tissue [32,38]. The FN1 gene was overexpressed in pre-adipocytes in cell culture [39],
besides being differentially expressed in Nellore cattle with contrasting ribeye muscle
areas [40]. The FSTL1 gene, enriched in the term “response to starvation” (GO:0042594),
acts by promoting adipogenesis and fat accumulation in pre-adipocytes and adipocytes
differentiated in cell culture, as well as being upregulated in human non-obese patients [41].
The relationship of these genes with the LA-L group can be justified by the low FA concen-
tration, likewise hypothesizing that the animals in this group are later than those in the high
group. The DAB2 gene—“cellular response to lipid” (GO:0071396) and LRP1—“positive
regulation of gene expression” (GO:0010628) are related to fat deposition in tissues since
they act intimately in cholesterol homeostasis [42,43]. According to Tao et al. [44], the DAB2
gene acts in pre-adipocyte differentiation stages, which is shared by the LRP1 gene, as
presented by Masson et al. [45] in a cell culture study. This association with the early stages
of adipocyte formation suggests that the animals in the LA-L group are in prior stages to
those in the high group.

Finally, the DEK and KMT2E genes, enriched in the term “gene expression” (GO:0010467),
were identified as the DH genes in the ALA-L group. Although the DEK gene is related
to tumor processes in humans, it is involved in stages of cell differentiation [46], and
complementarity to the KMT2E gene, which acts on cell proliferation [47], allows us to
reinforce the possibility that ALA-L animals are less precocious. The identification of the
PRPF38B, SEC62, and USP8 genes as major DH in the ALA-L group does not indicate a
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direct association with the FA phenotype due to functions related to the protein complex
involved in general transcriptional processes [48–50].

3.3. Differential Co-Expression Analysis (PCIT—RIF)

Common to both FA, the TF NFIA and ZNF473 displayed the highest positive RIF1
and RIF2 values, respectively. The NFIA gene was related to the adipogenic processes and
cell differentiation since it could regulate the expression of genes such as PPARG in non-
differentiated adipocytes of cell cultures [51] and in mice brown fat [52]. The transcription
factor ZNF473 was identified as one of the potential regulators of feed efficiency in pigs [53].
Further, this TF was related to energy and lipid metabolism in genomic-wide association
and gene co-expression studies in the Nellore cattle [54,55]. These facts corroborate with
our results, indicating a relationship of these TF with the EFA metabolism. Moreover, the
LA and ALA also shared the TF HINFP with lower RIF2 scores. The TF HINFP can regulate
lipid metabolism due to its interaction with the SREBP2 protein, which regulates cholesterol
levels and lipid deposition [56]. In this way, the TF HINFP suggests a negative regulatory
action under FA biosynthesis.

Similarly, among the TF ranked with the highest RIF1 and RIF2 scores for the LA, we
highlight NFYA and NFYB, which modulate the FASN expression in mouse adipocytes,
and interact with the SREBP1 protein for FA synthesis and cholesterol homeostasis [57].
Moreover, the identified TF NFAT5 and SLC2A4RG were related to adipogenic processes
linked to glucose uptake and cell differentiation [58,59]. This last trait was also linked to the
TF BACH1 in a study carried out by Nishizuka et al. [60] in cell cultures, which indicated it
as a potential regulator in adipocyte differentiation. These studies corroborate the potential
relationship of these TF with DEG expression and, consequently, fat deposition and the
EFA profile, especially for the LA. Moreover, the TF ZNF134, ZNF584, and ZBTB43 in RIF1,
and WIZ (RIF2), also were highlighted. Although these genes have an unclear relation-
ship with lipid metabolism, the zinc finger family members act in the gene expression
of several metabolic processes [61], and therefore, these TF can be crucial in regulating
DEG expression.

When considering the RIF analysis for the ALA, the TF with the highest RIF1 (MITF) and
RIF2 (ATF6 and HIVEP2) scores were enriched in the term “gene expression” (GO:0010467).
The TF MITF indication may have been due to its relationship with the Stearoyl-CoA
desaturase (SCD) gene, which acts in unsaturated fatty acid synthesis. According to
Vivas-García et al. [62], the FT MITF promoted higher expression of the SCD gene and,
consequently, a higher concentration of unsaturated fatty acids in tumor cells. The TF ATF6
and HIVEP2 share a similar potential to regulate adipogenic processes since both interact
with the PPARG gene. According to Lowe et al. [63], the ATF6 gene knockout significantly
reduced the PPARG expression in cell culture. The TF HIVEP2, also known as Schnurri-2,
acts as a co-activator in the expression of the PPARG gene, and, in knockout situations,
restricted the PPARG expression during adipocyte differentiation [64]. These relationships
reinforce the regulatory potential of these TF under DEG expression in the ALA-H group,
and consequently, the EFA profile.

Furthermore, with the ability to impact lipid deposition, TF with higher RIF1 val-
ues (ALA, RORA, and NFX1) were described enriched in the term “gene expression”
(GO:0010467). Such impact may be due to the interrelation between these TF and lipogenesis-
promoting genes. According to Lau et al. [65], the TF RORA has regulatory potential in lipid
homeostasis, given that, in knockout situations, this TF induced the lower expression of
genes such as FASN and SCD, crucial for FA synthesis. The FT NFX1 encodes a protein with
the same name that binds to the NF-Y protein, which regulates the FASN expression, and,
consequently, impacts FA synthesis [57,66]. A relationship was also observed by Fernandes
Júnior et al. [67] when pointing to the NFX1 gene as a candidate gene to explain a part of
the genetic variance for backfat thickness in Nellore cattle.
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Otherwise, the TF DNAJC1 (RIF1), TSC22D2 (RIF2), and ZNF800 (RIF2) for the ALA
act mainly in cell growth control. The DNAJC1 and TSC22D2 genes were related to
a large number of genes to suppress cell proliferation in tumor processes and adverse
conditions [68,69]. The ZNF800 gene has a similar function, in which it can inhibit cell
proliferation by blocking the AKT/mTOR pathway [70]. These TF with higher positive
scores suggest a potential regulatory action to control cell proliferation in animals in the
ALA-H group.

With lower RIF1 scores for the ALA, TF such as the FOXS1 and UBP1—“gene ex-
pression” (GO:0010467) and GZF1—“DNA binding” (GO:0003677) were identified. The
FT FOXS1 is associated with several cell proliferation steps [71], and its overexpression
inhibited tumor cell proliferation. The FT GZF1 is also involved in the cell proliferation
process; however, it was related to cell proliferation promotion in cell culture [72]. The
FT UBP1 acts in angiogenesis by stimulating neovascularization, an important step in
pre-adipocytes to promote growth and differentiation in the cellular as well as extracellular
matrix [73,74]. These TF allow us to hypothesize that animals in the ALA-L group are
more delayed than those in the ALA-H, indicating early stages of adipocyte formation, and
consequently, less lipid deposition.

With low RIF1 scores for the ALA, the TF ZFPM1 and NR2C1 are worth highlighting.
The FT ZFPM1 (alias name: FOG1) acts as a co-regulator in early adipocyte differentiation
stages since it was overexpressed in pre-adipocytes and showed lower expression in
mature adipocytes in cell culture [75]. Moreover, ZFPM1 was pointed out as a DH gene
in a low genomic value (GEBV) group for IMF in Nellore cattle [76]. Further related to fat
metabolism, the NR2C1 gene encodes the TR2 protein, which, when interacting with the
TR4 protein product, is related to pathways opposite to those presented by the PPARG gene,
and suppresses the expression of Retinoid X receptors [77]. These findings corroborate
with our results, by showing that these TF are related to a lower FA concentration.

3.4. Differential Co-Expression Analysis (WGCNA)

The WGCNA methodology employs a different algorithm from that used by the PCIT
regarding the gene networks’ formation as well as the gene clustering, complementing each
other. This complementarity allowed us to identify other potential DCO genes to improve
the understanding of the mechanisms underlying the phenotypes.

The DCO analysis through the WGCNA package identified gene groups important to
FA profile development. In the LA-H group, only two modules had GO:Terms enriched,
but we highlight the lightgreen module (−0.59, p = 0.02), in which the ABCA6 gene was
inserted and pointed out in the component cellular “intracellular” (GO:0005622). According
to Wenzel et al. [78], the ABCA6 gene is related to cholesterol uptake, which is closely linked
to the SREBF1 gene, and its target gene functions in cholesterol homeostasis, impacting the
EFA profile [34]. This fact justifies the presence of ABCA6 in a significant module correlated
to LA concentration. For the LA-L group, the SCAP gene, enriched in “intracellular”
(GO:0005622) and clustered in the darkseagreen4 module (−0.46, p = 0.08), also interacts
with the SREBF1 gene, activating it [34]. The protein complex SCAP:SREBP1 promotes,
in low-cholesterol conditions, higher synthesis of FA and cholesterol [34], reinforcing the
relationship with the EFA profile, justifying the SCAP co-expression in a module negatively
correlated to the LA-L group. Notwithstanding, the purple module (0.45, p = 0.10) pointed
out clustered hub genes for the FA phenotype, i.e., PPARG, FASN, FADS1, and FADS2,
enriched in “cell differentiation” (GO: 0030154). The PPARG and the FASN genes act
in crucial cell proliferation and differentiation stages in adipocytes [79–81]. The PPARG
impacted the lipid deposition in the Hanwoo cattle since it was overexpressed in high
marbling score groups [19]. Similarly, the FASN gene was correlated (0.44) with IMF
(Longissimus dorsi) in Korean cattle [82], and it was overexpressed in Iberian pigs with high
IMF content [33]. Further, it explained part of the genetic variance for the FA profile in
Angus and crossbred cattle musculature [83]. The FADS1 and FADS2 genes act in the FA
desaturation process. According to Ralston et al. [84], in adipocyte cell cultures, the highest
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LA concentration triggered the higher expression of FADS1 and FADS2. Moreover, SNP-
type mutations in the FADS2 gene were associated with higher marbling in the Holstein
breed [85]. These studies corroborate our results that indicate a positive correlation of the
purple module with the LA concentration.

Regarding the ALA, gene groups related to the FA synthesis were identified. The dark
olive-green module (−0.49, p = 0.07, ALA-H) encompassing the ELOVL5 gene—“single-
organism metabolic process” (GO:0044710) and the floral white module (−0.44, p = 0.10,
ALA-L) harboring the ACACB and HMGCS1 genes—“intracellular” (GO:0005622) should
be underscored. The ELOVL5 gene acts in stages of unsaturated fatty acid elongation (i.e.,
C18–20 chains), especially ALA and eicosatrienoic acid (C20:3 n3) [86]. This result corrobo-
rates the negative correlation of the dark olive-green module with the ALA concentration.
On the other hand, the ACACB and HMGCS1 genes act in the FA oxidation stages [87].
The ACACB gene was related to lower lipid deposition in cattle since it was identified by
Zhang et al. [47] as downregulated in castrated animal groups, which showed high lipid
deposition, compared to non-castrated animals. The HMGCS1 gene, besides participating
in the formation of ketone bodies, is also involved in cholesterol homeostasis and FA
uptake together with the same family member, 3-hydroxy-3-methylglutaryl-coenzyme
reductase (HMGCR) [34,88]. These results corroborate the module’s correlation with the
ALA concentration and suggest that the ACACB and HMGCS1 genes’ co-expression is
linked to a lower FA concentration.

In summary, the combination of two complementary differential co-expression method-
ologies, WGCNA and PCIT, with the differentially expressed genes analysis, allowed us
to identify hub genes already described in the literature. Furthermore, unexplored genes
and transcription factors able to model the EFA profile in zebu meat cattle were identified,
revealing regulatory mechanisms linked to lipid and energy metabolism, as well as cell
proliferation and differentiation. Although more studies are needed, these findings show
the possible genetic potential in zebu breeds raised in tropical climates to improve meat
quality and achieve a healthier EFA profile in meat.

4. Materials and Methods
4.1. Animals and Sampling

We were approved to carry out procedures involving animals by the Animal Use
Ethics Committee of the Faculty of Agricultural and Veterinary Sciences (FCAV), Unesp,
Jaboticabal/SP (certificate number 18340/16). We used a total of 44 young Nellore bulls,
the progeny of six sires, belonging to the Capivara farm (São Paulo state, Brazil), which
participated in the Nelore Qualitas breeding program. On this farm, the mating season
occurred two times, between the months of February and April, and from mid-November
to January. The female animals at 10 to 14 months of age were submitted for three months
of the breeding season. Then, the heifers were evaluated by rectal palpation ~60 days after
finishing the breeding season to confirm pregnancy. The females who did not get pregnant
were exposed again to a breeding season at two years old.

During the raise period, the nutritional management of the animals used in this study
was based on grazing conditions using Brachiaria sp. and Panicum sp. forages; moreover,
during the dry season, they were offered creep feeding and supplementation. Then, after
yearling, the breeding animals were selected, and the remaining were kept in a feedlot for
at least 90 days with a diet based on whole-plant silage, sorghum grain, and soybean meal,
with a concentrate/roughage ratio of 70/30. All animals were managed in the same lot
from birth to the finishing phase.

Next, on the same day, all animals were slaughtered in commercial slaughterhouses
with approximately 550 kg of live weight and an average age of 24 months. At the time of
the slaughter, the Longissimus thoracis (LT) muscle samples—between the 12th and 13th ribs
from the left half carcasses—were collected, properly identified, and subjected to liquid
nitrogen. Subsequently, they were stored at −80 ◦C until further RNA-seq analysis. At the
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deboning stage, after 48 h of carcass cooling (0–2 ◦C), in the same place, LT samples (2.5 cm
thick) were collected to measure the intramuscular fatty acid profile and content.

4.2. Lipid Extraction and Quantification

The lipid fraction quantification was performed at the Animal Product Technology
Laboratory in the Technology Department of FCAV/UNESP (Jaboticabal, São Paulo, Brazil)
according to Bligh and Dyer [89]. Approximately 3 g of raw and ground samples of Longis-
simus thoracis muscle was subjected to lipid extraction, in which, after being transferred to a
250 mL flask, chloroform (10 mL), methanol (20 mL), and distilled water (8 mL) were added.
After this, the solutions were homogenized and centrifuged for 30 min on a horizontal
shaker table (HITACHI High-Speed Micro Centrifuge model CF16RN himac). Then, an
additional 10 mL of chloroform was added together with 10 mL of an aqueous sodium
sulfate solution (1.5%) and agitated for 2 min. This solution, in a 50 mL falcon tube, was
centrifuged (1000× g-force) at room temperature. The supernatant was discarded and the
rest was filtered into measuring cylinders (25 mL) through a paper filter in order to separate
the extracted lipid solution. From this last solution, 5 mL was transferred to a 50 mL beaker,
dried in an oven, and cooled in a desiccator for at least 24 h. Afterwards, the beaker with
the solution was placed in an oven at 110 ◦C for the evaporation of the solvent, cooled in a
desiccator (O/N), and, at the end, weighed. The differences between the initial and final
weight of the beaker were used to determine the lipid concentration of the samples.

4.3. Fatty Acid Profile Identification

The FA profile was determined for each sample according to Folch et al. [90]. Ap-
proximately 100 g of the ground muscle samples was used. The lipids were extracted and
isolated by homogenizing a chloroform and methanol solution in 2:1 ratio and subsequent
addition of a 1.5% NaCl solution. After this, as proposed by Kramer et al. [91], the methy-
lation process of the isolated lipids was carried out, and this resulted in the formation of
methyl esters; from these FA profile compositions, it was possible to perform quantification
using a gas chromatographer (GC-2010 Plus—Shimadzu AOC 20i auto-injector) with an
SP-2560 capillary column (100 m× 0.25 mm in diameter with 0.02 mm thickness, Supelco,
Bellefonte, PA, USA). With an initial temperature of 70 ◦C, under continuous heating
of 13 ◦C per minute, an intermediate temperature of 175 ◦C was established and, when
reached, was maintained for 27 min. Thereafter, at a heating speed of 4 ◦C per minute, the
temperature was increased to 215 ◦C and maintained for 31 min.

The FA identification was performed by comparing the retention time of the methyl
esters of the samples with standards C4-C24 (F.A.M.E mix Sigma®), vaccenic acid C18:1
trans-11 (V038-1G, Sigma®), C18:2 trans-10 cis-12 (UC-61 M 100 mg), CLA e C18:2 cis-9,
trans-11 (UC-60 M 100 mg), and tricosanoic acid (Sigma®). Then, using the GS solution
2.42 software, the FA were quantified, by normalizing the area under the methyl esters
curve, and expressed as a percentage of the total FA methyl ester. This step was performed
at the Meat Science Laboratory (LCC) in the Animal Nutrition and Production Department
at FMVZ/USP. Among the quantified FA, we selected the fatty acids linoleic (C18:2ω-6)
and alpha-linolenic (C18:3ω-3) due their importance for human health.

4.4. RNA Extraction

The extraction of total RNA from 44 bovine LT muscle samples (~100 mg) was per-
formed using the extraction protocol via TRIzol® (Life Technologies, Carlsbad, CA, USA).
All the samples used in this study obtained RNA integrity number (RIN) ≥ 8, measured by
the Agilent equipment 2100 Bioanalyzer® (Agilent, Santa Clara, CA, USA), and were used.
The preparation of the cDNA libraries followed the TruSeq® RNA Sample Preparation
v2 protocol (Illumina, San Diego, CA, USA) and their quantifications were performed
using the KAPA Library Quantification Kit® (KAPA Biosystems, Foster City, CA, USA).
Subsequently, barcode sequences were added for individual identification of the samples,
which were subjected to sequencing. The method used for sequencing was the paired-end,
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which produces fragments of 2 × 100 bp. The HiSeq 2500 equipment (Illumina, San Diego,
CA, USA) and the TruSeq PE Cluster kit v3-cBot-HS and TruSeq SBS v3-HS kit (Illumina,
San Diego, CA, USA) were used for its realization. The sequencing analysis was performed
at the Genome Center at ESALQ/USP (Piracicaba, São Paulo, Brazil).

4.5. Read Alignment and Gene Count

HiSeq platform raw sequencing data were converted into FASTQ files and separated
into individual libraries using the Casava v.1.8.2 software (Illumina, San Diego, CA, USA).
These files were submitted to the software FastQC v. 0.11.9 [https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ accessed on 26 November 2019] and Trimmomatic v.
0.32 [92] to perform quality control, and to identify and remove PCR adapters and primers,
as well as low-quality and/or small sequences (<36 bp). The reads were then aligned to the
Bos taurus taurus genome assembly ARS-UCD1.2 using the STAR v.2.7.0 program [93]. Sub-
sequently, from the SAMtools v1.09 software [94], a second quality control procedure was
performed to remove low-quality alignments, secondary alignments, and PCR duplicates.
Afterwards, the gene counts were performed by the HTSeq Python package [95], and they
were used for subsequent gene expression analyses (DEG and DCO).

Moreover, we evaluated gene expression records on a principal component analysis
and hierarchical clustering. However, it was not able to identify a clear group (Figure 1;
Supplementary Figures S1 and S2).
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4.6. Differentially Expressed Genes Analysis

For the differentially expressed analysis (DEG), animals were grouped based on their
concentrations for each selected FA (linoleic, LA—C18:2 n6 and alpha-linolenic, ALA—
C18:3 n3). Two groups were formed by considering those samples with the 15 highest
(high—H) values/phenotypes and the 15 lowest (low—L), totaling four main groups:
LA-H, LA-L, ALA-H, and ALA-L. A significant (p < 0.0001) difference was observed, by t
test [96], between the means of the highest and lowest FA concentration groups (Table 4).
The DEG analysis was performed through the R package DESeq2 [96] and was used in two
EFA-specific groups, where each group had 30 samples (15 high and 15 low). The input
gene set was filtered, and genes that had less than one count per million (cpm) in 90% of
the samples were filtered out.

Table 4. Descriptive statistics of the phenotypic data evaluated in the two contrasting groups and
means comparison.

Fatty Acid
Low Group (n = 15) High Group (n = 15)

Min Max Mean SD Min Max Mean SD p-Value

LA 2.47 5.79 4.57 0.89 8.00 11.83 9.39 1.19 *
ALA 0.23 0.55 0.46 0.08 0.78 1.21 0.94 0.14 *

* p-value < 0.0001.

4.7. Gene Co-Expresion Analysis: Partial Correlation and Information Theory (PCIT)

For the differential co-expression analyses (DCO), the partial correlation and infor-
mation theory (PCIT) algorithm implemented in R software [16,97] was used (DCO-PCIT).
The quality control based on filter genes with less than 1 cpm resulted in 10,739 genes from
27,270 genes. Next, the raw count data were normalized (cpm), and their variance was
stabilized by the variance stabilizing transformation function on DESeq2 [96]. The correlation
matrices for the gene expression values were performed separately for each of the four FA
groups evaluated (LA-H, LA-L, ALA-H, and ALA-L) using the PCIT package [97]. From
these matrices, only significant correlations ≥|0.9| were used to perform the differential
hubbing (DH) analysis. The measurement of DH values was based on the difference in the
quantity of significant correlations ≥|0.9| of each gene between the contrasting groups.
Genes were then ranked based on the top five DH values (highest and lowest) for each FA.

The regulatory impact factor (RIF) scores were calculated as described by Reverter et al. [98]
and they are displayed as z-scores. These scores reflect the co-expression of each transcrip-
tion factor (TF), previously informed, and its potential target genes, i.e., differentially
expressed genes identified among contrasting EFA groups. There are two different ways to
calculate the RIF measurements. In the first one (RIF1), the RIF score is strongly influenced
by large differences in the correlation values between TF and DEG between the divergent
groups. In the second one (RIF2), the RIF score is affected mainly by the magnitude of the
potential target genes’ (DEG) expression induced by TF expression. The positive values for
both scores indicate a better connection with the groups with high concentrations of the
assessed fatty acid and, therefore, the opposite situation reveals a relationship with the low
groups. For the TF selection, 740 TF were considered, which were expressed among the FA
groups and were deposited in the Animal Transcription Factor Database (AnimalTFDB)
v.3.0 [99]. Only the TF which had their scores with ±2.58 standard deviation (99%) in
relation to the mean were selected for functional and network analysis.

4.8. Gene Co-Expresion Analysis: Weighted Gene Co-Expression Network Analysis (WGCNA)

For the differential co-expression analysis (DCO), the weighted gene co-expression
network analysis (WGCNA) package implemented in R software [15] was used (DCO-
WGCNA). The two specific EFA groups (LA and ALA) that included the highest (n = 15)
and lowest (n = 15) samples were analyzed. As in PCIT analyses, the raw gene counts were
normalized (cpm) and had their variance stabilized (variance stabilizing transformation) as
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well as filtered. These groups were analyzed individually, and the connectivity values were
calculated among all the genes in the network. The connectivity measure represents the
degree of connection between each pair of genes in the network, and it is obtained through
the sum of Pearson’s correlations raised to the soft power threshold (β). It should be noted
that β is individual for each analysis, and it should approach the criterion of scale-free
topology (R2 ≥ 0.8) [100]. The values of β = 9 and 8 were used for LA-H and ALA-H
and β = 13 and 10 for LA-L and ALA-L, respectively. For the gene clustering and module
formation, the unsigned step-by-step method was used, implemented in the hierarchical
clustering algorithm (dynamic tree-cutting) package [15]. A minimum size of 30 genes per
module and a dissimilarity of >0.20 among the modules were applied [15,101].

Each module has an eigengene measurement (ME), which corresponds to the represen-
tation of the first main component of the expression profile of the entire module [15]. This
measure was correlated with the evaluated traits in the study, and modules that showed
correlations of ≥|0.4| as significant (p ≤ 0.1) were selected for further analysis.

4.9. Functional Enrichment

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8
tool [102,103] was used to identify overrepresented gene ontology (GO) terms and KEGG
pathways using the list of genes from the differential analyses and the Bos taurus annotation
file as a background. The list of genes identified in the DEG and both DCO (PCIT and
WGCNA) analyses was subjected separately to functional enrichment. The p-values were
adjusted by False Discovery Rate (FDR) [104], and significant GO:Terms—biological process
(BP), molecular function (MF), and component cellular (CC)—and KEGG pathways were
considered when p-adj ≤ 0.05.

5. Conclusions

The DEG and DCO analyses combined allowed us to point out potential unexplored
genes/transcription factors and biological processes underlying the EFA (LA and ALA)
profile in the Longissimus thoracis muscle of Nellore cattle finished in the feedlot. Among
them, we can highlight the differentially expressed genes ECHS1 and IVD, as well as
the hubbing genes ASB5 and ERLIN1, and the TF NFIA, since these genes displayed
an outstanding capacity to strongly impact both EFA, linoleic and alpha-linolenic acids.
Furthermore, the TF NFYA, NFYB, FASN, and PPARG and FADS2 genes associated with
the LA, as well as the TF RORA and ELOVL5 gene with ALA, were able to directly impact
the phenotypes.

Our findings contribute to the pinpointing of the potential biomarkers for this complex,
arduous, and late measuring trait. Moreover, our results provide information that would
help us to better understand the genetic and physiological mechanisms related to the
synthesis of essential fatty acids in cattle. Furthermore, they can support -omics studies,
especially genomic-wide association studies and genomic selection, since this information
could be used to weight some makers located on transcriptional factors or nearby regulatory
genes, which can regulate gene expression and related pathways. Therefore, this also could
assist in the early selection of animals with a healthier essential fatty acid profile.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050471/s1, Table S1: List of differentially expressed
genes for fatty acid phenotypes; Table S2: List of GO:Terms and KEGG pathways enriched in dif-
ferentially expressed genes for fatty acid phenotypes by functional enrichment analysis on DAVID
web-tool; Table S3: List of differential hubbing genes—Linoleic acid; Table S4: List of differential
hubbing genes—Alpha-linolenic acid; Table S5: List of GO:Terms and KEGG pathways enriched in
differential hubbing genes by functional enrichment analysis on DAVID web-tool—Linoleic acid;
Table S6: List of GO:Terms and KEGG pathways enriched in differential hubbing genes by functional
enrichment analysis on DAVID web-tool—Alpha-linolenic acid; Table S7: List of transcription factors
retrieved by regulatory impact factor analysis (PCIT)—Linoleic acid; Table S8: List of transcription
factors retrieved by regulatory impact factor analysis (PCIT)—Alpha-linolenic acid; Table S9: List of
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GO:Terms and KEGG pathways enriched in transcription factors identified for fatty acid phenotypes
by functional enrichment analysis on DAVID web-tool; Table S10: List of genes inserted in significant
co-expression modules (WGCNA)—Linoleic acid (HIGH); Table S11: List of genes inserted in signifi-
cant co-expression modules (WGCNA)—Linoleic acid (LOW); Table S12: List of genes inserted in
significant co-expression modules (WGCNA)—Alpha-linolenic acid (HIGH); Table S13: List of genes
inserted in significant co-expression modules (WGCNA)—Alpha-linolenic acid (LOW); Table S14:
List of GO:Terms and KEGG pathways enriched in differentially co-expressed genes for fatty acid
phenotypes by functional enrichment analysis on DAVID web-tool. Figure S1: Principal compo-
nent analysis (PCA) plot of 44 animals evaluated for essential fatty acids (LA and ALA); Figure S2:
Hierarchical clustering between the samples in EFA groups; Figure S3: Module–trait relationships
(C18:2 n-6—LA-H); Figure S4: Module–trait relationships (C18:2 n-6—LA-L); Figure S5: Module–trait
relationships (C18:3 n-3—ALA-H); Figure S6: Module–trait relationships (C18:3 n-3—ALA-L).
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