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ABSTRACT
Background: The gut microbiome (GMB) generates numerous small chemicals that can be ab-
sorbed by the host and variously biotransformed, incorporated, or excreted. The resulting metab-
olome can provide information about the state of the GMB, of the host, and of their relationship. 
Exploiting this information in the service of biomarker development is contingent on knowing 
the GMB-sensitivity of the individual chemicals comprising the metabolome. In this regard, 
human studies have lagged far behind animal studies. Accordingly, we tested the hypothesis that 
serum levels of chemicals unequivocally demonstrated to be GMB-sensitive in rodent models 
would also be affected in a clinical patient sample treated with broad spectrum antibiotics.

Methods: We collected serum samples from 20 hospitalized patients before, during, and after 
treatment with broad-spectrum antibiotics. We also collected samples from 5 control patients ad-
mitted to the hospital but not prescribed antibiotics. We submitted the samples for a non-targeted 
metabolomic analysis and then focused on chemicals known to be affected both by germ-free 
status and by antibiotic treatment in the mouse and/or rat.

Results: Putative identification was obtained for 499 chemicals in human serum. An aggregate 
analysis did not show any time x treatment interactions. However, our literature search identified 
10 serum chemicals affected both by germ-free status and antibiotic treatment in the mouse or 
rat. Six of those chemicals were measured in our patient samples and additionally met criteria 
for inclusion in a focused analysis. Serum levels of 5 chemicals (p-cresol sulfate, phenol sulfate, 
hippurate, indole propionate, and indoxyl sulfate) declined significantly in our group of antibiot-
ic-treated patients but did not change in our patient control group.

Conclusions: Broad-spectrum antibiotic treatment in patients lowered serum levels of selected 
chemicals previously demonstrated to be GMB-sensitive in rodent models. Interestingly, all those 
chemicals are known to be uremic solutes that can be derived from aromatic amino acids (L-phe-
nylalanine, L-tyrosine, or L-tryptophan) by anaerobic bacteria, particularly Clostridial species. We 
conclude that judiciously selected serum chemicals can reliably detect antibiotic-induced suppres-
sion of the GMB in man and thus facilitate further metabolome-based biomarker development. 

Keywords: serum, metabolome, antibiotic, L-tyrosine, L-phenylalanine, L-tryptophan, Clostridia

INTRODUCTION
The gut microbiome (GMB) generates numerous small (< 2,000 Da) chemicals that can be ab-
sorbed, biotransformed, and either incorporated or excreted by the host [1-3]. The levels of such 
chemicals, their relationships, and temporal patterns can offer information about the state of the 
GMB, the gut wall, the liver, or other participating systems [4, 5]. GMB-derived metabolites may 
themselves be bioactive [6]. Thus, the characterization of their chemical profiles may have a wide 
range of diagnostic, prognostic, or therapeutic applications [4, 5]. 

Development of such potential biomarkers requires identifying the GMB-sensitive constituents of 
the metabolome. While germ-free mice and rats (GF) have proved invaluable in this regard [7], 
they have no true human homologue. An alternative approach is to evaluate antibiotic regimens 
that in rodent models selectively suppress certain microbial taxa [8-11] or eliminate most of the 
GMB, thus generating a pseudo-GF status [12]. Although it has been more than 65 years since 
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antibiotic treatment was first observed to lower excretion of volatile phenols in man [13], a cur-
rent literature search identified only 5 studies of antibiotic effects on the human serum metabo-
lome [14-18]. Given the high and rising global use of antibiotics [19], the paucity of metabolomic 
studies in antibiotic-exposed humans constitutes a striking knowledge gap that must be acknowl-
edged, explained, and resolved.

In man, antibiotic exposure is associated with numerous side-effects [20] including suppression of 
the GMB and weakening of resistance to enteric pathobionts [21, 22]. Gut overgrowth by health-
care-associated pathogens such as Clostridium difficile and vancomycin-resistant Enterococci [11, 
23, 24] imposes substantial morbidity, mortality, and economic burden [25]. Such considerations 
limit human antibiotic studies to clinical samples, thus constraining control over demograph-
ic (age [26], socioeconomic [27]), intrinsic (genetic [28]), and other factors (diet [29], physical 
activity [30], colonic transit time [31], medications [32], morbidity, environment [33]) that can 
affect the human GMB and/or metabolome [34]. Not surprisingly, many chemicals within the 
human metabolome show very high inter- and intra-individual variance [3, 35, 36]. Ingestion of 
a single cup of coffee, for instance, can elevate excretion of certain GMB-derived small phenolic 
chemicals by several-hundred-fold [37]. 

The lower variance of chemical levels in serum [36] relative to those in urine [35] or feces [38] 
should make the human serum metabolome particularly useful for studying antibiotic effects. 
The small number of such reports [14-18] may be due to both technical and statistical barriers. 
Identification and quantification of chemicals using a targeted analytic approach requires hav-
ing authentic standards and generating calibration curves for each analyte of interest. This can 
be highly resource intensive. Untargeted approaches that draw on spectral libraries provide only 
semi-quantitative information and putative identification but generate data on thousands of 
chemicals [39]. To deal with the resulting large numbers of variables, the False Discovery Rate 
(FDR) [40] is commonly applied. Such a statistical constraint may be excessively strict at times, 
resulting in type II statistical errors. Given the bias against publishing negative results [41], in-
vestigators may be discouraged from conducting investigations of antibiotic effects on the serum 
metabolome or from publishing ostensibly negative data from completed studies. 

A complementary approach would be to a priori identify a discrete number of chemicals expected 
to be consistently detectable as antibiotic-responsive by univariate analysis. Such anchor points 
would confirm antibiotic effects overall and justify the search for additional sensitive chemicals. 
Accordingly, we conducted untargeted metabolomic analysis of serum from patients treated with 
wide-spectrum antibiotic and then subjected the aggregate data to a focused, pre-planned analysis 
guided by results from animal studies.

MATERIALS AND METHODS

Participants 
The study protocol was approved by the Institutional Review Board of the Veterans Affairs North-
east Ohio Healthcare System (VA NEOHS). Newly hospitalized patients who were prescribed 
broad-spectrum antibiotic regimens were recruited for enrollment. Exclusion criteria included 
systemic antibiotic treatment within the month before admission, altered mental status or demen-
tia, lack of availability of blood serum specimens prior to the start of antibiotic therapy, anticipat-
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ed length of hospital stay less than 3 days, tube feeds, and end-stage renal or liver disease. Serum 
specimens were collected prior to the start of antibiotic therapy, on day 2 to 3 of therapy, and 3 to 
5 days after completion of antibiotic therapy. To evaluate the potential for large shifts in the serum 
metabolome during hospitalization in the absence of antibiotic therapy, serum specimens were 
collected at the same time points for 5 control patients admitted to the hospital but not prescribed 
antibiotics. These control patients were not matched to the experimental patients based on clin-
ical characteristics. The serum specimens were stored at -80°C. After completion of specimen 
collection, coded samples were shipped on dry ice to Metabolon© (Morrisville, NC) where they 
were inventoried and stored at -80°C until analyzed.

Sample Preparation and Technical Analysis
All sample preparation and analysis was conducted by Metabolon©. In brief, samples were ex-
tracted using proprietary methods and the resulting extract divided into 2 fractions, 1 each for 
analysis on gas chromatography/mass spectroscopy (GC/MS) and liquid chromatography (LC)/
MS platforms [42]. The LC/MS portion of the platform was based on a Waters ACQUITY UPLC 
and a Thermo-Finnigan LTQ mass spectrometer, which consisted of an electrospray ionization 
source and linear ion-trap mass analyzer.  The sample extract was split into 2 aliquots, dried, 
then reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or more 
injection standards at fixed concentrations. One aliquot was analyzed using acidic positive ion 
optimized conditions and the other using basic negative ion optimized conditions in 2 indepen-
dent injections using separate dedicated columns. The samples destined for GC/MS analysis were 
re-dried under vacuum desiccation for a minimum of 24 hours prior to being derivatized under 
dried nitrogen using bistrimethyl-silyl-triflouroacetamide. The GC column was 5% phenyl and 
the temperature ramp was from 40° to 300° C in a 16-minute period. Samples were analyzed on a 
Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron 
impact ionization. The instrument was tuned and calibrated for mass resolution and mass accu-
racy on a daily basis. The information output from the raw data files was automatically extracted. 
Compounds were identified by comparison to library entries of purified standards or recurrent 
unknown entities [42] (for details see Supplementary Information, Methods).

Statistical Analysis
General: For pair-wise comparisons Welch’s t-tests and/or Wilcoxon’s rank sum tests were per-
formed (after a repeated measures ANOVA). For classification, random forest analyses were done. 
Statistical analyses were performed using the program “R”.  

Selection of Analytes for Focused Statistical Analysis: We conducted a PubMed search 
(2020/04/01) using the phrase “(mouse OR rat) AND (germ-free OR antibiotic) AND [(serum 
OR plasma OR blood)] AND metabolome.” We evaluated the resulting articles as well as any 
additional relevant publications that they referenced. Antibiotic reports were considered to be rel-
evant if they met the following criteria, i) they used a conventional animal strain, ii) the antibiotic 
was administered for > 6 days, iii) a control group not treated with antibiotic was included, iv) an-
imals were maintained on a standard lab diet, and v) blood was drawn no later than 24 hours after 
completion of antibiotic treatment. Our final focused list consisted of chemicals whose serum 
levels were reported to be affected both by GF status and by treatment with at least 1 antibiotic. 
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From the data provided by Metabolon©, we decided a priori to exclude those chemicals for 
which > 50% of baseline data were missing. Given that antibiotics often suppress GMB-derived 
metabolites, chemicals with > 50% missing values at the post-antibiotic time point were includ-
ed. To address fluctuations that can occur for reasons other than antibiotic treatment, we also 
decided a priori to exclude those chemicals which showed significant changes between any of the 
time points, PRE-, MID-, and POST-antibiotic in the control group. Finally, chemicals that were 
significantly different between the control group and antibiotic group at the PRE time point were 
also to be excluded a priori.

The list of chemicals obtained from the PubMed search was cross-referenced with the list of 
chemicals we measured in patient serum subject to the a priori exclusions. Chemicals common 
to both lists were subjected to planned t-test comparisons with significance set at P < 0.05, uncor-
rected for multiple comparisons. 

RESULTS
A total of 20 antibiotic-treated patients (mean age 70.5 years, range 50-90 years, all male) and 5 
controls (mean age 75.4 years, range 64-90 years, all male) completed the study. With the excep-
tion of 1 antibiotic-treated participant who provided 2 MID blood samples and no POST sample, 
all other participants provided PRE, MID, and POST samples. The antibiotic treatment regimens 
included a broad-spectrum beta-lactam antibiotic (18 piperacillin/tazobactam, 1 ertapenem, and 
1 ceftriaxone) alone in 4 patients, and in combination with additional agents in 16 patients (14 
intravenous vancomycin and 2 moxifloxacin). The median duration of antibiotic treatment was 5 
days (range 2-20 days).

General Analysis 
The metabolomic analysis provided putative identification for 499 chemicals. Under general analy-
sis, 69 chemicals in the control group and 153 chemicals in the antibiotic group showed significant 
uncorrected POST vs PRE differences (Supplementary Table 1), but in no case did any reach the 
FDR required for a significant time x treatment interaction (Supplementary Table 1, Supplementa-
ry Data). The Hierarchical Clustering and a Principal Component Analysis showed a high over-
lap between the groups (Supplementary Figure 2). The Random Forest Analysis showed that the 
control group and the antibiotic-treated groups could be separated before, during, or at the end 
of the study with a predictive accuracy 65%-68% (Supplementary Figure 3). However, none of the 
chemicals identified by the biochemical importance plot (Supplementary Figure 4) could sustain 
the FDR for a significant time x treatment interaction (Supplementary Data [Pathway Heat Map]).

Focused Analysis
Our PubMed search identified 8 relevant studies of antibiotic-effects on serum chemical levels in 
mice or rats [43-50] (Table 1). We also found 7 mouse studies [1, 51-56] that cumulatively identi-
fied 21 unique chemicals affected by GF status (Table 2). Overall, we identified 10 serum chemi-
cals reported to be affected both by GF status and by antibiotic treatment in rodents. 

Eight such chemicals were among those measured in our human serum (Table 2, Supplementary 
Data [Pathway Heat Map]). N-acetyltryptophan was then excluded because > 50% of the data 
were missing at 1 time point. L-tyrosine was excluded because its levels at the PRE- time point 
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tended to be higher in the antibiotic treatment group. Thus, 6 chemicals remained for consider-
ation (Table 2). Of those, only levels of serotonin (5HT) did not show significant differences in 
POST vs PRE or MID vs PRE comparisons whereas levels of 5 chemicals significantly declined 
(Table 3). The pattern of decline over time, however, varied greatly across individuals. In the case 
of p-cresol sulfate, for instance, some individuals showed progressive decline over the duration 
of treatment, others showed maximal decline at the MID point with some recovery, and several 
showed a decline only after the MID point (Figure 1). 

Table 1: Antibiotic Effects on Small Molecules in the Serum of the Mouse or Rat

Source model Antibiotic Duration 
(Days)

Day(s) of blood 
collection

[43] rat, M
neomycin or gentamicin or 

moxifloxacin or levofloxacin or 
doxycycline or tetracycline

28 7, 14, 28

[44] rat, M/F clindamycin or lincomycin 28 7, 14, 28
[45] rat, F mequindox (low/med/high dose) 91 35, 91

[46] rat, M vancomycin or (streptomycin + 
bacitracin + polymyxin B) 7 0, 7

[47] mouse, M ampicillin + vancomycin + neomycin + 
metronidazole 28 28

[48] rat, M penicillin 14 0.5, 1, 14

[50] mouse, M ampicillin + vancomycin + neomycin + 
metronidazole 14 15

[49] mouse, M ampicillin + neomycin 28 28

Mouse or rat studies in which serum chemicals were reported and which satisfied the following criteria: i) 
conventional strain, ii) antibiotic administered for > 6 days, iii) included a non-antibiotic treated control 
group, iv) standard lab diet, v) blood drawn no later than 24h after the termination of antibiotic. M- male, 
F- female.
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Table 2: Selecting Small Molecules for Focused Analysis in Serum Based on their Sensitivity 
to Germ-Free Status and Antibiotic Effects in Rodents

Serum Levels of
Effect of 

Germ-Free 
status (mouse) 

Effect of Abx 
(mouse or 

rat) 

Measured 
in current 

study

Included in 
Focused 
Analysis 

cinnamoylglycine – 

diydroxyquinoline glucuronide –
equol sulfate –
hippuric acid*    

indole-3-propionic acid* –   

indoxyl-3-sulfate* –   

methyl equol sulfate –
N-acetyltryptophan    α
p-cresol sulfate* –   

phenol sulfate* –   

phenylacetylglycine  

phenylpropionylglycine –
pyrocatechol sulfate  

serotonin*    

L-tryptophan  

L-tyrosine    β
urate  

3-(3-sulfooxyphenyl) Phenyl 
sulfate propanoic acid –

3-Carboxy-4-methyl-5-
pentyl- 2-furanpropionic acid 
glucuronide



5-hydroxyindoleacetic acid 

12-Hydroxy-
5Z,8Z,10E,14Z,17Z-
eicosapentaenoic acid



Serum chemicals affected by germ-free status [1, 51-56], were cross-referenced with those affected by 
antibiotics in mouse or rat studies [43-50] and with those for which data from the current human study 
were available. – serum levels not detectable in GF animals, α - > 50% data missing at a relevant time 
point, β - trend towards significant difference between controls and antibiotic-treated group at the PRE 
time point, *accepted for focused analysis.
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Table 3: Effects on Serum Levels of Small Molecules: Antibiotics in Patients vs Germ-Free 
Status or Antibiotics in Animal Models

chemical

Serum Ratios P-values

Human Abx 
MID/PRE, 
POST/PRE

Mouse 
GF/

CONT

Rat or 
Mouse 
Abx/

CONT

Rat or Mouse 
Abx regimen

Human 
Abx

Mouse 
GF

Rat or 
Mouse 

Abx

p-cresol 
sulfate 0.49, 0.66 ndb,g

0.09e VAN

0.002 0.002

< 0.001

0.11e STREP + NEO + 
BACI + POLY < 0.001

.04l AMP + NEO + 
METRO + VAN < 0.001

phenol 
sulfate 0.34, 0.62

ndb 0.04e VANCO 0.003 10-6 < 0.001

0.05a,g 0.03e STREP + NEO + 
BACI + POLY 0.002 < 0.001

hippurate 0.76, 0.46 0.06b

0.10–0.30c LEVO

0.05 2 x 10-9

< 0.2*
0.17–0.43c MOXI < 0.2*
.09–0.15c DOX < 0.2*

0.16–0.35c TETRA < 0.2*
0.20–0.45c NEO < 0.2*
0.12–0.54c GENT < 0.2*

0.05 PEN < 0.05
0.06e VAN < 0.001

0.06e STREP + NEO + 
BACI + POLY < 0.001

.07–.13d CLIN < 0.2*
.033–1.97d LINCO < 0.2*

indole 
propionate 1.18, 0.45 ndb

0.12–0.30c NEO

0.005 8 x 10-7

< 0.2*
.06–0.42c GENT < 0.2*

0.37e VANCO < 0.001

0.44e STREP + NEO + 
BACI + POLY < 0.001

.01l AMP + NEO + 
METRO + VAN < 0.001

indoxyl 
sulfate 0.57, 0.54 nda,b,g,h,i

0.25–0.68c DOX

0.02
1.3 x 
10-7b, 
0.002a

< 0.2*
0.33–0.51c TETRA < 0.2*
.01–.025f PEN < 0.05

0.47–0.66e STREP + NEO + 
BACI + POLY < 0.001

.44l AMP + NEO + 
METRO + VAN < 0.001

continued on next page
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Table 3 (continued)

chemical

Serum Ratios P-values

Human Abx 
MID/PRE, 
POST/PRE

Mouse 
GF/

CONT

Rat or 
Mouse 
Abx/

CONT

Rat or Mouse 
Abx regimen

Human 
Abx

Mouse 
GF

Rat or 
Mouse 

Abx

serotonin 0.97, 0.95 0.33–
0.36b,j

3.11e VAN
0.14 1.3 x 

10-10bj < 0.001
0.52k AMP + NEO

Serum ratios (POST/PRE or MID/PRE) of antibiotic (Abx)-treated patients or germ-free (GF) or Abx-
treated animals/controls (CONT). BACI – bacitracin, CLIN – clindamycin, DOX – doxycycline, GENT 
– gentamicin, LEVO – levofloxacin, LINCO – lincomycin, MOXI – moxifloxacin, NEO – neomycin, PEN – 
penicillin G, POLY – polymyxin B, STREP- streptomycin, TETRA – tetracycline, VAN- vancomycin. a. Chu 
et al, 2019, b. Wikoff et al 2009, c. Behr et al, 2017, d. Behr et al 2018, e. Lam et al, 2016, f. Sun et al, 2013, g. 
Devlin et al, 2016, h. Mishima et al, 2017, i. Shimada et al, 2013, j. Sjogren et al, 2012, k. et al, 2019, l. Cho 
Y et al, 2019). nd - not detected in GF animals. P-values were calculated for means. POST vs PRE or MID v 
PRE for human Abx, GF v CONT, Abx v CONT for animal studies. Bold values for Human Abx designate 
comparisons which were statistically significant p < .05. * Welch’s t-test at p < 0.2 considered significant.

DISCUSSION
In our group of patients treated with broad-spectrum antibiotics, serum levels of 5 of 6 chemicals 
predicted to be highly GMB-dependent by animal studies, declined significantly as measured by 
univariate analysis. While consistent with our hypothesis, the findings have to be critically inter-
preted in terms of assumptions, experimental limitations, and generalizability. 

We enlisted inpatient male veterans with any of several medical conditions for which broad-spec-
trum antibiotic treatment was indicated. The duration of antibiotic treatment varied considerably. 
Our small sample of controls was not clinically matched with the treatment group. We used a 
commercial metabolomic service (Metabolon©) that conducted a non-targeted analysis using 
GC/MS or LC/MS/MS. While such an approach supports detection of a very large number of 
chemicals, it does so on the basis of available spectroscopic libraries rather than by direct com-
parisons to authentic standards. This yields presumptive identification and semi-quantitative 
comparisons [39]. On the other hand, the chemicals in our focused analysis have relatively simple 
structures and well-characterized spectral properties. 

A classical ANOVA that included all the aggregate data (20 patients, 5 controls, 3 time points, 499 
chemicals) did not show any time x treatment interactions that exceeded the preset q < 0.1. Part 
of this was due to the FDR for multiple corrections. However, even if the q value was ignored and 
any time x treatment interaction P < 0.05 accepted, relatively few analytes would have reached sig-
nificance. This can be partially attributed to the high variance of the data as well as to the unequal 
sizes of the control (n = 5) and antibiotic-treated (n = 20) groups. We dealt with these issues by 
imposing criteria determined a priori to restrict the number of chemicals admitted to a focused 
univariate analysis. 
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The requirement that serum levels of a given chemical show GMB-dependence in both GF and 
antibiotic animal studies had by far the largest overall impact. Our PubMed search identified only 
10 such serum chemicals (Table 2). Of those, phenylacetylglycine and pyrocatechol sulfate were 
not part of the panel of chemicals measured in our human serum (Table 2). Thus, only 8, or 1.6% 
of the total number (n = 499) of putatively identified chemicals could be considered for a fo-
cused evaluation. We also decided a priori to exclude chemicals whose levels in the control group 
showed significant changes during the experimental period. It turned out, however, that this rule 
had no practical effect and did not further limit the chemicals identified as antibiotic-responsive 
in animal studies (Table 2). Second, we decided to exclude chemicals that at the PRE (ie, baseline) 
time point already tended to be significantly different (P < 0.1) between controls and antibiot-
ic-treated individuals. Such differences may be attributable to chance, underlying illness, or other 
factors. L-tyrosine was excluded in this way. Third, we decided to exclude all chemicals for which 
> 50% of data were missing for any time point in the controls or at the PRE time point in the 

Figure 1. Serum levels of p-cresol sulfate immediately before (PRE), during (MID), and within 24h of 
completion (POST) of a course of broad-spectrum antibiotics. 
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antibiotic group. This was based on the fact that GF-status [1, 52, 53] or antibiotic treatment [43-
48] was much more likely to lower serum levels of a chemical than to elevate it (Table 3). Hence, 
failure to detect a chemical after initiation of antibiotic treatment could reflect antibiotic-induced 
suppression of that chemical. However, had the > 50% missing data exclusion been applied uni-
versally, it would not have affected the exclusion of N-acetyltryptophan, for which > 80% of levels 
were unavailable across all time points in both groups (Supplementary Data). 

Detection of GMB Effects on the Metabolome – Comparative Approaches
Of the roughly 1014 cells comprising the human organism ~ 90% are exogenous, with the vast 
majority contributed by the GMB [57]. Cell density in the colon exceeds that for any other known 
ecosystem [58]. To meet its bioenergetic needs, each gut microbe must generate energy, main-
tain a redox balance, and acquire carbon and nitrogen for synthesis of necessary chemicals [59]; 
to achieve this, it must import needed substrates and export unwanted products. Intraluminally 
generated chemicals which cross the gut wall become constituents of the host’s metabolome. 
Accordingly, attempts to define the GMB-sensitive metabolome often start with identification of 
chemicals that individual microbes can absorb, metabolize, synthesize and then release into the 
gut lumen. 

Taxonomic profiling, commonly based on deep sequencing of 16s rRNA, identifies the type and 
number of elements of the GMB. Functional profiling supports development of integrated cat-
alogues of the human fecal microbial metagenome that characterize the metabolic capacity of 
the GMB [60]. The latter, in combination with transcriptomics, proteomics, and metabolomics 
can define which microbial genes are actually expressed under given conditions. Some enzymat-
ic capacities within the human organism are GMB exclusive, others can be located only within 
endogenous human cells, and the remainder can be expressed in both [61]. A comparison of such 
GMB-derived data with homologous information about the metabolic potential of endogenous 
human cells [62] can suggest the origin of given chemicals within the human metabolome. Con-
firmatory information, however, must be derived from in vivo studies.

Homologous data can be readily obtained from gnotobiotic animal models, the extreme being 
the GF organism, reared from birth without a detectable GMB [7]. Thus, sensitivity to GF status 
was the initial inclusion criterion for our focused list of chemicals in serum (Table 2, Table 3) [1, 
51-56]. Of the 21 chemicals so identified, 10 were not detectable or almost undetectable in the GF 
state (Table 2) and hence likely to be exclusively dependent on the GMB. 

The presence of a healthy GMB is critical to the development of multiple systems including inter-
nal barriers (gut-blood, blood-brain) and end organs; the GF rodent is not just a normal animal 
in which the GMB has suddenly been eliminated [7]. Furthermore, the GF state does not model 
the multiple adaptive changes that take place within a GMB exposed to antibiotics. Such primary 
antibiotic-induced effects on GMB architecture can secondarily affect luminal levels of chemi-
cals absorbed or secreted by the antibiotic-adapted GMB [10, 11, 22]. For instance, when anti-
biotic treatment suppresses certain constituents of the GMB, hypervirulent strains of C. difficile 
can exploit that niche by generating concentrations of p-cresol which are bacteriostatic to other 
microbes [63-65]. Alternatively, one group of microbes can provide chemicals needed by a second 
group of microbes which in turn promotes an environment favorable to the growth of the first 
[66]. Furthermore, the GMB is characterized by a high degree of metabolic redundancy; most 
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metabolic pathways are encoded within functional genetic categories distributed across multiple 
types of bacteria rather than being exclusive to one genus or strain [61, 67]. Thus, antibiotics are 
unlikely to suppress or eliminate metabolites to the extent achieved by GF status. 

For these reasons, we imposed an additional constraint on our focused list of samples, name-
ly that serum chemicals had to be affected by antibiotic treatment in rodents. Although GMB 
diversity in the mouse is relatively closer to that of man [68, 69] we accepted both mouse and 
rat studies. We also accepted studies using any combinations of male or female animals, sexual 
dimorphism notwithstanding [44, 53, 70]. We did not consider metabolome data derived from 
matrices other than serum, given that changes across these compartments (eg, urine, feces) often 
correlate poorly [44, 45, 71]. 

Human Studies of Antibiotic Effects
A PubMed Search (initial search terms: [(serum OR plasma OR blood) AND antibiotic AND me-
tabolome AND human]) yielded only 5 heterogeneous human serum studies of antibiotic effects 
[14-17]. An 8-week treatment of patients (n = 20) with cirrhosis and minimal hepatic encepha-
lopathy with rifaximin, a poorly absorbed antibiotic with minimal effect on the GMB [18], ele-
vated serum levels of several saturated as well as unsaturated fatty acids [72]. In the only available 
double-blind study, overweight or obese men (n = 57) were randomly assigned to receive placebo, 
amoxicillin (broad-spectrum), or vancomycin (narrow-spectrum) for 7 days; a very small num-
ber of serum chemicals were measured [14]. Vancomycin treatment elevated fecal primary bile 
acid levels over 5-fold and lowered fecal butyrate to below 20% of pre-treatment levels, but those 
changes were not reflected in serum [14]. In an open study, patients with chronic obstructive pul-
monary disease were randomized to continue standard treatment with a combination of inhaled 
β-adrenergic agonists and inhaled corticosteroids (n = 60) or to receive add on doxycycline (n = 
60) for 90 days [16]. An untargeted metabolomic analysis associated doxycycline treatment with 
elevations of serum citrate, imidazole, and L-arginine but a lowering of lactate and an unspecified 
fatty acid [16]. Of note, levels of several serum metabolites also rose in the control group [16]. In 
a recent study, blood samples drawn early (0 – 2 days) and late (25 days +) during treatment of 
infective endocarditis with any of several antibiotics, showed a lowering of several amino acids 
(L-tyrosine, L-valine, L-leucine, L-isoleucine) and other chemicals (glucose, mannose, unspec-
ified polyol) [17]. Overall, the heterogeneity of antibiotics, duration of treatment, and panels of 
evaluated chemicals in these studies does not justify generalized conclusions. 

Interpreting Antibiotic-Associated Serum Metabolome Changes 
There are many steps between the appearance of a molecule in the gut lumen, whether as an en-
dogenous or microbial product, and its entry into peripheral serum (Figure 2). Transport across 
cell walls and other barriers may be passive or active and affected by a number of genetic and 
other factors [34]. Biotransformations may take place in the intestinal lumen, in the enterocytes 
lining the lumen, in the liver, kidney, or other organs [34]. Hence, both transport and biotrans-
formation of chemicals must be considered when interpreting changes in the antibiotic-affected 
serum metabolome. To minimize possible primary endogenous metabolic factors, we excluded 
patients with end-stage renal or hepatic disease. While, in general, antibiotics have larger effects 
on the GMB than on hepatic or renal function or on transport mechanisms [73-75], each chemi-
cal of interest should be evaluated individually. 
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Figure 2. In order for a chemical from the gut lumen to reach a peripheral vein and become available for 
conventional blood sampling, it must be transported through multiple cells and compartments within 
which it is vulnerable to biotransformation. 

Phenolic Metabolites
The serum chemicals we identified as antibiotic-sensitive in man belong to the phenolic (hippu-
rate, p-cresol sulfate, phenol-sulfate) or indolic (indoxyl sulfate, indole propionate) pathways. 
Hippuric acid is formed through the conjugation of benzoic acid (BA) with the hydrophilic moi-
ety glycine [76, 77] in a phase II process facilitating removal of the hydrophobic but potentially 
toxic BA [78, 79]. Benzoic acid itself cannot be synthesized by endogenous human enzymes [62]. 
On the other hand mixed fecal cultures or certain constituents of the human GMB can, under 
anaerobic conditions, generate BA or its hydroxylated metabolites from a variety of precursors, 
including free L-tyrosine or L-phenylalanine [80, 81], 4-hydroxyphenylpyruvic acid [81], poly-
phenol rich dietary components (eg, berries, black tea, bran, fruit juices, wine) [82-89], or pure 
polyphenols themselves (eg, catechin, epicatechin, proanthocyanidins, quercetin) [90-93]. 

While HA and its hydroxylated metabolites are constituents of the human fecal metabolome [94], 
the GMB cannot glycinate BA to generate HA. In man, such glycination has been demonstrated 
in the liver and kidney [77, 95], but whether it can also take place within enterocytes, as is the 
case in the rat [96], is not known. In any case, the conjugation occurs via a coenzyme-A-depen-
dent process localized to the mitochondrial matrix [97]. 

Similarly, neither phenol nor p-cresol can be synthesized in appreciable quantities by endogenous 
human enzymes [62] but can be generated under anaerobic conditions by GMB from free L-tyro-
sine [80, 81, 98-102] or dietary polyphenols [103]. Phenol and p-cresol are considered end-prod-
ucts of the GMB in that they are not further broken down in the intestinal lumen [104]. Both oc-
cur in human serum almost exclusively as sulfated conjugates (Supplementary Data) with p-cresol 
glucuronide a minor metabolite [105]. Aryl sulfotransferase activity capable of sulfating phenol is 
expressed in human feces [106] and can be suppressed by antibiotics in animal models [107]. In 
man, phenol-sulfotransferase activity is expressed within tissue of the small intestine [108, 109], 
even more so in liver, and more modestly in the kidney [109, 110]. Colonic tissue remains to be 
similarly evaluated. Thus, while both phenol and p-cresol are generated exclusively by the GMB, 
the relative importance of multiple potential loci of sulfation is not known. Antibiotic effects on 
their sulfation or glucuronidation are not known.
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While antibiotic treatment is not known to affect conjugation of BA or p-cresol; effects on their 
transport must be considered separately. Gut luminal BA crosses the basilar membrane of entero-
cytes via monocarboxylic transporters [111, 112]. Antibiotics can markedly suppress GMB-medi-
ated synthesis of short chain fatty acids [113], which in turn, can act both as substrates and induc-
ers for colonocyte monocarboxylic transporters [114]; thereby potentially affecting transport of 
other substrates such as BA. The transport of free p-cresol across the human gut wall remains to 
be similarly characterized, but in general, fecal levels of free p-cresol correlate with serum levels 
of its conjugates [115]. 

Sulfated conjugates of phenol and p-cresol can be detected in human feces [115, 116]. In addition, 
p-cresol sulfate can be taken up by Breast Cancer Resistance Protein members of the ATP-bind-
ing cassette (ABC) protein transporter family [117] expressed on the apical membrane of human 
colonocytes [118, 119], as well as by organic anion transporters (OAT) (hOAT1, hOAT3) on 
human kidney cells [120-124]. The expression of hOAT3 in tissue of the small intestine has been 
detected by some investigators, but not by others [119, 125, 126], and hOAT1 and hOAT3 may 
also be expressed in rectal tissue [127]. Certain antibiotic (eg, penicillins, cephalosporins) can 
inhibit OAT-mediated uptake of substrates [128-131]. However, this would limit renal excretion 
of such chemicals and; hence, elevate their serum levels. Since levels of our targeted analytes were 
lowered by antibiotic treatment, antibiotic effects on OAT-mediated transport are unlikely.

Indolic Metabolites
Constituents of the human GMB readily convert L-TRP to indole [80, 104, 132-134]; endogenous 
human enzymes cannot do so [62]. Indole is the most abundant L-TRP metabolite of the normal 
human fecal metabolome (~ 3mM) [3, 135] and its levels correlate with those of serum indoxyl 
sulfate [115]. The conventional wisdom is that intraluminally-formed indole is transported across 
the colonic wall, enters the portal circulation and reaches hepatocytes, where microsomal cyto-
chrome CYP2E1 3-hydroxylates the indole to form indoxyl [136, 137]. The latter, in turn can be 
sulfated to indoxyl sulfate, secreted into blood [138] and then cleared by the kidney. However, 
indoxyl sulfate itself is a constituent of the human fecal metabolome [115], raising the possibility 
that some fraction of it is either generated within the GMB or is secreted into the lumen by the 
host. Tracer studies in the rat, for instance, show that a small fraction of systemically adminis-
tered indole enters the bile as indoxyl sulfate [139]. Furthermore, indoxyl sulfate taken up from 
the systemic circulation can be directly secreted into the intestinal lumen under conditions of 
renal failure [140]. Intriguingly, a recent rat study found no significant differences in postprandi-
al levels of indoxyl sulfate between the portal and systemic circulations [141]. This suggests that 
under usual conditions, most plasma indoxyl sulfate is generated within the GMB and/or entero-
cytes, without a significant hepatic contribution. Comparable studies in primates have not been 
conducted. In any case, indoxyl sulfate is cleared mainly through renal excretion mediated at least 
in part by hOAT3, in a process that can be inhibited by ciprofloxacin [131]. While 2 of our pa-
tients were treated with moxifloxacin, another quinolone antibiotic, any inhibition would elevate, 
not lower indoxyl sulfate levels as we observed in our data.

The kinetics of indole propionic acid are less well characterized. While human cells can succes-
sively metabolize L-TRP to indole-3-pyruvic acid and then to indole-3-lactic acid [62, 142, 143], 
only certain constituents of the GMB are known to metabolize L-TRP through to indole propion-
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ic acid [133, 143-147]. That reductive pathway may involve indole-3-lactic acid, indol-3-acrylic 
acid, or other intermediates [143, 148]. Indole propionic acid can inhibit the human proton-cou-
pled amino acid transporter in the intestinal epithelium but is not itself a transport substrate for it 
[149]. Thus, the transport of indole propionic acid across the gut wall remains to be characterized. 
In man, indole propionic acid does not undergo phase II metabolism and has been detected only 
as the parent compound [3]. Antibiotic effects on the transport of indole propionic acid are not 
known.

5HT was the only chemical whose serum levels were affected both by GF and antibiotic status in 
rodents (Table 2) but which was not significantly affected by antibiotic treatment in our focused 
analysis (Table 3). It is also the only chemical in our list that can be generated endogenously by 
mammalian cells [62]. Isolated reports that certain GMB constituents can synthesize 5HT direct-
ly from L-TRP [150] notwithstanding, there is no evidence that GMB-derived 5HT significantly 
contributes to serum levels of 5HT. On the other hand, over 90% of endogenous 5HT in the rat is 
synthesized by various components of the gut, namely, mucosal mast cells and myenteric neurons 
and, particularly, enterochromaffin cells, which express tryptophan hydroxylase 1, the rate-limit-
ing enzyme for 5HT synthesis [151]. The gut-generated 5HT is taken up by platelets and distrib-
uted systemically [151]. Estimates from rodent models suggest that while over 80% of serum 5HT 
originates in cells endogenous to the gut of the host [152], about 50% of serum 5HT is subject to 
some regulation by the GMB [153]. 

Short chain fatty acids (SCFAs), generated via GMB-mediated fermentation of dietary fiber 
and protein, upregulate tryptophan hydroxylase 1 [154, 155]. Since SCFAs are absent from the 
intestinal lumen of the GF mouse [156, 157], GF status is associated with lower expression of 
tryptophan hydroxylase 1 in colonic tissue [56, 154]. This, given the outsized contribution of 
enterochromaffin cells to serum 5HT [151], is consistent with lower serum levels of 5HT in the 
GF mouse [1, 56]. Antibiotic effects in animal models are more difficult to explain. Treatment 
with vancomycin, an antibiotic that relatively selectively suppresses enterococci [158] produced 
a 3-fold elevation of serum 5HT in the rat [46]. However, changes in serum 5HT levels did not 
reach significance after treatment with combinations of antibiotics ([streptomycin + neomycin + 
bacitracin + polymyxin [46])], [ampicillin + neomycin + metronidazole + vancomycin [50] ])  
intended to sterilize the gut. In contrast, a combination of ampicillin and neomycin lowered 
serum 5HT levels in the mouse by almost 50% [49]. The precise mechanisms that would explain 
these differences remain to be determined. 

Comparison to Effects of Ileostomy
In developing our a priori criteria for selecting chemicals of interest we did not include data from 
patients with ileostomies. While the overwhelming preponderance of the total GMB reside in 
the colon, the bacterial density in the terminal ileum actually exceeds that of the large intestine 
[159]. Furthermore, a sparse microbiota can be found throughout the normal digestive tract [160, 
161]. Naso-ileal tube aspirates from patients with intact colons reflect a similar GMB composi-
tion to that in ileal fluid from patients with ileostomies [162]. The enzymatic activity within ileal 
fluid is capable of metabolizing the flavonoid precursors of multiple phenolic metabolites [163]. 
At least some members of the ileal GMB express functionally significant tyrosine decarboxylase 
activity [164]. This suggests that the functional capacity of the remaining GMB in patients with 
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ileostomies could, in theory, contribute to the human serum metabolome. In view of other data, 
however, that possibility seems remote. In patients with renal failure, colectomy is associated with 
either negligible (p-cresol sulfate, indoxyl sulfate) or significantly lower (HA) serum levels [165] 
of 3 of the metabolites identified as unequivocally GMB-dependent in animal studies (Table 2). 
Comparable data on serum or urine phenol sulfate or indole propionic acid levels after colectomy 
are not available. Not surprisingly, all the chemicals identified in our focused list are either known 
or suspected to be uremic solutes [115, 166].

Associations with Specific Gut Microbiota
Without any direct measures of the GMB, we cannot empirically evaluate possible associations 
between antibiotic-induced changes in the serum metabolome and concomitant changes in indi-
vidual operational taxonomic units (OTUs) of the GMB. The available literature supports sev-
eral generalizations. Most antibiotic-treatment regimens lower the overall diversity of the GMB 
[14, 167-170]. Furthermore, antibiotic class-specific effects on the GMB architecture have been 
well demonstrated [8-11]. Our antibiotic regimens included β-lactam agents, which are known 
to be excreted into the intestinal tract where they can dramatically alter the GMB [9]. The most 
common beta-lactam antibiotic treatment was the piperacillin/tazobactam combination, which 
provides broad-spectrum activity against anaerobes, facultative gram-negative bacilli, and entero-
cocci [9, 10].

Most metabolic pathways are encoded within functional genetic categories distributed across 
multiple types of bacteria rather than being exclusive to one genus or strain [61, 67, 171]. Sup-
pression of one taxa can create a niche opportunity for other taxa [11, 158, 172]. Furthermore, 
some enzymatic capacities within the human organism are GMB exclusive, others can be located 
only within endogenous human cells, and the remainder can be expressed in both [61]. A given 
GMB-derived chemical in the human metabolome does not per se carry the fingerprint of the 
particular microbe that generated it. Hence, antibiotic-induced lowering of serum chemicals is 
more likely to be detected for those chemicals generated relatively exclusively by taxa targeted by 
the antibiotic regimen. 

All of the 5 chemicals determined to be antibiotic-responsive in our study are themselves either 
fermentation products or metabolites of fermentation products of aromatic amino acids. Al-
though aromatic amino acids can be metabolized to some degree by cultures of a range of intesti-
nal anaerobes, including members of the genera Bacteroides, Lactobacillus, Clostridia, and Bifido-
bacteria [173], only limited members of those genera can generate BA, p-cresol, or phenol from 
L-TYR and/or L-PHE [80, 98-102]. There is further specificity within strains. Clostridium difficile 
can ferment L-TYR, L-PHE, or L-TRP whereas C. perfringens can do so only to L-TYR [99, 144]. 
Furthermore, C. difficile is the only Clostridial species expressing 4-hydroxyphenylacetate decar-
boxylase (EC 4.1.1.83), an enzyme critical to the metabolism of L-TYR through to the end prod-
uct p-cresol [63, 174].

A relatively large number of anaerobic constituents of the healthy human GMB, including E. 
coli, express tryptophanase (EC 4.1.99.1), which converts L-TRP to indole [80, 99, 104, 132-134]. 
Clostridium difficile cannot itself generate indole but can modify the intestinal milieu to promote 
indole-generation by other bacteria [175]. A more restricted number of microbes, including Clos-
tridial strains, can ferment L-TRP to indole propionic acid [99, 133, 143-147]. 
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We noted earlier, that many small phenolic molecules can also be generated by GMB-mediated 
degradation of polyphenol rich dietary components [82-89]. This applies to all 3 phenolic me-
tabolites in our study (phenol sulfate, p-cresol sulfate, HA). We cannot distinguish the fraction 
of such GMB-generated metabolites derived from dietary polyphenols vs free L-TYR or L-PHE. 
The critical first step in polyphenol metabolism is cleavage of the C ring of the heterocyclic flavan 
nucleus, a reaction outside the capacity of endogenous human enzymes but one that can be car-
ried out by a limited number of members of the human GMB [34], including several Clostridial 
species [176-179]. Regulation of the full cascade of polyphenol metabolism, however, is incom-
pletely understood. For example, while plasma HA levels rise rapidly after the ingestion of black 
tea polyphenols [180], dietary polyphenols either lower or do not affect the excretion of phenol 
sulfate [181, 182]. A switch from a conventional Western diet to an uncooked but fiber- and poly-
phenol-rich vegan diet with comparable total protein content lowers both serum phenol sulfate 
and p-cresol sulfate [183]. This underscores that dietary constituents other than polyphenols can 
also affect serum levels of phenolic end products. Whether the same members of the GMB medi-
ate all such processes remains to be determined. 

Of course, data from in vitro monoculture experiments must be complemented by in vivo stud-
ies that allow for polymicrobial population dynamics. Such efforts remain highly preliminary. 
In a subsample (n = 855) of individuals with minimal renal decline, serum indoxyl sulfate and 
p-cresol sulfate were both associated with the presence of family members of Clostridiales in the 
GMB [184]. More recently, in a study of mixed inpatients treated clinically with antibiotics, uri-
nary indoxyl levels were found to be associated with the relative abundance of Clostridiales [168]. 
Thus, our own data would suggest that the broad-spectrum antibiotic suppressed at the very least, 
members of the Clostridia family.

CONCLUSIONS
Using a clinical sample of patients and a limited number of targets we demonstrated that 
broad-spectrum antibiotic treatment lowered serum levels of 5 chemicals (phenol sulfate, p-cresol 
sulfate, HA, indoxyl sulfate, indole propionic acid) previously shown to be absent or markedly 
suppressed in the serum of GF mice (Table 3). Based on a consideration of transport and other 
mechanisms, we conclude that the most likely explanation for the data is an antibiotic-induced 
suppression of Clostridia and other species. All 5 chemicals, often referred to as uremic solutes 
were previously considered to be GMB-dependent based on various animal and human stud-
ies [115, 166]. However, ours is the first study to demonstrate that clinical administration of 
broad-spectrum antibiotic regimens, even for a variable period of time, significantly lowers serum 
levels of this group of chemicals. That is all the more remarkable given the manifold other factors 
known to affect GMB composition and which were not controlled in our study; these include 
age [26], socioeconomic status [27], genetics [28], concomitant medications [32], and particu-
larly diet [29] and colonic transit time [31]. It is of note that in control populations, excretion of 
p-cresol sulfate is positively associated while phenol sulfate is negatively associated with colonic 
transit time [31]. The fact that serum levels of both these chemicals were lowered in our study 
would indicate that the effects of antibiotic-induced suppression of the GMB were larger than 
those of other factors which we did not control for. 
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In view of the increasing use of antibiotics worldwide [19], metabolomic and microbiomic investi-
gations of such treatments remain grossly underutilized. Establishing core chemicals or profiles of 
such chemicals that confirm antibiotic effects should permit identification of other small mole-
cules that respond more subtly to antibiotic-induced shifts in the GMB. Development of restricted 
lists of chemicals to be examined a priori could allow detection of effects that would not be appar-
ent if statistical adjustments for comparing a very large number of variables were applied. Rapidly 
emerging data implicating the microbiome and its dependent metabolome across medical disci-
plines, including immunology [185] and neuropsychiatry [186], oblige investigators to judiciously 
exploit available patient samples in the service of developing novel biomarkers and treatments. 
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