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Abstract: Peach (Prunus persica (L.) Batsch) is a popular fruit consumed by people worldwide, owing to
its pleasant flavor and high mineral nutrient content. A few plants from the genus Prunus, such as
Prunus yedoensis, Prunus cerasus, and Prunus serotina have shown vasorelaxant and vasodilatory effects,
to date, no study has investigated the vasorelaxation effects of the P. persica branch extract (PPE).
The vasorelaxant effect of PPE was endothelium-dependent, and it was related to the NO-sGC-cGMP,
vascular prostacyclin, and muscarinic receptor transduction pathway. K+ channels, such as the BKCa,
KV, and KATP channels, were partially associated with PPE-induced vasorelaxation. PPE was effective
in relaxing serotonin (5-HT)- or angiotensin II-induced contraction; furthermore, PPE attenuated
Ca2+-induced vasoconstriction by IP3 receptors in the SR membrane, but its vasorelaxant effect
was not associated with the influx of extracellular Ca2+ via receptor-operative Ca2+ channels or
voltage-dependent Ca2+ channels. Recognizing the rising use of functional foods for hypertension
treatment, our findings imply that PPE may be a natural antihypertensive agent.
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1. Introduction

Hypertension, also known as high or raised blood pressure, is a major cardiovascular disease (CVD)
presenting high global health risk [1]. CVD is a leading cause of death worldwide, with hypertension
provoking an estimated 9.4 million deaths per year; furthermore, 560 million extra people are
expected to be affected by hypertension between 2000 and 2025 [2]. Hypertension is associated with
substantial mortality, which can be dramatically reduced by the long-term control of blood pressure [3].
However, despite high levels of awareness and appropriate antihypertensive pharmacotherapy,
hypertension control rates are still low [4].

Patients with hypertension can be treated successfully using various antihypertensive drugs as
monotherapy or in combination therapy. Despite their efficacy, these medications can exhibit minor
or even severe side effects: Beta-blockers may worsen symptoms of asthma and other lung diseases;
diuretics can provoke reversible impotence and gout attacks; angiotensin-converting enzyme (ACE)
inhibitors can induce persistent dry cough and angioedema; calcium channel blockers (CCB) can cause
peripheral edema, headache, flushing, and tachycardia [5].

Numerous medicinal plants or herbal medicines have been used throughout the history of
mankind for the treatment of various diseases. During the last few decades, public interest in medicinal
plants has increased, because of their favorable side effect profile, low cost, and the emerging scientific
evidence for their clinical utility [6]. Furthermore, the global use of herbal medicines with various
pharmacological activities for CVD management and treatment is expanding [7].
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Prunus persica (L.) Batsch, belonging to the Rosaceae family, is a deciduous tree native to the
region of Northwest China, which is currently widely cultivated. Peach is a popular fruit consumed by
people worldwide due to its pleasant flavor and high mineral nutrient content [8].

The P. persica seed is well known as a traditional medicine (Persicae Semen; Do-in in
Korean, Taoren in Chinese) in Korea, China, Japan, and other Asian countries. It has
traditionally been used for promoting blood flow, dispelling blood stasis, moistening the intestines,
and relieving constipation [9]. Various chemical compounds are contained in this herbal medicine
including amygdalin, cyanogenic glycosides, prunasin, emulsion, glycerides, and sterols [10].
Furthermore, several phenolic compounds have been isolated from P. persica leaves, such as caffeic
acid, chlorogenic acid, kaempferol, p-coumaric acid, prussic acid, quercetin, quercitrin, quinic acid,
tannin, and ursolic acid [11].

Previous pharmacological studies have demonstrated that P. persica exhibits an anti-tumor
promoting [10], acetylcholinesterase inhibitory [12], anti-allergic inflammatory [13], anti-oxidant [14],
and anti-hepatocellular carcinoma activity [15]. A few plants from the genus Prunus, such as
P. yedoensis [16], P. cerasus [17], and P. serotina [18], have shown vasorelaxant and vasodilatory effects.
Although a cardiovascular protective activity of peach by inhibiting angiotensin II-induced signal
transduction has been previously reported [19], to date, no study has investigated the vasorelaxation
effects of the P. persica branch extract (PPE).

2. Materials and Methods

2.1. Chemicals and Reagents

Modified Krebs-Henseleit (KH) buffer powder, phenylephrine (PE), potassium chloride (KCl),
acetylcholine (ACh), Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), 1H-[1,2,4]Oxadiazolo
[4,3-a]quinoxalin-1-one (ODQ), methylene blue (MB), indomethacin, atropine, tetraethylammonium
(TEA), 4-aminopyridine (4-AP), glibenclamide, serotonin hydrochloride (5-HT), angiotensin II (Ang II),
calcium chloride (CaCl2), ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA),
and dimethyl sulfoxide (DMSO) were purchased from Sigma Aldrich (St. Louis, MO, USA). All other
reagents were of analytical purity.

2.2. Plant Material and Extraction

P. persica was collected at Eumseong-gun, Chungcheongbuk-do, Republic of Korea, in March 2018.
This plant was identified by Professor Kyungjin Lee of Kyung Hee University. Voucher specimens of
the collected plants were deposited in the herbarium of the College of Korean Medicine, Kyung Hee
University, Seoul, Republic of Korea. Dried branches (300.0 g) of P. persica were extracted two times
with 3 L 70% ethanol (EtOH) for 3 h in a reflux apparatus at 70 ± 5 ◦C. After reflux and filtration,
the extract was evaporated using a rotary vacuum evaporator at 60 ◦C and lyophilized by using
a freeze-dryer to yield a dark brown residue (50.0 g) of crude extract. The dried sample of PPE was
accurately weighed (0.1 g), dissolved in 1 mL KH buffer, and then placed in an ultrasonic bath for
10 min to break apart any remaining particulate matter.

2.3. Animals and Preparation of Rat Aortic Rings

Sprague-Dawley rats (male, 240 g–260 g, eight weeks old) were purchased from Raonbio (Yongin,
Gyeonggi Province, Korea) and reared under standard laboratory conditions (temperature: 22 ± 2 ◦C,
light: 07:00–19:00) and were given food and water ad libitum. All the animal studies followed the
animal welfare guidelines and were approved (KHUASP (SE)-18-074) by the Kyung Hee University
Institutional Animal Care and Use Committee.

Male SD rats were anesthetized by ether inhalation, and their thoracic aortae were isolated and
placed in a KH buffer [composition (mM): NaCl, 118.0; KCl, 4.7; MgSO4, 1.2; KH2PO4, 1.2; CaCl2, 2.5;
NaHCO3, 25.0; and glucose, 11.1; pH 7.4] by bubbling with a gas mixture of 95% O2—5% CO2 at 37 ◦C.
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The aortae were removed free of connective tissue and fat, and cut into approximately 2 mm long,
and then suspended in organ chambers containing 10 mL KH buffer at 37 ◦C. Each arterial ring was
suspended between two stainless steel hooks connected to an isometric force transducer to measure the
tension. After incubation under no tension for 30 min, the aortic segments were equilibrated for 40 min
at a resting tension of 1.2 g with changes of fresh buffer every 15–20 min. Changes in isometric tension
of aortic rings were obtained via isometric transducers connected to a Powerlab Data Acquisition
System with the Lab Chart software version 8.0 (Sydney, Australia). When required, the endothelium
was removed by gentle rubbing of the lumen with a thin cotton swab. Integrity of the endothelium
was confirmed when ACh (10µM) caused greater than 70% relaxation after pre-contraction by PE
(1 µM). Ca2+ free extracellular solutions were prepared by omitting CaCl2 and adding EGTA (1 mM).
We applied the same concentration and equilibration time for the experimental period.

2.4. Experimental Protocols

2.4.1. Effect of PPE on Endothelium-Intact and Endothelium-Denuded Aortic Rings Pre-Contracted
by PE

PPE (0.5, 1, 2, 5, and 10 µg/mL) activity on endothelium-intact and endothelium-denuded aortic
rings pre-contracted by PE (1 µM) was determined. The relaxant effect of PPE was calculated as
a percentage of the relaxation in response to PE on the aortic rings.

2.4.2. Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with L-NAME, ODQ, MB,
Indomethacin, Atropine, Various Potassium Channel Blockers

The PPE (0.5–10 µg/mL) effect on the nitric oxide (NO) synthesis pathway in endothelium-intact
aortic rings pre-incubated with L-NAME (10 µM), ODQ (10 µM), MB (10 µM), indomethacin (1 µM),
atropine (1 µM), TEA (5 mM), 4-AP (1 mM), or glibenclamide (10 µM) for 20 min before PE (1 µM)
pre-contraction was studied. Compared to the control (not treated with drugs), the relaxant effect of
PPE was calculated as a percentage of the relaxation in response to the drugs pre-treatment on the
aortic rings.

2.4.3. Effect of PPE on Endothelium-Intact Aortic Rings Pre-Contracted by 5-HT

The relaxant effect of PPE (0.5–10 µg/mL) on endothelium-intact aortic rings pre-contracted by
5-HT (10 µM) was investigated. The relaxant effect of PPE was calculated as a percentage of the
relaxation in response to 5-HT on the aortic rings.

2.4.4. Effect of PPE Pre-Treatment on Ang II-Induced Contraction

The inhibitory role of PPE (10 µg/mL) on endothelium-intact aortic rings contracted by adding
cumulative concentrations of Ang II (10−9–10−6 M) was analyzed. After aortic rings were pre-incubated
for 20 min in the absence (control) or presence of PPE, contraction of the aortic rings was evoked by
graded Ang II concentrations, and their responses was calculated as a percentage of the response of
PPE to the contraction induced by Ang II.

2.4.5. Effect of PPE on Extracellular Ca2+-Induced Contraction

The PPE (10 and 20 µg/mL) inhibitory activity on extracellular Ca2+-induced contractions through
receptor-operative Ca2+ channels (ROCCs) or voltage-dependent Ca2+ channels (VDCCs) by PE or
KCl pre-treatment, respectively, was investigated. We examined the contraction response by the
influx of extracellular CaCl2 (0.3–10 mM) on endothelium-denuded aortic rings by PE (1 µM) or KCl
(60 mM) pre-treatment in Ca2+-free KH buffer without (control) and with PPE pre-incubation for
10 min. Compared to the control (not treated with PPE), the contraction responses induced by CaCl2
were calculated as a percentage in the absence (control) and presence of PPE pre-treatment.
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2.4.6. Effect of PPE on Intracellular Ca2+ Release

The effect of PPE (10 and 20 µg/mL) on the intracellular Ca2+ release from the sarcoplasmic
reticulum (SR) via the specific inositol triphosphate receptor (IP3R) was determined. We examined the
contraction response by PE (1 µM) on endothelium-denuded aortic rings in the Ca2+-free KH buffer
without (control) and with PPE pre-incubation for 10 min. Compared to the control (not treated with
PPE), the contraction responses induced by PE were calculated as a percentage in the absence (control)
and presence of the PPE pre-treatment.

2.5. Equation for Percentage Changes of Vasorelaxation

The equation for percentage changes of vasorelaxation after treatment with extracts on aortic
rings were pre-contracted by PE or KCl as follows:

Percentage of vasorelaxation = [{(A − C) − (B − C)}/(A − C)] × 100 (1)

where A is the maximal contraction of aortic rings after pre-contraction by PE; B is the contraction of
aortic rings with drug treatment; C is the contraction of aortic rings before pre-contraction by PE.

2.6. Data Analysis

Values of the outcome data are expressed as the mean ± standard error of mean (SEM). Statistical
comparisons between experimental groups were made using the Student’s t-test with p < 0.05 accepted
as being statistically significant. All statistical analyses were performed by using the SPSS statistical
analysis software (version 23.0; SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Vasorelaxant Effect of PPE on Endothelium-Intact and Endothelium-Denuded Aortic Rings Pre-Contracted
by PE or KCl

In this study, we found the optimal concentration of PPE to relax blood vessels by
evaluating the results of several experiments. PPE caused concentration-dependent vasorelaxation
on endothelium-intact but did not cause vasorelaxation on endothelium-denuded aortic rings
pre-contracted by PE (1µM). The maximal vasorelaxant effect in PE-induced contraction was 81.6 ± 0.4%
and 12.6 ± 0.9% for endothelium-intact and endothelium-denuded aortic rings at the concentration of
10 µg/mL, respectively (Figure 1).
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3.2. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with L-NAME 

Figure 1. (A) Concentration response vasorelaxant effect for the P. persica branch extract (PPE)
(0.5–10 µg/mL) on phenylephrine (PE, 1 µM) pre-contracted aortic rings with (Endo+) or without
(Endo-) endothelium; (B) representative traces of vasorelaxant effect induced by PPE on aortic rings
pre-contraction by PE. Values are expressed as mean± SEM (n = 6–9). ** p < 0.01 compared to the control.
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3.2. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with L-NAME

Pre-incubation with L-NAME (10 µM) significantly inhibited PPE-induced vasorelaxation on
endothelium-intact aortic rings pre-contracted by PE (1 µM). In the absence and presence of L-NAME,
the maximal vasorelaxant effect was 81.6 ± 0.4% and 5.7 ± 0.6% at the concentration of 10 µg/mL,
respectively (Figure 2).
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Figure 2. Concentration response (A) and representative traces (B) of vasorelaxant effect for PPE
(0.5–10 µg/mL) in the absence (control) or presence of Nω-Nitro-L-arginine methyl ester hydrochloride
(L-NAME, 10 µM) on phenylephrine (PE, 1 µM) pre-contracted aortic rings. Values are expressed as
mean ± SEM (n = 5–9). ** p < 0.01 compared to the control.

3.3. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with ODQ or MB

To test the relaxant properties of PPE (0.5–10 µg/mL) in the cyclic guanosine monophosphate
(cGMP) pathway, pre-incubation with ODQ (10µM) and MB (10µM) significantly inhibited PPE-induced
vasorelaxation on endothelium-intact aortic rings pre-contracted by PE (1 µM). In the presence of
ODQ and MB, the maximal vasorelaxant effect was 2.4 ± 0.3% and 2.0 ± 0.2% at the concentration of
10 µg/mL, respectively (Figure 3).
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3.4. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with Indomethacin

To test the activity of PPE (0.5–10 µg/mL) in the prostacyclin pathway, pre-incubation with
indomethacin (1 µM) significantly inhibited PPE-induced vasorelaxation on endothelium-intact
aortic rings pre-contracted by PE (1 µM). In the absence and presence of indomethacin,
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the maximal vasorelaxant effect was 81.6 ± 0.4% and 28.8 ± 1.9% at the concentration of 10 µg/mL,
respectively (Figure 4).Nutrients 2019, 11, x FOR PEER REVIEW 6 of 12 
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3.5. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with Atropine

To test the relaxant effect of PPE (0.5–10 µg/mL) from the stimulation of muscarinic
receptors, pre-incubation with atropine (1 µM) significantly inhibited PPE-induced vasorelaxation on
endothelium-intact aortic rings pre-contracted by PE (1 µM). In the absence and presence of atropine,
the maximal vasorelaxant effect was 81.6 ± 0.4% and 41.1 ± 2.8% at the concentration of 10 µg/mL,
respectively (Figure 5).

Nutrients 2019, 11, x FOR PEER REVIEW 6 of 12 

 

 
Figure 4. Concentration response (A) and representative traces (B) of vasorelaxant effect for PPE (0.5–
10 μg/mL) in the absence (control) or presence of indomethacin (1 μM) on phenylephrine (PE, 1 μM) 
pre-contracted aortic rings. Values are expressed as mean ± SEM (n = 7–9). **p < 0.01 compared to the 
control. 

3.5. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with Atropine 

To test the relaxant effect of PPE (0.5–10 μg/mL) from the stimulation of muscarinic receptors, 
pre-incubation with atropine (1 μM) significantly inhibited PPE-induced vasorelaxation on 
endothelium-intact aortic rings pre-contracted by PE (1 μM). In the absence and presence of atropine, 
the maximal vasorelaxant effect was 81.6 ± 0.4% and 41.1 ± 2.8% at the concentration of 10 μg/mL, 
respectively (Figure 5). 

 
Figure 5. Concentration response (A) and representative traces (B) of vasorelaxant effect for PPE (0.5–
10 μg/mL) in the absence (control) or presence of atropine (1 μM) on phenylephrine (PE, 1 μM) pre-
contracted aortic rings. Values are expressed as mean ± SEM (n = 7–9). **p < 0.01 compared to the 
control. 

3.6. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with Various Potassium 
Channel Blockers 

To test the role of PPE (0.5–10 μg/mL) in the potassium channel, pre-incubation with potassium 
channel blockers such as TEA (5 mM), 4-AP (1 mM), or glibenclamide (10 μM) significantly inhibited 
PPE-induced vasorelaxation on endothelium-intact aortic rings pre-contracted by PE (1 μM). In the 
presence of TEA, 4-AP, or glibenclamide, the maximal vasorelaxant effect was 21.2 ± 2.3%, 32.6 ± 2.1%, 
and 31.4 ± 3.9% at the concentration of 10 μg/mL, respectively (Figure 6). 

Figure 5. Concentration response (A) and representative traces (B) of vasorelaxant effect for PPE
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3.6. Vasorelaxant Effect of PPE on Endothelium-Intact Aortic Rings Pre-Incubated with Various Potassium
Channel Blockers

To test the role of PPE (0.5–10 µg/mL) in the potassium channel, pre-incubation with potassium
channel blockers such as TEA (5 mM), 4-AP (1 mM), or glibenclamide (10 µM) significantly inhibited
PPE-induced vasorelaxation on endothelium-intact aortic rings pre-contracted by PE (1 µM). In the
presence of TEA, 4-AP, or glibenclamide, the maximal vasorelaxant effect was 21.2 ± 2.3%, 32.6 ± 2.1%,
and 31.4 ± 3.9% at the concentration of 10 µg/mL, respectively (Figure 6).
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3.7. Vasorelaxant Effect of PPE on 5-HT-Induced Contraction

PPE caused concentration-dependent vasorelaxation on endothelium-intact aortic rings
pre-contracted by 5-HT (10 µM). The maximal vasorelaxant effect was 66.4 ± 2.8% compared to
the control group 21.5 ± 1.9% at the concentration of 10 µg/mL, respectively (Figure 7).
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3.8. Inhibitory Effect of PPE Pre-Treatment on Ang II-Induced Contraction

An experiment was conducted to evaluate the inhibitory effect of PPE (10 µg/mL) on
endothelium-intact aortic rings evoked by Ang II (10−9–10−6 M). PPE pre-treatment significantly
attenuated the contraction induced by Ang II. The contraction was decreased to 0.44 ± 0.02 g compared
to the control group 1.35 ± 0.03 g at Ang II 10−6 M concentration, respectively (Figure 8).
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Figure 8. Inhibitory effect (A) and representative traces (B) of PPE (10 µg/mL) in the contraction induced
by angiotensin II (Ang II, 10−9–10−6 M) on endothelium-intact aortic rings in the absence (control)
or presence of PPE. Values are expressed as mean ± SEM (n = 7). * p < 0.05, ** p < 0.01 compared to
the control.

3.9. Inhibitory Effects of PPE on Extracellular Ca2+-Induced Contraction Through ROCCs or VDCCs

The accumulative addition of CaCl2 (0.3–10 mM) induced the gradual increase of tension through
ROCCs or VDCCs by PE (1 µM) or KCl (60 mM) pre-treatment on endothelium-denuded aortic rings in
a Ca2+-free KH buffer. PPE (10 and 20 µg/mL) pre-incubation did not alter the contractions induced by
extracellular CaCl2 (10 mM). The contraction at PPE (10 and 20 µg/mL) pre-incubation was 1.61 ± 0.04 g
and 1.63 ± 0.06 g compared to the control group 1.65 ± 0.01 g on aortic rings pre-contracted by PE,
respectively (Figure 9). The contraction at PPE (10 and 20 µg/mL) pre-incubation was 1.16 ± 0.04 g
and 1.19 ± 0.06 g compared to the control group 1.20 ± 0.05 g on aortic rings pre-contracted by KCl,
respectively (Figure 9).
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Figure 9. Inhibitory effect of PPE (10 and 20 µg/mL) in the contraction induced by extracellular
CaCl2 (0.3–10 mM) on endothelium-denuded aortic rings that were pre-contracted with phenylephrine
(PE, 1 µM) (A) or potassium chloride (KCl, 60 mM) (B) in the absence (control) or presence of PPE.
(C,D) are representative traces under the indicated conditions. Values are expressed as mean ± SEM
(n = 5–9).



Nutrients 2019, 11, 1816 9 of 12

3.10. Inhibitory Effects of PPE on Intracellular Ca2+ Release

PPE (10 and 20 µg/mL) pre-incubation for 10 min attenuated the contraction induced by PE
(1 µM) on endothelium-denuded aortic rings in a Ca2+-free KH buffer. The contraction at PPE
(20 µg/mL) pre-incubation was significantly decreased to 0.09 ± 0.01 g compared to the control group
0.15 ± 0.01 g (Figure 10).
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** p < 0.01 compared to the control.

4. Discussion

The P. persica (peach) fruit is widely consumed, and its seed is well known as a traditional medicine
against blood stasis in Korea, China, and Japan [15]. Several medicinal plants belonging to the Prunus
genus have shown vascular activities: P. yedoensis bark relaxed vascular blood vessels by activating
the NO formation from L-arginine and the NO-cGMP pathway, and blocking Ca2+ entry through
extracellular Ca2+ channels [16]; the P. cerasus fruit (Montmorency tart cherry) significantly lowered
systolic blood pressure in men with early hypertension [17]; and P. serotina fruits (Black cherry) induced
vasodilation by activating the NO/cGMP and H2S/KATP channel pathways [18]. The P. persica fruit
(peach) has also shown cardiovascular protective effects by inhibiting angiotensin II-induced signal
transduction in vascular smooth muscle cells (VSMCs) [19]. Here, we assessed for the first time the
vascular activities of PPE by testing the vasorelaxant effect and investigating the associated mechanisms
using an isolated organ-chamber technique. In the present study, the 70% ethanol PPE caused the
concentration-dependent vasorelaxation of rat aortic rings pre-contracted by PE.

The endothelium plays a critical role in regulating the vascular function by secreting various
endothelium-derived relaxing factors, such as NO and prostaglandins, endothelium-dependent
hyperpolarization factors, or endothelium-derived contracting factors, including thromboxane
and endothelin-1. The deficiency of these vasoactive agents, including relaxing factors,
can cause the endothelial dysfunction. The endothelial dysfunction has been implicated in
numerous pathological conditions, such as stroke, heart disease, vascular disease associated with
vasoconstriction, inflammatory state, and thrombosis [20]. PPE exhibited a vasorelaxant effect on
endothelium-intact aortic rings contracted by PE or KCl; however, the vasorelaxant activity of PPE on
endothelium-denuded aortic rings was reduced. The data suggested that the vasorelaxant effect of
PPE is endothelium-dependent.
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NO, a gas synthesized endogenously from the amino acid L-arginine by NO synthase (NOS),
causes vasodilation. In smooth muscle cells, NO activates soluble guanylate cyclase (sGC), which in turn
increases cGMP, leading to the activation of cGMP-dependent protein kinases (PKG), an intracellular
Ca2+ concentration reduction, and vasodilation induction [21]. To investigate endothelium-related
vasorelaxation including the NO synthesis pathway and cGMP pathway, L-NAME (NOS inhibitor),
ODQ, and MB (sGC inhibitor) were utilized. The vasorelaxant effects of PPE were reduced after
pre-treatment with L-NAME, ODQ, or MB. These results imply an association of PPE vasorelaxant
effects with the NO-sGC-cGMP pathway.

Prostacyclin (PGI2) and thromboxane are important vascular prostanoids, which are formed
by cyclooxygenase from the arachidonic acid. PGI2 generates cyclic adenosine monophosphate
(cAMP), leading to the induction of endothelial-dependent vasorelaxation [22]. Pre-incubation with
indomethacin (a non-selective cyclooxygenase inhibitor) inhibited PPE-induced vasorelaxation,
indicating that the PPE vasorelaxant effect is related to the vascular prostacyclin pathway.

Moreover, atropine, an antagonist of muscarinic acetylcholine receptors [23], affected the
vasorelaxation induced by PPE, implying an association of the PPE vasorelaxant activity with the
muscarinic receptor.

Vascular contraction and relaxation were also regulated by the membrane potential of arterial
smooth muscle cells through K+ channels. The K+ channel opening causes hyperpolarization and
relaxation of VSMCs, a subsequent blood flow increase, and a blood pressure decrease. There are four
different K+ channel subtypes including Ca2+-activated K+ channels (BKCa), voltage-gated K+ channels
(KV), ATP-sensitive K+ channels (KATP), and inward rectifiers K+ channels (KIR) [24]. To investigate
potential K+ channel-related PPE-induced vasorelaxation, common K+ channel blockers such as TEA
(BKCa blocker), 4-AP (KV blocker), and glibenclamide (KATP blocker) were used. The vasorelaxant
effect of PPE was partially attenuated by TEA, 4-AP, or glibenclamide pre-incubation. These results
suggest that the vasorelaxant effects of PPE are partially related to K+ channels, such as BKCa, KV,
and KATP channels.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is an autacoid synthesized primarily in the
enterochromaffin cells of the intestine and in some areas of the brain. 5-HT is a key neurotransmitter
and a vasoactive amine involved in the nervous, gastrointestinal, and cardiovascular systems [25].
5-HT constricts the arteries by inhibiting the KV and KATP channel activity in various vascular
beds [26]. PPE caused concentration-dependent vasorelaxation of aortic rings pre-contracted by 5-HT,
demonstrating that PPE is effective in relaxing the 5-HT-induced contraction.

The renin-angiotensin system (RAS) is a hormone system maintaining the effective circulating
blood volume and blood pressure by regulating the total sodium content. Renin, a proteolytic enzyme
synthesized and stored in the juxtaglomerular cells, splits a 10-amino acid fragment named angiotensin
I (Ang I) from angiotensinogen. ACE, one of the key enzymes in the RAS, removes 2 amino acids from
Ang I generating the octapeptide Ang II, which causes the vasoconstriction and aldosterone release [27].
Pre-treatment with PPE significantly attenuated the Ang II-induced contraction, implying that PPE
may inhibit the Ang II–induced contraction of aortic rings with intact endothelium.

Both the Ca2+ release from intracellular Ca2+ stores and Ca2+ influx from the extracellular space
through ROCCs or VDCCs in plasma membrane channels regulate the contraction and relaxation of
the vascular smooth muscle [28]. PE, an α-adrenergic agonist, causes vascular contraction by releasing
intracellular Ca2+ from the SR following activation of inositol 1,4,5-trisphosphate (IP3) receptors, as well
as by entry of extracellular Ca2+ via ROCCs. However, KCl induces the vascular contraction as a result
of extracellular Ca 2+ influx by the depolarization-induced opening of VDCCs [29]. PPE pre-incubation
did not affect vasoconstriction induced by Ca2+ supplementation in the aortic rings pre-contracted
with PE or KCl in Ca2+-free KH buffer. These results suggest that the vasorelaxant effects of PPE are not
associated with the influx of extracellular Ca2+ via ROCCs or VDCCs. Moreover, PPE pre-incubation
attenuated the contraction induced by PE on endothelium-denuded aortic rings in the Ca2+-free
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KH buffer, suggesting that PPE may inhibit Ca2+-induced vasoconstriction by IP3 receptors in the
SR membrane.

Recognizing the rising use of functional foods for hypertension treatment, our findings indicate
that PPE may be a potential natural antihypertensive agent. However, since P. persica contains
a variety of compounds, further in-depth studies are required for the isolation and identification of
pharmacologically active molecules.

5. Conclusions

In conclusion, (1) the vasorelaxant effect of PPE was endothelium dependent; (2) was related to the
NO-sGC-cGMP, vascular prostacyclin, and muscarinic receptor transduction pathway; (3) K+ channels,
such as the BKCa, KV, and KATP channels, were partially related to the PPE-induced vasorelaxation;
(4) PPE was effective in relaxing the contraction induced by 5-HT or Ang II; and (5) PPE attenuated
Ca2+-induced vasoconstriction by IP3 receptors in the SR membrane; however, (6) the vasorelaxant
effects of PPE were not associated with the influx of extracellular Ca2+ via ROCCs or VDCCs.
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