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Radioactive iodine-125 (I-125) is the most widely used radioactive sealed source for
interstitial permanent brachytherapy (BT). BT has the exceptional ability to deliver
extremely high doses that external beam radiotherapy (EBRT) could never achieve
within treated lesions, with the added benefit that doses drop off rapidly outside the
target lesion by minimizing the exposure of uninvolved surrounding normal tissue. Spurred
by multiple biological and technological advances, BT application has experienced
substantial alteration over the past few decades. The procedure of I-125 radioactive
seed implantation evolved from ultrasound guidance to computed tomography guidance.
Compellingly, the creative introduction of 3D-printed individual templates, BT treatment
planning systems, and artificial intelligence navigator systems remarkably increased the
accuracy of I-125 BT and individualized I-125 ablative radiotherapy. Of note, utilizing I-125
to treat carcinoma in hollow cavity organs was enabled by the utility of self-expandable
metal stents (SEMSs). Initially, I-125 BT was only used in the treatment of rare tumors.
However, an increasing number of clinical trials upheld the efficacy and safety of I-125 BT
in almost all tumors. Therefore, this study aims to summarize the recent advances of I-125
BT in cancer therapy, which cover experimental research to clinical investigations,
including the development of novel techniques. This review also raises unanswered
questions that may prompt future clinical trials and experimental work.

Keywords: brachytherapy, iodine-125, low-dose-rate, high-dose-rate, 3D printing template, tumor
INTRODUCTION

As one of the main techniques for the delivery of radiotherapy, brachytherapy (BT) is the
implantation of radioactive sources into patients’ bodies through intraluminal or interstitial
applicators. BT can deliver extremely high prescribed doses inside the target lesion with minimal
dose to the adjacent normal tissues, which are impossible to achieve with external beam
radiotherapy (EBRT) or stereotactic body radiation therapy (SBRT). Because of this, BT has been
deemed as the most conformal of therapy techniques. BT has recently been highly successful in
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treating cerebral, oral/maxillofacial, pulmonary, hepatic,
pancreatic, and, most commonly, prostate cancer. Increasing
number of studies have investigated and confirmed the
possibility and safety of computed tomography (CT)-guided
radioactive iodine-125 (I-125) BT in head and neck, thoracic,
abdominal, pelvic, spinal primary, and even metastatic cancer in
the last two decades (1–5).

In general, BT is performed by permanent seed implants [also
as low-dose rate (LDR) or high-dose rate (HDR)] after loading
techniques (6). Both have served as auxiliary BT boosts to
complement EBRT for better local control (LC) (7). While
other compounds such as Cs-131, Cs-137, Pd-103, and Ir-192
are all common choices for BT, LDR-BT is typically performed
with I-125 (28.4 keV of average energy, 59.4 days of half-life).

The endeavor to refine the procedure of implanting or placing
I-125 to the target lesion has lasted several decades. Both
Ultrasonography (US) and CT facilitated the utilization of I-
125 BT in clinical practice (8, 9). The combination of I-125 BT
with CT simulators enabled real-time dosimetry optimization
during operations. Additionally, some scholars innovatively
introduced three-dimensional printing templates (3D-PTs) into
the seed implantation process to reduce arrangement errors
during the insertion of needles that greatly increased precision
and efficiency (2). Furthermore, artificial intelligence (AI)
navigation and absorbable stranded seeds have played a recent
role in the development of I-125 BT to improve reproducibility
and prevent the migration of seeds as the result of tumor
regression (10). With the development of I-125 seed-loaded
stents, I-125 was able to be reliably and feasibly used for the
first time in the treatment of esophageal, biliary, and bronchial
cancer obstructions (11–15). All these refinements have
enhanced the accuracy, feasibility, and applicability of I-125 BT.

I-125 BT has long been used as a radical modality for
early-stage prostate cancer and used in inoperable brain
tumors and head and neck cancer (7, 16). Some advantages of
interest to translate and use in other tumors have included image
guidance, minimal invasion, local dose escalation, and organ
preservation. Moreover, the expert consensus and standardized
procedure of 3D-PT-assisted I-125 BT on pancreatic cancer and
lung cancer have popularized this interventional strategy
(17, 18). Other usages of I-125 BT have included salvage for
recurrent rectal cancer after multiple lines of treatment as
recommended by National Comprehensive Cancer Network
(NCCN) guidelines (19, 20) and the use of I-125 seed stents
successfully in esophageal cancer that have presented fresh
opportunities for mitigating cancer-related symptoms (11). In
these cases, I-125 BT has turned out to be highly effective.
However, although a variety of clinical trials have evaluated the
efficacy, safety, and side effects of I-125 in a variety of
carcinomas, there are still numerous problems remaining for
these tumors. For instance, randomized clinical trials (RCTs) are
still needed to compare I-125 BT with additional therapies
regarding long-term clinical efficacy. Results of the biological
effects of I-125 have long been discouraging. Additionally,
the role of locally continuous LDR-BT by I-125 in
immunomodulation is largely unknown. Encouragingly, the
Frontiers in Oncology | www.frontiersin.org 2
coordinated immune response triggered by local EBRT might
help illuminate research on the immunomodulation of locally
continuous LDR-BT by I-125 (21). Thus, the purpose of this
review is tantamount to sum up current research of interest for
I-125 BT, which involves the discussion of technique, preclinical
studies, translational medicine, and clinical work, hopefully
informing future investigations.
THE REFINEMENT IN THE PROCEDURE
OF I-125 BRACHYTHERAPY

The intent of I-125 BT, in general, is to increase deliverable
radiation doses to the target lesion while reducing the exposure of
uninvolved normal tissues, as well as to reduce the side effects
attributable to I-125. As the progressive development of
technology facilitates clinical practice, the application of the
I-125 seed in various clinical scenarios is becoming increasingly
safe and reliable. As a minimally invasive interventional
modality, the security and accuracy of I-125 BT procedures
must be taken into consideration, as well as the stability and
expected dose distribution of radioactive sources inside the
target. Thus, we summarized the progress related to I-125 BT
and presented some new ideas.
ADVANCES IN IMAGING TECHNIQUES

Initially, clinicians surgically placed radioactive sources inside
the lesion for some unresectable cancers (22). Later on, in
order to meet the need for minimal invasion, US-guided I-125
BT was successfully applied in pancreatic cancer (8). However,
for other tumors, the low resolution of US imaging created
several challenges for clinicians performing I-125 BT, which
included the lack of 3D imaging, template assistance, freehand
operation, an uncontrollable arrangement of needles, and
unachievable dosimetry optimization. To overcome these
problems, radiation oncologists attempted CT-guided I-125
BT, which had three advantages, including enhanced
visualization of the target, 3D digital image reconstruction, and
real-time monitoring of needle arrangements. Under some
circumstances, magnetic resonance imaging (MRI) and 18F-
fluorodeoxyglucose positron emission tomography (FDG-PET)
data were required for integration with CT images to precisely
define the margin of tumor to avoid any diagnostic
misunderstanding of the tumor with adjacent edema and
atelectasis (23, 24). Based on CT images, the preoperative plan
and intraoperative and postoperative dose verification
guaranteed the accuracy of the entire process. However, as
clinical popularization of CT-guided I-125 BT increases,
several variables including organ movement, interference of
organs at risk (OARs), unexpected extra exposure of radiation
on patients, the long training period of a qualified operator,
and the establishment of standardized procedure should
be considered.
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THE INCORPORATION OF THREE-
DIMENSIONAL PRINTING TEMPLATE
WITH CT GUIDANCE

Although radiation oncologists carefully design the puncture
path, needle angles, and I-125 seed distribution inside the targets
on the preoperative plan, the actual puncture is always
unsatisfactory under CT guidance due to the complicated
anatomical structure of specific sites, organ movement, and
OAR interference. In some cases, in order to reduce the risk of
puncture-re la ted hemorrhage , nerve damage , and
pneumothorax, the pre-plan-designed puncture path must be
extremely elaborate, which makes the needle insertion difficult to
duplicate and is a huge challenge for operators. Fiducial markers,
analogous to the surface tattoo for EBRT, can aid this process by
linking the pretreatment plan with actual real-time operation
(25, 26). In 2012, Huang et al. (27) innovatively introduced 3D-
PT into I-125 BT in the treatment of head and neck carcinoma
and then extended it to thoracic, abdominal, and pelvic cancer in
2015. Three-dimensional printing template is generally classified
into two types: three-dimensional printing coplanar template
(3D-PCT) and three-dimensional printing non-coplanar
template (3D-PNCT). Three-dimensional printing coplanar
template is suitable for situations where all needle tracts are
kept in parallel, while 3D-PNCT is favored in more complex
situations where multidirectional punctures are required to
optimize dose distribution for irregular tumors (28, 29).
According to the preoperative plan and CT imaging, a 3D-
digital individualized template can be established that details the
superficial anatomic characteristics; positioning marks; puncture
sites; needle orientation; and X, Y coordinate information
(Figures 1A–C). Then, taking into account this 3D-digital
Frontiers in Oncology | www.frontiersin.org 3
template, physical templates can be manufactured by 3D rapid
prototyping equipment utilizing photo-curable resins
(Figures 1D–F). Notably, a real-time intraoperative CT scan
was performed to monitor the needle’s position, and the
postoperative scan was immediately conducted after seed
implantation (Figure 2). There is no edema within the tumor
in such a short time. Therefore, there is no need to consider the
impact of edema. Thus, the incorporation of 3D-PT into CT-
guided I-125 BT helped ensure more accurate needle
arrangement and achieved more conformal radiation delivery,
which led to the conception of stereotactic ablative BT (SABT).
STRANDED SEEDS REDUCE
SEED MIGRATION

Despite more accurate needle arrangements using methods such as
SABT, the movement of prelocalized seeds from their predesigned
seats is a problem in the implementation of loose seeds. This
movement, called seed migration, is often a function of how I-125
gradually alters the tumor volume and tumor microenvironment
through necrosis and apoptosis of the tumor site. Unexpected seed
migration, which results in worse tumor dosimetry distribution,
may reduce the LC rate and increase the risk of recurrence or
metastasis. Therefore, seed migration leads to worse clinical
outcomes and complications such as lung or cardiac seed
embolization (30). Additionally, organ movement and operating
errors can lead to seed displacement. Seed loss, seed migration, and
seed displacement remain unsolvable with the use of loose seeds for
radiation oncologists. An option to overcome seed migration is to
link the seeds. Several clinical studies, which created novel
intraoperative built custom-linked seeds for the treatment of
prostate cancer, were able to demonstrate a lower risk of seed
migration, more stable dose distribution, and increased no
biochemical evidence of disease in stranded seeds compared to
loose seeds, with slightly longer operation time in the stranded-seeds
group (10, 31, 32). However, the optimal material to link seeds has
yet to be well defined.
I-125-LOADED STENT

It has long been difficult to perform I-125 BT in hollow organs,
such as the esophagus, trachea, and bile duct until the emergence
of I-125-loaded SEMS, which is a favorable option to relieve
cancer-related symptoms that always deteriorate the patient’s
quality of life, such as refractory dysphagia, dyspnea, and
jaundice (11, 14). Although stents can mitigate these
symptoms to some extent through physical expansion, the high
risk of recurrence and restenosis and unsatisfactory overall
survival (OS) are issues still difficult to resolve. Therefore, by
integrating I-125 onto the mesh of SEMS, solving these issues
was made possible.

However, to implement I-125 safely and effectively in SEMS,
the number of seeds must be carefully determined by the dose
required. In practice, radiation oncologists determine the
FIGURE 1 | The design of 3D-PNCT based on CT-simulation for a patient
with recurrent ovarian cancer. (A) The 3D digital model of 3D-PNCT.
(B, C) Design the optimal puncture paths and needles angle on 3D digital
model. (D) The real product of 3D-PNCT contains cooridinate axis for
alignment, holes for stable needle and puncture needle. (E, F) The
immoblized 3D-PNCT with stable needles (white arrow) and catheters (red
arrow) before 125I seeds implantation. 3D-PNCT, three-dimensional printing
non-coplanar template.
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prescribed dose and total quantity of I-125 through a
pretreatment plan, assemble I-125 into a sheath, and load it
onto the stent before the intervention therapy. Under the
guidance of fluoroscopy and US, the I-125-loaded stent is
placed into the target lesion through a natural cavity or
percutaneous puncture. Of note, several clinical studies have
assessed the efficacy of I-125-loaded stent on tumors with
refractory symptoms, suggesting that I-125-loaded stent can
significantly mitigate cancer-related symptoms, prolong
survival, reduce the risk of restenosis, and improve quality of
life (11, 12).
I-125 BRACHYTHERAPY VS.
HIGH-DOSE RATE

The radiobiological mechanisms of BT have been poorly
understood with most available data focusing on dose rate
effect (33). As a form of continuous LDR-BT, I-125 BT dose
rate is dependent upon radioactivity of the I-125 seed and, at 1
Gy/h dose rate, is approximately isoeffective with fractionated
radiotherapy using 2-Gy fractions (34). Human tumor cell lines
show a wide range of radiosensitivities to LDR-BT of 1 Gy/h. It
may be produced by DNA damage due to clusters of ionization
events or perhaps by damage to hypersensitive parts of the
genome (34). Radiosensitivity of human tumor cells to both
LDR and HDR irradiation is genotype dependent (35). Low-dose
hyper-radiosensitivity or increased radioresistance was observed
in rat colon progressive cells; the former may be involved with
impairments in non-homologous end-joining repair and was
independent of DNA-dependent protein kinase (DNA-PK),
while the presence of increased radioresistance was coincident
with the presence of PRKDC protein and functional DNA-PK
activity (36, 37).
Frontiers in Oncology | www.frontiersin.org 4
Theoretically, tumor cell repopulation or proliferation may
occur during the long period taken to deliver the full radiation
dose in LDR-BT. The balance between tumor DNA damages and
the ability to repair sublethal damages was lethal for controlling
tumor proliferation (38). The late-reacting normal tissues are
believed to have lower a/b ratios than tumor and, therefore, will
be spared when dose rate decreases, though tumor DNA
damages can also be repaired to some extent (39). LDR-BT can
be expected to give a better therapeutic ratio, but this
generalization will only hold if tumor repopulation is small
during the course of the treatment (38). For dose rates ranging
from 0.3 to 1 Gy/h, the possibility of repopulation during
treatment is negligible (38). However, I-125 seed BT at an LDR
of 2.77 cGy/h also showed more effective induction of cell
apoptosis and G2/M cell cycle arrest in colorectal cancer cells
compared with 6 MV X-ray at an HDR of 4 Gy/min (40). A
similar result was shown in pancreatic cancer cells (41). Using
typically prescribed doses of I-125 BT, with a relative biological
effectiveness (RBE) of 1.4 at dose rates of about 0.07 Gy/h,
appears to be better for treating radiosensitive tumors with long
doubling times and that shrink rapidly (42, 43). Therefore, the
optimum use of I-125 BT may rely on selecting relatively
radiosensitive tumors arising in anatomical sites where late
reactions are dose-limiting (44). Furthermore, shorter-lived
radionuclides are more versatile for achieving reasonable
clinical results for a wide range of tumor types, the
theoretically derived optimum half-lives typically range from
around 0–5 days for fast-repopulating tumors to approximately
14–50 days for slow-growing tumors (45). Notably, given the
increasing reports of HDR irradiation equivalent to LDR
treatments, HDR-BT (usually with dose rate above 12 Gy/h)
may have an advantage over LDR-BT for rapidly growing tumors
with increasing capacity for cellular repair (46–48).

Clinically, as the main approaches in the field of modern BT,
LDR-BT and HDR-BT own benefits over each other on non-
A B D

E F G

C

FIGURE 2 | Example of the successive steps in 3D-PT assisted I-125 BT procedure. (A) the implantation work-flow. CT-image acquisition for target delineation,
treatment planning and optimization: (B) preoperation, (C) intraoperation, and (D) postoperation; DVH for treatment planning optimization and verification:
(E) preoperation, (F) intraoperation, and (G) postoperation.
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overlapping aspects (Table 1). In terms of medical providers,
although a shielded room is not required for LDR-BT compared
with HDR-BT, radiation exposure of clinicians during the LDR-
BT operation remains a concern. The operation room for LDR-
BT could be integrated with the CT simulation room, while extra
initial capital equipment for HDR-BT must be considered.
Moreover, radioactive sources for LDR-BT were customized
for each patient, while the same source for HDT-BT could be
used for different diseases in 3–4 months. Additionally, an
excellent LDR-BT operation depends on the experience and
skill of operators to a much more extent than HDR-BT. Thus,
Frontiers in Oncology | www.frontiersin.org 5
the individual 3D-PT was introduced into the procedure of LDR-
BT to minimize the dependence on the operator. For patients, in
contrast to HDR-BT, the shorter treatment period and low cost
of LDR-BT seem more favorable for patients who live far from a
cancer center or lack basic medical insurance. Several
retrospective and prospective studies suggested the comparable
outcome among HDR-BT and LDR-BT, while HDR-BT seems to
have fewer acute irritative symptoms. Given that most published
studies comparing the efficacy of LDR-BT and HDR-BT focused
on prostate cancer, prospective studies comparing these two
modalities in various diseases will be necessary for the future.
TABLE 1 | Overview of the applications of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in clinical studies.

LDR-BT HDR-BT

For physician
and hospital
Dose
coverage

Superior conformality, like HDR-BT Superior conformality, like HDR-BT

Requirement
for Shielded
room

No Yes

Utility of
radioactive
source

Customized Reusable

Capital
expenditure

Low High

Dependence
of operator

High Low

Treatment
planning

Postoperative dosimetry evaluation is required Without postoperative dosimetry evaluation

Radiation
exposure to
staff

Yes, could be protective No

Evidence Excellent Inferior to LDR-BT
Uniform
consensus
dose

Yes, such as 140-180Gy for I-125 No, multiple fractionation options

Treatment
modality

1. Monotherapy for low-risk disease
2. Combined with surgery, EBRT or other treatment for intermediate-high risk disease.
3. Salvage for recurrent or relapse cancer after multiple treatment.
4. Combined with self-expandable stent.

1. Monotherapy for low-risk disease, like LDR-BT.
2. Combined with surgery, EBRT or other treatment for
intermediate-high risk disease, like LDR-BT.
3. Salvage for some diseases.

Template
assistance

3D-printing coplanar/non-coplanar template Conventional template

Seed
migration

Yes, but rare. No

For patients
Cost for
treatment

Lower than EBRT Lower than EBRT

The
placement of
source

Permanent Temporary

Procedure
related event

Rare Rare

Treatment
period

Singe implant in 2h in a single day Several implant in 2h in 1-5 days

Toxicity 1. Overall incidence similar to HDR-BT. 1. Overall incidence similar to LDR-BT.
2. Longer duration (2–4 months) than HDR-BT. 2. Shorter duration (4–6 weeks) than LDR−BT.
3. Grade 3-4 toxicities are rare. 3. Grade 3-4 toxicities are rare.

Indications Including almost all solid tumor such as brain tumor, eye tumor, lung cancer, head
and neck cancer, recurrence located in operation restricted area and even malignant
obstruction, besides tumor in hollow organs.

Narrower than LDR-BT, including prostate cancer, gynecological
cancer, rectal cancer, sarcoma, breast cancer, non-melanoma
skin cancer, penile cancer etc.
LDR-BT, low-dose rate brachytherapy; HDR-BT, high-dose rate brachytherapy; EBRT, external beam radiotherapy; CT, computed tomography.
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PHYSICAL ASPECTS

Accurate dose delivery is the guarantee of the curative effect of
radiotherapy. American Brachytherapy Society (ABS) and
American Association of Physicists in Medicine (AAPM)
reported (TG-43) the recommended dosimetry values, including
D90 >100%, V100 >90%–95%, and V150 <50%–60%. As a result,
many studies have compared dosimetry differences between
different BT modalities to investigate the accuracy of I-125 BT.
For instance, Li et al. (49) reported that intraoperative planning
was superior to the preplanning technique, via comparing the
difference of dosimetry parameter between preplanning and
intraoperative planning in I-125 BT for lung cancer. They
suggested that V100, V150, and V200 for the intraoperative
planning technique were significantly higher than that for the
preplanning technique (95.65% vs. 88.86%, 76.47% vs. 69.23%, and
59.80% vs. 28.30%, respectively, p < 0.01). In addition,
intraoperative planning had a significantly higher coverage
index, conformity index plan, and quality index (p < 0.05) and a
lower dose homogeneity index compared with the preplanning
technique (49). When it comes to the improved accuracy brought
by 3D-PT, Liu et al. (50) indicated the comparable dosimetry
parameters between preoperative plans with postoperative plans in
3D-PT-guided I-125 BT for recurrent high-grade gliomas,
regarding D90 (152.1Gy vs. 151.7Gy, p > 0.05), V100 (96.8% vs.
97.0%, p > 0.05), and V200 (49.1% vs. 48.9%, p > 0.05). When
comparing I-125 LDR-BT with HDR-BT in prostate cancer, a
randomized trial suggested that D90, V100, and V150 were
significantly higher in the LDR-BT group than those in the
HDR-BT group (122% vs. 110%, p < 0.05; 99% vs. 98%, p <
0.05; 61% vs. 32%, p < 0.05). Moreover, in this study, D10 and D30
for urethra and D10 for rectum were significantly higher in LDR-
BT group than HDR-BT group (133% vs. 114%, p < 0.05; 128% vs.
111%, p < 0.05; 88% vs. 67%, p < 0.05) (51). Thus, although both I-
125 LDR-BT and HDR-BT are able to provide a favorable dose
coverage, a slightly higher dose to the urethra and rectum was seen
in I-125 BT, which might account for the higher incidence of
genitourinary (GU) and gastrointestinal (GI) toxicity in LDR-BT.
Furthermore, a retrospective analysis (25 patients with pancreatic
cancer) indicated that 3D-PCT-assisted I-125 BT had a dosimetry
advantage in V100 (91.05% ± 4.06% vs. 72.91% ± 13.78%, p < 0.05)
compared with implantation by freehand. That is to say, the
current BT, assisted by 3D-PT and guided by CT scan, has
achieved a perfect match between postoperative dose verification
with preoperative planning. No significant differences were
observed between preoperative planning design and
postoperative dose verification regarding several dosimetry
indexes. The accuracy was improved more than 90%. The
introduction of 3D individualized templates is beneficial to
realize individualize treatment and do away with the
dependence on operator experience (Figure 2).

Notably, compared with HDR-BT, one of the disadvantages
of I-125 BT is the exposure of clinicians during the operation and
subsequently exposure of patients’ relatives and population.
Licciardello et al. (52) conducted Ќ measurements [the air
Kerma rate Ќ (mGy/h), which is regularly measured and
Frontiers in Oncology | www.frontiersin.org 6
recorded for every patient from the day after the implant to
the day before hospital discharge] at various distances from the
patient surface to analyze the exposure rate in the proximity of
patients and compute the effective doses to relatives and
population, which was used to estimate the time to reach
radioprotection dose limitation and provide safety instruction
for patient habits and working environment. The AAPM and
Groupe Européen de Curiethérapie/European Society for
Radiotherapy & Oncology (GEC/ESTRO) reported the detailed
radiation protection measures in BT (53).

Generally, the dose calculation for BT has been based on the
AAPM Task Group No. 43 (TG-43). However, there might be
some limitations in TG-43. A new algorithm, model-based dose
calculation algorithms (MBDCAs), was proposed to compensate
for the limitation of TG-43. Enger et al. (54) compared the dose
calculation based on the TG-43 and MBDCAs on BT for various
tumor types to investigate the influence of the tissue and seed/
applicator heterogeneities on BT dose distributions. For prostate
or gynecological cancers, the dosimetry influence of MBDCAs
was comparable to TG-43, while the impact of MBDCAs might
be more pronounced on other sites. Although MBDCAs have the
potential to offer dosimetry benefits than TG-43, there is no
agreement on how to integrate these advanced BT dose
calculation techniques in clinical practice. Sufficient and
independent data documenting the dosimetry influence of
MBDCAs are required to support the transition from the TG-
43 dose calculation formalism to MBDCAs (25, 54).
CLINICAL PERFORMANCE OF I-125 BT

More recently, I-125 BT has been widely used in the treatment of
various tumors (Table 2) (55–74) due to its compelling efficacy
and potential for more general applicability (Figures 3, 4). The
clinical application of I-125 BT is mainly divided into the
permanent interstitial implantation of I-125, known as I-125
seed implantation, and the placement of a SEMS loaded with I-
125, called an I-125 seed stent. The following showed the clinical
efficacy of these two patterns (Table 3).
I-125 BRACHYTHERAPY IN
SOLID TUMORS

Brain Tumor
On account of lesions’ deep localization, high eloquent areas, and
lesion size, additional strategies are required to complement
surgery in the case of incomplete resection of a brain tumor
(90). Moreover, the limited efficacy on large lesions and the
increased risk of radiation necrosis also hinder the application of
radiosurgery on brain metastasis (91). Several studies have
confirmed the efficacy of I-125 BT in treating cerebral lesions
(92). For recurrent gliomas, a controlled trial (n = 73)
demonstrated that the use of I-125 BT significantly improved
the median OS (29.3 vs. 19.5, p < 0.05) and the 2-year OS rate
September 2021 | Volume 11 | Article 717180
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TABLE 2 | Patients selection for I-125 LDR-BT and HDR-BT in different anatomical sites (based on ASCO/CCO, ABS, GEC/ESTRO and NCCN guideline).

LDR-BT HDR-BT

Breast cancer 1. Less commonly used than HDR-BT.
2. The patient selection includes tumor size≤3cm, negative surgical margins

width≥2mm, distance to skin surface>5mm and fluid cavity≤2.5cm
3. Localization for image-guided surgical excision of non-palpable breast lesions.

Adjuvant APBI or boost after BCS
1. Low-risk group of patients is good candidate, including

patients age>50 y with IDC measuring≤2cm, no ILC, no
DCIS, tumor size≤30mm(pT1-2), negative margins
width≥2mm, unicentric, unifocal, no EIC, no LVI, pN0, no
neoadjuvant chemotherapy and any hormone receptor
status.

2. Intermediate-risk group of patients is selective candidates,
including patients age>40-50 y, tumor size≤30mm(pT1-2),
close surgical margins(<2mm), multifocal(limited within
2cm), no EIC, no LVI, pN1mi/pN1a, no neoadjuvant
chemotherapy and any hormone receptor status.

Bone
metastasis

1. Unifocal lesion: unresectable or refusing surgery and EBRT;
2. Palliative treatment for multifocal lesions in vital sites;
3. Intolerable to EBRT or recurrence after EBRT.

Few reported.

Lung cancer 1. NSCLC: unresectable tumor; intolerable to or refusing surgery or chemoradiotherapy;
postoperative recurrence and unable to re-surgical excision; incomplete resection
through preoperative evaluation; resection margins are macroscopically or
microscopically involved; no multiple distant metastasis or controllable metastasis
after systematic therapy; KPS>60; life expectancy>6months; diameter≤7cm.

2. SCLC: resistant to chemotherapy and conventional radiotherapy or recurrence
after chemoradiotherapy.

3. Lung metastasis/mediastinal lymph node metastasis: unilateral pulmonary lesion≤3,
maximum diameter≤5cm; for bilateral lung lesions, each pulmonary lesion≤3,
maximum diameter≤5cm.

4. Self-expandable stent loaded I-125 is used for malignant airway obstruction.

1. Early-stage lung cancer confined to the endobronchial lumen
2. Palliative treatment for locally advanced tumor with central

obstructing lesions, particularly in patients who have
previously received EBRT or who are not candidates for
EBRT or surgical resection.

3. Collapsed lung at the first presentation;
4. Boost to radical EBRT for patients with central tumors.

Pancreatic
cancer

1. Unresectable lesion with life expectancy>3months;
2. Pancreatic metastasis or local lymph node metastasis;
3. Residual lesion after surgery or positive surgical margins.
4. Selective option to relieve epigastric pain for patients with life expectancy < 3

months and tumor diameter>6cm.
5. Self-expandable stent loaded I-125 is used for malignant biliary obstruction.

Few reported.

Gynecological
cancer
Cervical cancer
Endometrial
cancer
Vaginal cancer

1. Postoperative recurrence without surgical indication, diameter≤5cm;
2. Recurrent lesion after surgical excision, EBRT or HDR.
3. Pelvic lymph node metastasis.

For cervical cancer:
1. Intact uterus: as a boost modality for locally advanced cancer;
2. Boost to EBRT for early stage, inoperable cancer.
3. Combined with EBRT after surgical excision, in case of

positive margins.
For endometrial cancer:

1. Boost to EBRT for patients not amenable to surgery;
2. Postoperative adjuvant treatment: FIGO stage IA, grade 1-2

in case of risk factors (age ≥ 60 years and/or LVI); stage IA
grade 3 and stage IB grade 1-2; stage II grade 1-2 (±
EBRT); combined with EBRT for boosting vaginal vault in
HR patients (FIGO stage IB, grade 3) or in advanced
disease.
For vaginal cancer:
Patients with primary stage I-IV vaginal cancers or recurrent
cervical, endometrial, or vulvar carcinoma in the vagina with
residual vaginal lesions>0.5cm thick.

Hepatocellular
carcinoma

For primary lesion:
1. Locally advanced and unresectable lesion;
2. Tumor diameter ≤7cm;
3. No invasion to big vessel;
4. Intraoperative residual lesion or positive tumor margin;
5. Unfavorable efficacy after TACE; combined with TACE;
6. Recurrence after surgical excision and unable or refusing to re-surgery.

For metastasis:
1. unifocal lesion diameter <7cm; multifocal lesion<5, maximum diameter≤3cm;
2. unresectable lesion
3. Residual, relapse, or newly diagnosed lesion after surgery or TACE.
4. Child-Pugh A or B
5. Boost after EBRT.

1. Large(>5cm) or centrally located lesions.
2. Lesions in the liver dome or near the liver capsule
3. Lesions located near vascular or biliary structures.

(Continued)
Frontiers in Onco
logy | www.frontiersin.org 7
 September 2021 | Volume 11 | Article 717180

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Advances in I-125 Brachytherapy
TABLE 2 | Continued

LDR-BT HDR-BT

Prostate cancer Monotherapy:
1. GS≤6, PSA<10 ng/ml;
2. GS=7, PSA<10 ng/mL or GS=6, PSA=10-20 ng/ml.

Boost after EBRT:
1. GS=7, PSA=10-20ng/ml choosing EBRT±ADT.
2. GS≥8, PSA>20ng/ml receiving EBRT and ADT

Monotherapy:
GS≤6, and PSA<10ng/ml and T1-T2a tumor.
Boost or monotherapy:
GS=7, or PSA=10-20ng/ml, or T2b-T2c tumor.
Boost:
GS=8-10, or PSA>20ng/ml, or T3a tumor.

Esophageal
cancer

Self-expandable stent loaded I-125 is used for malignant esophageal obstruction. 1. Thoracic esophageal lesions ≤10 cm in length;
2. Confined to the esophageal wall;
3. No invasion to adjacent organ or vessel, no regional lymph

node metastasis.
Ophthalmic
tumor

For melanoma
1. ABS-OOTF recommended that most melanomas of the iris, ciliary body, and

choroid could be treated with plaque brachytherapy.
2. Patients with AJCC T1-3, and T4a-d uveal melanoma can be candidates without

histological verification, after counseling about likely vision, eye retention, and local
control outcomes.

3. Patients with peripapillary and subfoveal and those with exudative retinal
detachments should be informed the potential outcomes.

4. Patients with T4e tumors, extraocular extension, a basal diameter exceeding the
limits of brachytherapy, blind painful eyes, and no light, are not suitable for plaque
therapy.
For retinoblastoma

1. Primary brachytherapy for tumor locating at anterior to the equator and in
unilaterally affected children.

2. Secondary therapy for residual or recurrent tumor irrespective of location, except
anterior segment involvement and juxta papillary location.

Few reported.

Rectal cancer 1. Locally recurrent and unresectable lesion;
2. EBRT is impracticable, including refusing EBRT or having primary pelvic RT

history;
3. Focal boost to EBRT or salvage after chemotherapy;
4. Palliative treatment for hepatic and pulmonary oligometastasis with local recurrence.
5. Appropriate percutaneous puncture pathway for implant

HDR alone
1. Histologically confirmed rectal cancer, staged cT1/cN0,

less than 3 cm in greatest diameter.
2. Well to moderately differentiated adenocarcinoma.
3. Tumor configuration of non-ulcerative, polypoid mobile

tumor.
4. Lesions above the anal verge≤15cm, with lesion thickness

<1 cm
Postoperative HDR

1. Uncertain resection margin Rx or involved resection margin
(R1)

2. Boosting to EBRT for poorly differentiated adenocarcinoma
and lympho-vascular invasion.

Palliative treatment for local recurrence
Retroperitoneal
lymph node
metastasis

1. Symptomatic or asymptomatic metastasis, diameter≤7cm;
2. Symptomatic or asymptomatic multi-metastasis;
3. Relapse lesion after surgery, EBRT, chemotherapy or molecular targeting therapy;
4. Life expectancy>3 months.

Few reported.

Nonmelanoma
skin cancer

Few reported 1. Primary T1-T2 tumor or T3-T4 after EBRT.
2. Unresectable tumor or recurrent tumor after surgery.
3. Unable to meet cosmetic need by plastic surgery.
4. Superficial mould BT is suitable for tumor≤5mm.
5. Interstitial BT is suitable for tumor thickness>5mm with

irregular shape or locating at curved surface.
Central nervous
system

1. 1.Primary tumor: unresectable and untreated tumor in any location, with diameter≤5cm;
residual tumor after surgical resection; recurrent tumor after surgery or
chemoradiotherapy.

2. Brain metastasis: unifocal or multifocal<3.

Few reported.

Soft tissue
sarcoma

1. Locally advanced and unresectable tumor, with diameter≤7cm;
2. Macroscopically or microscopically residual lesions during surgery;
3. Recurrence after surgical excision or EBRT;
4. Metastatic tumor without surgical indication;
5. Boost to surgery+ EBRT regimen for locally advanced tumor;
6. Palliative treatment for locally advanced tumor that is beyond control or distant

metastasis along with severe local symptoms.

Monotherapy:
1. Tumor diameter within 5-10cm;
2. negative surgical margins;
3. Low-risk cases
4. CTV adequately cover the target volume
5. Within the dose constrictions of OARs
6. Re-irradiation
7. Pediatrics

Combined with EBRT

(Continued)
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(77.1 vs. 42.5, p < 0.05) when compared to traditional
chemoradiotherapy (89). In addition, a study enrolling 147
patients with inoperable or residual low-grade gliomas after
incomplete resection that received stereotactic I-125 seed
implantation reported that 5-year and 10-year survival rates were
93% and 82%, respectively, with only a tumor volume of >15 ml as a
risk factor for recurrence (90).With respect toWHO grade II and III
gliomas, stereotactic I-125 BT is likely a safer and more feasible
treatment compared to surgical resection due to its minimally
invasive nature and low risk for procedural complications. A
single-arm study assessed the efficacy of stereotactic I-125 BT in
172 patients with primary and recurrent grade III anaplastic gliomas,
demonstrating the OS and progression-free survival (PFS) in the de
novo cohort (median OS of 28.9 and median PFS of 21.4 months)
and recurrence cohort (median OS 49.4 and median PFS of 32.6
months) (93). A retrospective study provided class IV evidence on
Frontiers in Oncology | www.frontiersin.org 9
the efficacy of resection in conjunction with I-125 BT on brain
metastasis (91). Therefore, I-125 BT has freshened the possibility of
increased quality of life for patients and longer survival for multiple
WHO grade brain tumors, both primary and recurrent, as well as for
intracranial metastasis, however, in the presence of highly selective
indications. To integrate I-125 BT into the guidelines for brain tumor
treatment, RCTs are needed.

Eye Tumor
For uveal melanoma (UM), the Collaborative Ocular Melanoma
Study (COMS) reported no significant difference in survival rates
between the patients who were treated by enucleation and plaque
BT (94). Moreover, several studies demonstrated that plaque BT
has a comparable mortality rate for enucleation over 20 years of
follow-up (95). Additionally, plaque BT showed a comparable
outcome with proton beam radiotherapy regarding 5-year
TABLE 2 | Continued

LDR-BT HDR-BT

1. High risk of recurrence (>10 cm, recurrent disease without
previous radiation, or positive surgical margins);

2. BT alone beyond the dose limitation of OARs;
3. Petroperitoneum, head and neck;
4. Skin and lymph node are involved.

Primary spine
tumor

1. Tumor involving adjacent vital organs or incompletely surgical excision;
2. Recurrence or residual lesion after surgery;
3. Local residence after EBRT or EBRT failure;
4. Solitary or oligo lesions without surgical indication.

Few reported.

Head and neck
squamous cell
carcinomas

Alone
1. T1-2N0; 2. Patient decision
2. Tumor location in areas of functional importance
3. Tumor location in areas of cosmetic relevance such as the periorificial zone.
4. Residual lesion or adjuvant therapy after surgery.
5. Unresectable and locally advanced tumor.
6. Salvage for local recurrence.

Combined with EBRT
1. Intact T1-2 tumors in patients ineligible for surgery with a substantial risk of lymph

node involvement,
2. Advanced T3-4 and/or N + tumors that would require surgical resections with

functional or cosmetic impact (such as cheek, base of tongue);
3. Tumors of different locations eligible for primary radiotherapy in whom a

brachytherapy boost outweighs the discomfort of an interventional procedure (i.e.,
soft palate, tonsil, etc.).

Similar to LDR

Penile tumor Few reported. 1. Patients with T1b or T2 disease <4 cm in maximum
dimension and confined to the glans penis

2. Tumor with minor extension across the coronal sulcus are
also suitable, when the extension can be covered with no
more than one additional plane of needles.

Bladder cancer Few reported. Muscle-invasive bladder carcinoma
1. Solitary tumor of a maximum diameter <5 cm.
2. No concurrent carcinoma in situ elsewhere in the bladder.
3. UICC TNM classification cT2-T3.
4. Tumor not located in the bladder neck or the prostatic

urethra (male)5. No distant metastasis.
±, with or without; I-125, iodine 125; LDR-BT, low-dose-rate brachytherapy; HDR-BT, high-dose-rate brachytherapy; ASCOCCO, American Society of Clinical Oncology/Cancer
Care Ontario; ABS, American Brachytherapy Society; GEC/ESTRO, Groupe Européen de Curiethérapie / European Society for Radiotherapy & Oncology; NCCN, National
Comprehensive Cancer Network; APBI, accelerated partial breast irradiation; BCS, breast-conserving surgery; ADT, androgen deprivation therapy; EBRT, external-beam
radiotherapy; FIGO, International Federation of Gynecology and Obstetrics (version 2009); NSCLC, non-small cell lung carcinoma; SCLC, small cell lung carcinoma; IDC
intraductal carcinoma; ILC, invasive lobular carcinoma; DCIS, ductal carcinoma in situ; EIC, extensive intraductal component; LVI, lympho-vascular invasion; GS, Gleason score; PSA,
prostate-specific antigen; LR, low risk; HR, high risk; TACE, transhepatic arterial chemotherapy and embolization; UICC, Union for International Cancer Control; TNM stage, tumor,
node and metastasis stage; OAR, organ at risk; CTV, clinical target volume; ABS-OOTF, American Brachytherapy Society-Ophthalmic Oncology Task Force; AJCC, American Joint
Committee on Cancer.
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mortality and LC rates (96). One single-arm study (n = 677)
published last year reported the long-term patient survival rate
after I-125 BT of UM with regard to relative survival rates of 74%
at 5 years, 64% at 10 years, 62% at 20 years, 83% at 30 years, and
≥100% at 32 to 40 years (97). Thus, I-125 plaque BT has become
the commonly used modality for UM because of its favorable
clinical outcomes and offering an opportunity for globe-sparing.
A multicenter retrospective cohort study evaluated the impact of
gene expression profile class designation on the UM height
response to I-125 plaque BT, indicating that Class 1 UM
Frontiers in Oncology | www.frontiersin.org 10
regress more rapidly than Class 2 UM in the first 6 months
after I-125 plaque BT (p = 0.007) (98). A novel nomogram was
developed to predict the visual acuity outcome for UM after
I-125 plaque BT (99). However, due to the risk of radiation
retinopathy, plaque BT always acts as rescue or salvage treatment
before enucleation (100). I-125 is generally used in the USA,
while Ru-106 and Pd-103 are more frequent in Europe and
others (101). Moreover, it was shown that compared with Ru-
106, I-125 had significantly less rates of repeated BT among
patients with bulky choroidal melanomas, without significant
difference in enucleation rate or patient survival (102). A recent
study showed that US-guided I-125 plaque BT has reduced the
failure rate from 9.3% to 1.5% (103). Furthermore, I-125 plaque
BT also has excellent outcomes in residual or recurrent iris
melanoma after surgical resection (tumor control at 6 years of
87%) (104), juxtapapillary choroidal melanoma (80% of 10-year
LC) (105), scleral-invasive conjunctival squamous cell carcinoma
(LC rate of 100%) (106), and selected retinoblastomas that fail
chemoreduction (95% tumor control) (107). However, radiation-
induced adverse reaction associated with the brain and vision is
also of concern. The efficacy of I-125 BT in eye disease requires
more investigation (108).
Head and Neck Tumor
The complicated anatomical structure of the head and neck
renders certain cases inoperable. The typical example is
nasopharyngeal cancer (NPC), for which chemoradiation is the
treatment of choice. According to the latest studies, a regimen of
gemcitabine plus cisplatin in induction chemotherapy for
locoregionally advanced NPC has significantly increased the
OS and PFS time (109). However, this regimen is not suitable
for all head and neck cancers due to diverse lesion sites and tissue
types. In the consideration of cosmetic and functional outcomes,
I-125 BT is an appropriate alternative (110). A clinical trial (n =
81) evaluating the efficacy of I-125 BT in locally recurrent NPC
when compared with external beam re-radiotherapy reported a
higher median local tumor PFS (LTPFS; 21 vs. 17 months, p =
0.015), without meaningfully impacting OS (85). Another study
FIGURE 3 | The CT-scan images of treatment plan assisted by 3D-PCT.
Preoperative treatment plan, intraoperative verification, and postoperative
dosimetric evaluation in, (A–C) orbital rhabdomyosarcoma, (D–F) kidney
cancer, (G–I) pelvic recurrence of cervical cancer. 3D-PCT, three-dimensional
printing coplanar template.
FIGURE 4 | The CT-scan image of 125I-RSI BT in pancreatic head cancer. (A) The postoperative actual dose distribution. (B) The postoperative follow-up at 6 months.
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TABLE 3 | The key controlled clinical trials of I-125 seeds therapy in the past decade.

Methods Study Year N Tumor Type Interventions Outcomes Ref

I-125 seeds
implantation

Liu 2020 83 NSCLC recurrence
after first-line CT
failure

MWA vs. I-
125-BT

Median OS time: 30.57 vs. 31.63 months; P=NR. DFS rate: p=0.153;1-year
92.16% vs. 93.75%;2-year 76.47% vs. 78.13%.
Pleural effusion: 3.92% vs. 3.13%, P < 0.05.

(75)

Xiang 2019 95 Bilateral lung
recurrences from
HCC

I-125-BT vs.
supportive
treatments

Median PFST time: 20.4 vs 14.3 months, P= 0.026; Median OS time: 23.0 vs
15.6 months, p<0.01. (76)

Pang 2019 184 Advanced
cholangiocarcinoma

PTBS+ I-125-
BT vs. PTBS

Median OS time: 13 vs. 8 months, P<0.001.
Biliary re-obstruction: 35.2% vs.19.5%, P = 0.017 (56)

Tsubokura 2018 757 Prostate cancer IG-IMRT vs. I-
125 BT

5-y BFFS rate: 88.7% vs. 96.7%, P=0.0003
5-y OS rate: 98.5% vs. 98.4%, P=0.0139. (77)

Lee 2018 687 Prostate cancer EBRT+I-125
BT vs.
EBRT

3-y OS rate: 97% vs. 95.3%, P=0.26
3-y CSS rate:100% vs. 99.5%, P=0.56 (78)

Luo 2018 320 Prostate cancer MAB + EBRT +
I-125 BT vs.
MAB + EBRT

OS; 12.3 vs 9.1 years, P < 0.001;
BRFS; 9.8 vs 6.5 years, P < 0.001;
SRE: 10.4 vs 8.2 years, P < 0.001;
CCT; 11.6 vs 8.8 years, P = 0.007.

(79)

Kishan 2018 1809 Prostate cancer RP vs. EBRT
vs. EBRT+BT

5-y prostate CSM: 12% vs. 13% vs. 3%
5-y incidence of DM: 24% vs. 24% vs. 8%
7.5-year all-CM: 17% vs. 18% vs. 10%

(80)

Wu 2018 50 Stage III/IV NSCLC I-125-BT + TP
vs. TP

Median OS time: 20 vs. 15 months, P<0.05; Median PFS time: 13 vs. 8
months, P<0.05. (57)

Sun 2018 134 HCC I-125-BT
+TACE vs.
TACE

Median OS time: 11 vs. 5.8 months; p=0.006;
(69)

Li 2018 54 HCC I-125-BT
+TACE vs.
TACE

Median OS time: 11 vs. 9 months, P=0.022.
Median biliary patency time: 6 vs. 4 months, P=0.001. (59)

Mo 2018 93 Metastatic soft tissue
sarcoma after first-
line CT failure

I-125-BT
+gemcitabine
vs. gemcitabine

Mean PFS time: 7.1 vs. 3.6 months; P<0.001; Mean OS time: 16.9 VS. 12.1;
P=0.107. (81)

Johnson 2017 25038 Prostate cancer I-125-BT-Boost
vs.
EBRT

7-yr OS: 82% vs 73%; p < 0.001
(82)

Tu 2017 116 Locoregional HCC
Recurrence

I-125-BT +RFA
vs. RFA

Mean TTR time: 21.7 vs. 15.9 months, P=0.733; Mean OS time: 41.7 vs. 40.9
months, P= 0.316. (83)

Zheng 2017 66 Pancreatic head
cancer

Surgery+ I-
125-BT vs.
surgery

Mean PFS time: 8 vs. 5 months, P<0.001; Median OS time: 11 vs. 7 months,
P<0.001. (84)

Yan 2017 81 Locally recurrent NPC
after EBRT with or
without CT

I-125-BT vs.
Re-IMRT

Median LTPFS time: 21 vs. 17 months; P=0.015; Median OS time: 25 vs. 24
months; P=0.346. (85)

Huang 2016 210 HCC with PVTT I-125-BT
+TACE vs.
TACE

Median OS times: 11.0 and 7.5 months, P<0.001; Survival rate: p <0.001; 12-
month 50% vs. 25 %; 24-month 14.5% vs. 9 %; 36-month14.5 % vs. 5 %. (62)

Li 2016 144 HCC of 3 to 5cm I-125-BT
+TACE vs.
TACE

Median OS time: 30 vs. 18 months, P<0.001; Survival rate: P<0.001; 1-year
89.1% vs. 65.5%;3-year 51.0% vs. 7.4%; (63)

Yan 2016 65 Distant metastases in
the oral cavity and
maxillofacial region

I-125-BT vs.
Re-IMRT

Local control rates: P<0.05; 3-month 83.9% vs.76.5%; 6-month 75%
vs.62.5%; 12-month 66.7% vs.43.8%; 18-month 38.4% vs. 25.0%; 24-month
25.0% vs.0.0% Median LTPFS time: 14 vs. 9 months, P<0.001.

(86)

Luo 2016 276 HCC with main portal
vein tumor thrombus

I-125-BT
+TACE vs.
TACE

Median OS time: 9.3 vs. 4.9 months, P<0.001; Median PFS time: 1.8 vs. 1.5
months, P<0.001.
Median stent Patency Period: 9.2 vs. 4.8 months, P<0.001

(64)

Wang 2016 72 Bilateral lung
recurrences from
colorectal carcinoma

I-125-BT vs.
supportive
treatments

Mean OS time: 18.8 vs. 8.6 months, P=0.008
(87)

Morris 2015 398 Prostate cancer I-125-BT vs.
EBRT

bDFS: P<0.001 3-year 94% vs. 94%;5-year 89%vs. 84%;7-year 86% vs.
75%;9-year 83% vs. 62%
Grade 3 GU Toxicity: 19% vs. 5%, P<0.001.

(70)

Yu 2015 52 Stage III NSCLC after
con-CRT

I-125-BT+DP
vs. DP

PFS time: 8 vs. 5.5 months; P < 0.05; LCR time: 10 vs. 6.2 months; P< 0.05.
(65)
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reported that the median LTPFS time (14 vs. 9 months, p <
0.001) of I-125 BT in treating distant metastases in the oral and
maxillofacial region compared to EBRT was also higher (86).
Moreover, several single-arm clinical studies suggested that I-125
BT performed exceptionally well in various head and neck
cancers, including primary mucoepidermoid carcinoma of the
parotid gland (10-year OS rate of 95.8%), adenoid cystic
carcinoma (ACC) involving the skull base (3-year OS rate of
62.6% and 3-year PFS rates of 46.4%), and salivary gland
carcinomas of the lip and buccal mucosa (10-year LC rate of
82.9% and 10-year OS rate of 77.8%) (111–113). One study
Frontiers in Oncology | www.frontiersin.org 12
reported that the use of I-125 BT in non-squamous carcinoma
results in a better outcome compared to squamous cell
carcinoma (2). Since preliminary results indicate the efficacy of
I-125 BT for head and neck cancer, a trial with a larger sample
size and a longer follow-up is recommended.

Lung Cancer
The majority of lung cancer patients present with an advanced
stage at initial diagnosis. Consequently, multimodality therapy is
considered the principal strategy for the treatment of lung
cancer. As radiology and technology are still progressing,
TABLE 3 | Continued

Methods Study Year N Tumor Type Interventions Outcomes Ref

Li 2015 71 Unresectable stage
III/IV NSCLC

I-125-BT vs.
EBRT
　

Median OS time: 16 vs. 10 months, P<0.01
(66)

Chen 2014 136 HCC I-125-BT +RFA
vs. RFA

Mean OS time: 95.8 vs. 70.8 months P=0.003. Survival rate: P=0.003; 1-year
100% vs. 95.6%;
2-year 95.6% vs. 85.2%; 3-year 86.7% vs. 75.0%;
4-year 73.5% vs. 58.8%; 5-year 66.1% vs. 47.0%
Recurrence rate: (P=0.004): 1-year 4.5% vs.14.8%; 2-year 11.8% vs. 25.0%;
3-year 22.1% vs. 35.3%; 4-year 32.4% vs. 47.1%; 5-year 39.8% vs. 57.4%
Local recurrence rate: 7.3% vs. 22.0%, P=0.012; Intrahepatic recurrence rate:
17.6% vs. 32.3%, P=0.041.

(88)

Yang 2014 85 HCC with PVTT I-125-BT
+TACE vs.
TACE

Median OS time: 210 vs. 154.0 days, P=0.00.
(67)

Hu 2012 73 Recurrent Glioma I-125-BTvs.
CRT

Median OS time: 29.3 vs. 19.7 months, P<0.05.
(89)

Zhang 2011 53 Advanced NSCLC I-125-BT+GP
vs. GP

Median OS time: 13.5 vs. 9.0months, P=0.260; PFS time: 8.0 vs. 5.0 months,
P=0.048. (71)

I-125 seeds
loaded
stent

Wang 2019 32 Pancreatic cancer I-125 stent vs.
conventional
stent

Median OS time: 10.4 vs. 9.7 months, P=0.027.
Median stent patency time: 9.8 vs 8.8 months; P=0.019. (55)

Wu 2018 111 HCC+MPVTT I-125-BT
+TACE+stent
vs. TACE
+stent

Survival rate: P<0.05: 6 month 85.2 vs. 50.9; 12 month 42.6 vs. 10.5; 24
month 22.2 vs. 0.
Restenosis rate (P<0.05): 6 month 18.5% vs. 43.9%; 12 month 55.6%vs.
82.6%; 24 month 83.3% vs. 96.5%

(58)

Wang 2018 66 Malignant Airway
Obstruction

I-125 stent vs.
conventional
stent

Median OS time: 170 vs. 123 days, P<0.05.
Restenosis rate (P=0.037): 21.2% vs. 45.45% (14)

Zhu 2018 328 Malignant biliary
obstruction

I-125 stent vs.
conventional
stent

Median OS time: 202 days vs. 140 days, P = 0.020; Relief of jaundice: 85%
vs. 80%; P = 0.308.
Restenosis rate (P=0.010): 90 days 9% vs. 15%; 180 days 16% vs. 27%; 360
days 21% vs. 33% Grade 3/4 complications rate: 8.5% vs. 7.9%; P =0.841

(12)

Yang 2016 61 HCC with IVCTT TACE+I-125-
stent vs. TACE
+ bare stent

Median OS time: 203.0 vs. 93.0, P=0.006; Propensity score matching OS:
200 vs. 66 days, P=0.019. (61)

Zhu 2014 148 Esophageal cancer I-125 stent vs.
conventional
stent

Median OS time: 177 vs. 147 days, P=0.0046.
(11)

Zhu 2012 23 Malignant biliary
obstruction

I-125 stent vs.
conventional
stent

Median OS time: 7.40 vs. 2.50 months, P=0.006.
(15)

Guo 2008 53 Esophageal cancer I-125 stent vs.
conventional
stent

Median OS time: 7 vs. 4 months, P<0.001;
Median onset of restenosis: 4.5 vs. 2.0 months, P<0.044. (13)
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NR, no report; NSCLC, non-small cell lung cancer; CT, chemotherapy; MWA, microwave ablation; RFA, radiofrequency ablation; OS, overall survival; DFS, disease-free survival; HCC,
hepatocellular carcinoma; PFST, progression-free survival time; PTBS, percutaneous transhepatic biliary stenting; TP regimen, paclitaxel/cisplatin; MPVTT, main portal vein tumor
thrombus; TACE, transcatheter arterial chemoembolization; TTR, time to recurrence; NPC, nasopharyngeal carcinoma; EBRT, external beam radiotherapy; IMRT, intensity-modulated
radiotherapy; LTPFS, local tumor progression-free survival; IVCTT, inferior vena cava tumor thrombosis; LC, local control; CRT, chemoradiotherapy; DP regimen, docetaxel/cisplatin; GP
regimen, gemcitabine/cisplatin.
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CT-guided I-125 BT has now become a choice for inoperable
lung cancer (114, 115). A single-center RCT conducted in China
(72 patients with bilateral recurrence from colorectal cancer)
showed that the CT-guided I-125 BT was equally well tolerated
but had a significantly prolonged survival (mean 18.8 vs. 8.6
months, p = 0.008) when compared with standard palliative care,
without an increase in complications (87). Similarly, a trial of 95
patients with bilateral lung recurrences from hepatocellular
carcinoma (HCC) after resection or ablation demonstrated a
greater PFS (median 20.4 vs. 14.3 months, p = 0.026) and OS
(median 23.0 vs. 15.6 months, p < 0.01) when comparing I-125
BT with chemotherapy (76). A meta-analysis (updated in 2018)
included 15 clinical trials and confirmed that the combination of
I-125 BT with chemotherapy or even I-125 BT alone improves
OS of non-small cell lung cancer (NSCLC) patients when
compared with chemotherapy alone [pooled hazard ratio (HR):
0.66, 95% CI: 0.50–0.86, p<0.001], albeit at the expense of
additional, yet manageable, myelosuppression (116). However,
even though I-125 BT is more effective compared to standard
palliative care, there are still limitations to I-125 BT. First, a large
multicenter RCT is needed to distinguish differences in the
clinical outcome of I-125 BT, chemotherapy alone,
chemotherapy with EBRT, and EBRT alone. Second, a
combination of I-125 BT with molecular targeted therapy
should be considered for study to improve long-term efficacy.
Finally, as an alternative for the treatment of NSCLC recurrence,
I-125 BT is equally effective and safe as microwave ablation
(MWA) (75).

Hepatocellular Carcinoma
Hepatic resection is appropriate for only a few patients with
hepatocellular carcinoma (HCC) because preexisting liver
dysfunction and the presence of HCC in the major vessels of
the liver may exclude the possibility of liver resection. Because
donor shortages restrain liver transplantation and because of the
suboptimal long-term efficacy of radiofrequency ablation (RFA)
with or without transhepatic arterial chemotherapy and
embolization (TACE), clinicians have explored better strategies
(117). A prospective RCT that included 136 patients with HCC
[all had hepatitis B virus (HBV) infections] compared RFA plus
I-125 BT with RFA alone. RFA combined with I-125 BT when
compared with RFA alone resulted in lower recurrence rates at 1,
2, 3, 4, and 5 years (4.5% vs. 14.8%, 11.8% vs. 25.0%, 22.1% vs.
35.3%, 32.4% vs. 47.1%, and 39.8% vs. 57.4%; p = 0.004), lower
local and intrahepatic recurrence rates (7.3% vs. 22.0%, p = 0.012;
17.6% vs. 32.3%, p = 0.041), and higher survival rates at 1, 2, 3, 4,
and 5 years (100% vs. 95.6%, 95.6% vs. 85.2%, 86.7% vs. 75.0%,
73.5% vs. 58.8%, and 66.1% vs. 47.0%; p = 0.003) (88). However, a
study that evaluated whether I-125 BT as a prophylactic after
RFA could benefit patients with locoregional HCC recurrence in
terms of time to recurrence (TTR) and OS indicated no
difference with and without I-125 BT in TTR (21.7 vs. 15.9
months, p = 0.733) and OS (41.7 vs. 40.9 months, p = 0.316) (83).
Therefore, further study is needed to prove the efficacy of I-125
BT as a prophylactic after RFA. Additionally, two meta-analyses
suggested that I-125 BT plus TACE was found to remarkably
improve the survival of patients with HCC when combined with
Frontiers in Oncology | www.frontiersin.org 13
portal vein tumor thrombus (PVTT) compared to TACE alone
(118, 119).

Pancreatic Cancer
The implantation of radium in treating pancreatic cancer dates
back to the 1930s, almost 40 years after Marie and Pierre Curie
discovered radium (120). In 1981, the first reported US-guided I-
125 BT was also performed on pancreatic cancer (8). In other
words, the use of seed implant BT in pancreatic cancer has
occurred since the earliest phases of seed implant BT
development. A controlled study (66 patients with pancreatic
head cancer) suggested a significantly longer PFS (8 vs. 5 months,
p < 0.001) and OS (11 vs. 7 months, p < 0.001) for surgical
bypasses plus I-125 BT compared to biliary and gastric bypass
alone (84). Additionally, a recent review summarized the
development of I-125 BT on pancreatic carcinoma using
several approaches, such as with in vitro studies and preclinical
studies, evaluating the complications and efficacy of I-125 BT
alone or in combination with another strategy (cryoablation,
bypass surgery, chemotherapy, and EBRT) (121). It pointed out
that a uniform dose and standardized procedure are necessary to
achieve homogeneity and provided guidance for clinical practice
(121). Given the high mortality rate and poor prognosis of
pancreatic cancer with current treatment modalities, the
combination of I-125 BT with other therapies is a hot topic for
future research.

Prostate Cancer
LDR-BT is an acceptable option for selected patients with
prostate cancer for any risk group (77–79, 82). According to
the ABS guidelines, the GEC/ESTRO guideline and American
Society of Clinical Oncology/Cancer Care Ontario (ASCO/CCO)
Joint guideline, LDR-BT could be utilized as monotherapy for
low-risk and low–intermediate-risk prostate cancer; in addition,
LDR boost or HDR boost is recommended for patients with
selectively intermediate–high-risk and high-risk prostate cancer
(7, 26, 122–124). The recommendation was formulated based on
several randomized controlled trials comparing EBRT, LDR
boost, and HDR boost. One of them, ASCENDE-RT RCT (n =
398, low-intermediate = 2; high-intermediate = 120; high = 276),
which was highly anticipated, demonstrated that LDR boost after
EBRT significantly improved biochemical control in men with
intermediate- and high-risk cancer compared with EBRT alone
[biochemical disease-free survival (bDFS); 83% vs. 62% of 9-year
bDFS, p < 0.001]. However, increased Grade 3 GU toxicity was
observed in the I-125 LDR group compared with EBRT alone
(19% vs. 5%, p < 0.001) (125). In other words, LDR boost
improves LC at the cost of increasing GU or GI toxicity.
Furthermore, in this guideline, no meaningful difference was
shown regarding the dosimetric advantage of 125I seeds
compared to other isotopes. Although ABS did not
recommend a specific radioactive source for LDR treatment, I-
125 is indeed the most commonly used radioactive source in
clinical practice due to its appropriate energy and half-life.
Furthermore, the OS advantage for I-125 BT compared with
EBRT remains to be determined when accounting for the fact
that most trials are powered for PFS (7).
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Since both LDR and HDR are recommended as monotherapy
or boost for selective men with prostate cancer, the question that
which is the more favorable BT modality remains controversial,
as it needs comprehensive analysis of various oncological indexes
including OS rate, LC, biochemical control, GU/GI toxicity, and
even quality of life (Tables 4, 5) (129, 131–134). In the past few
years, an increasing number of studies compared the clinical
efficacy of LDR and HDR from various aspects. From the
perspective of radiobiology, the rapid dose delivery seen in
HDR is deemed to achieve a more destructive effect on lower
a/b ratio cells, such as prostate cancer cells. The real difference in
tumor control needs to be further confirmed through clinical
observation (135).

First, for low-risk disease, multiple studies reported that LDR
and HDR have comparable biochemical control as monotherapy
for favorable localized prostate cancer (136, 137). Then, for
unfavorable diseases, emerging evidence revealed the clinical
outcome of HDR and LDR as a boost after surgery or EBRT. A
large cohort study, enrolling 122,896 patients who were
diagnosed with NCCN intermediate- or high-risk prostate
cancer, suggested that HDR boost yields similar OS benefits
with I-125 BT boost (p = 0.38) and significantly better OS than
dose-escalated EBRT (DE-EBRT) (p < 0.001) (128). A
retrospective cohort study enrolled 1,809 patients with Gleason
score 9–10 prostate cancer from 12 centers during 2000–2013,
which compared the difference of radical prostatectomy (RP),
EBRT, and EBRT+BT (LDR-BT or HDR-BT) regarding 5-year
prostate cancer-specific mortality rates, 5-year incidence rates of
distant metastasis, and 7.5-year all-cause mortality rates (80).
Results of that study suggested that EBRT+BT was associated
with significantly lower prostate cancer-specific mortality [cause-
specific HRs of 0.38 (95% CI, 0.21–0.68) and 0.41 (95% CI, 0.24–
0.71)], distant metastasis [propensity score-adjusted cause-
specific HRs of 0.27 (95% CI, 0.17–0.43) for RP and 0.30 (95%
CI, 0.19–0.47) for EBRT], and all-cause mortality rates [cause-
specific HRs of 0.66 (95% CI, 0.46–0.96) for RP and 0.61 (95%
CI, 0.45–0.84) for EBRT] than either RP or EBRT alone.
However, no significant differences in prostate cancer-specific
mortality, distant metastasis, or all-cause mortality were found
between the two BT techniques. For Gleason score 10 prostate
cancer, a multi-institutional consortium study reported a similar
clinical outcome that EBRT+BT yielded superior distant
metastasis-free survival (DMFS) compared with RP (p = 0.06)
and EBRT alone (p = 0.048) (138). No further comparison
between I-125 BT and HDR-BT in this study. However, with
regard to prostate-specific antigen (PSA) kinetics, which is an
indicator of biochemical control following various modalities for
prostate cancer, Levin-Epstein et al. (127) demonstrated that
LDR-BT gives rise to lower nadir PSAs (nPSAs) and longer
continued decay compared to SBRT and HDR-BT, without
significant differences in biochemical recurrence-free survival
(RFS). They also noted that whether the difference in prostate-
specific antigen (PSA) kinetic implicates the efficacy when LDR
and HDR were used as a boost to EBRT requires further
investigation (127). A national population-based study
compared the GI, GU, skeletal-related events (SREs), and
Frontiers in Oncology | www.frontiersin.org 14
prostate cancer-specific mortality (PCSM) at 5 years in 54,642
patients with intermediate-risk, high-risk, and locally advanced
prostate cancer. According to the study, 5-year GI toxicity was
significantly lower in the LDR-BB group (32.2%) compared to
EBRT (18.7%) and HDR-BB (16.7%) group (p < 0.001).
Comparable GU toxicity was seen in both LDR-BB (15.8%)
and HDR-BB (16.6%) groups but significantly higher than
EBRT (10.4%, p < 0.01). Similarly, comparable prostate cancer-
specific mortality was seen in both LDR-BB (2.7%) and HDR-BB
(2.7%) groups but significantly lower than EBRT (3.5%, p =
0.02). No significant difference in the SRE was found among
these three techniques (p = 0.041) (126). However, for locally
recurrent prostate cancer, Henrıq́uez López et al. (130) reveal the
comparable efficacy and toxicity between LDR-BT and HDR-BT
in terms of 5-year PSA RFS rate (79% vs. 65%, p = 0.063), cause-
specific survival (97% vs. 93%, p = 0.44), and grade 3 GU toxicity
(27% vs. 22%, p = 0.756). Thus, LDR-BT and HDR-BT yield a
similar OS rate and PFS rate among low-, intermediate-, high-
risk prostate cancer and locally recurrent prostate cancer, while
LDR-BT has lower nPSA and higher GU toxicity. This
discrepancy might be due to the longer treatment period of
LDR-BT.

Focal therapies for prostate cancer, including RP,
cryotherapy, high-intensity focused ultrasound (HIFU), laser
ablation, photodynamic therapy, irreversible electroporation,
RFA, SBRT, and BT, were considered to improve postoperative
preservation of sexual and urinary function compared with
radical therapies. However, the lack of RCTs and consistent
follow-up led to the limited use of these modalities as the first-
line treatment (139). Most recently, a meta-analysis
quantitatively, including 150 studies, compared the efficacy and
toxicity of RP, HIFU, cryotherapy, SBRT, LDR, and HDR for
radio recurrent prostate cancer. Compared to RP (53%), they
reveal the adjusted 5-year RFS for cryotherapy (57%, p = 0.4),
HIFU (46%, p = 0.2), SBRT (56%, p = 0.8), HDR (58%, p = 0.2),
and LDR (53%, p = 0.9). No significant differences were observed
among these modalities. In terms of toxicity, the adjusted
incidence of severe GU toxicity for SBRT (5.6%, p < 0.001),
HDR (9.6%, p = 0.002), and LDR (9.6%, p = 0.001) were all
significantly lower than RP (21%), while no differences were
found in cryotherapy and HIFU. Besides, HDR yielded
significantly lower severe GI toxicity than RP (0.0% vs. 1.5%, p
= 0.003), without other differences among these therapies
regarding severe GI toxicity (140).

Additionally, the risk of secondary malignancy after BT is also
of concern, especially in patients with prostate cancer, which has
a long-term survival. Zelefsky et al. (141) reported the different
incidences of in-field and out-of-field secondary malignancies
among the patients who were treated with intensity-modulated
radiation therapy (IMRT) and BT (15% vs. 10%). However, a
retrospective study in prostate cancer (n = 1,310), comparing the
incidence of second malignancy in 1,310 cases with prostate
cancer who underwent EBRT and I-125 BT, combined with the
2000 census date from National Cancer Institute’s Surveillance,
Epidemiology, and End Results data set, demonstrated that the
10-year overall incidence of second malignancies was
September 2021 | Volume 11 | Article 717180
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significantly higher in EBRT group compared to I-125 BT group
(25% vs. 15%, p = 0.02). The significantly increased incidence of
skin cancer in the EBRT group (10.6% vs. 3.3%, p = 0.004)
compared to the I-125 BT group might account for the higher
overall incidence in the EBRT group. No significant differences
in SM incidence of all in-field cancers (bladder and rectal) were
seen among the two cohorts (142). When comparing LDR-BT
with HDR-BT, Murray et al. (143) found that the risk was lower
for bladder cancer with LDR-BT and similar for rectal cancer
with both techniques. In addition, seed migration after I-125
implantation did not increase the risk of second malignancies for
prostate cancer patients. However, a longer follow-up was
required to further investigate the correlation between seed
migration with secondary malignancies (144).

Indeed, several factors constrain the study on secondary
malignancies after prostate BT and EBRT, including long
follow-up time, difficulty to detect a difference in institutional
databases, lack of comparator cohort, and shortage of details
Frontiers in Oncology | www.frontiersin.org 15
regarding radiotherapy modalities in large database
studies (145).

Furthermore, new findings took place in the field of LDR-BT
for prostate cancer in the past few years, including new treatment
modalities, new techniques, advances in treatment planning, and
postoperative evaluations. Guimond et al. (146) reported that I-
125 BT boost to the dominant intraprostatic lesion (defined by
sextant biopsy) might improve the biochemical without
increasing toxicity with regard to 7-year bDFS rate (96% vs.
89%, p = 0.188). A phase I randomized controlled trial conducted
in I-125 LDR-BT for prostate cancer demonstrated that a
machine learning-based prostate implant planning algorithm
had the potential to produce more favorable postoperative
dosimetry and operational efficiencies compared with the
conventional treatment planner (147). Postoperative dosimetry
evaluation by CT or MRI is the important quality assessment
step of I-125 BT. A prospective study for prostate cancer
confirmed that fully balanced steady-state free precession and
TABLE 4 | The comparison of oncological results of LDR and HDR.

Study Year N Tumor
type

Interventions Outcome Toxicity Ref

Matthew 2020 54642 Prostate
cancer

EBRT mono
(n=51547)
HDR-BB (n=2765)
LDR-BB (n=330)

5-y PCSM, p=0.020
3.5% vs. 2.7% vs. 2.7%

5-y GI, p<0.001, 18.7% vs. 16.7% vs.
32.2%
GU, p<0.001,10.4% vs. 16.6% vs.
15.8%
SKE, p=0.041,2.8% vs. 2.4% vs. 2.7%

(126)

Levin-
Epstein

2020 3502 Prostate
cancer

SBRT, n=1716;
LDR, n=1274;
HDR, n=512.

nPSA <0.2 ng/mL, P<0.001, 48% vs. 72% vs.
56%
nPSA <0.5 ng/mL, P<0.001, 80% vs. 86% vs.
77%

(127)

King 2019 122896 Prostate
cancer

HDR-Boost, n=8526
LDR-Boost, n=9877
DE-EBRT, n=104486

Similar OS for HDR vs. LDR,
AHR 1.01 [0.93, 1.10]; P=0.77 (128)

Slevin 2019 287 Prostate
cancer

LDR–EBRT: 116
HDR–EBRT: 171

5-y bPFS p=0.01, 90.5% vs.77.6% Late GU G≥3, p=0.17
8% vs. 4%
Late GI G≥3, p=0.13
5% vs. 1%

(129)

López 2019 119 Prostate
cancer

LDR,n = 44;
HDR, n = 75

5-y PSA-RFS, P=0.063,79% vs. 65%
5-y CSS: P = 0.44, 97% vs. 93%

G3 GU, P=0.756
27% vs. 22% (130)

Yamazaki 2018 838 Prostate
cancer

HDR-BT mono n=352
LDR-BT ± EBRT
n=486

5-y bNED, P=0.25, 95.6% vs. 92.9%
7-y CSS, p = 0.07, 100% vs. 99.1%
7-y OS rate, p=0.2873, 97.8% vs. 93.7%

Accumulated GU G≥2 p = 0.3289
17.6% vs. 15.8%
Accumulated GI, p = 0.1511
2.8% vs. 1.9%
Acute GI: G≥1/G≥2, p<0.0001
69.3%/12.3% vs. 92%/43%
Late GI G1/G2/G3, p = 0.2526
9%/3%/0.3% vs. 7%/2%0%
Late GU G1/G2/G3, p = 0.0007
28%/16%/3% vs. 40%/15%/0.8%

(131)

Kollmeier 2017 98 Prostate
cancer

LDR, n=37;
HDR, n=61

3-year PSA RFS: 60.2% p=0.84 Late G3/4 GU: 3% vs. 13%
(132)

Tward 2016 118199 Prostate
cancer

LDR, n=12801
HDR, n=685
LDR+EBRT, n=8518
HDR+EBRT, n=2392

8-y late GU G3, p=NR
15.7% vs. 17.4% vs. 22.2% vs. 26.6% (133)

Henrıq́uez 2014 56 Prostate
cancer

LDR, n=37;
HDR, n=19

5-year FFbF: 7% GU G3/G4: 24%/0% vs. 21%/
GI G3/G4: 0%/2.7% vs.2%/ (134)
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prostate specific antigen; nPSA, nadir PSA; RFS, relapse-free survival; CSS, cause-specific survival; bNED, biochemical failure-free survival rates; PCSM, Prostate cancer-specific
mortality; SKE, Skeletal-related event; GI, gastrointestinal; GU, genitourinary; OS, overall survival; DFS, disease free survival; LR, local recurrence; LC, local control; FFbF, freedom from
biochemical failure.
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advanced MRI scan technique could acquire resultant image
superior to the current clinical standard without using endorectal
coil, which brought better patient tolerance, lower costs, higher
clinical throughput, and higher precision (148). PSA is deemed
an important indicator of biochemical control for posttreatment
prostate cancer. There is not yet a definitive value of PSA to
define the biochemical cure. Recently, through the
comprehensive analysis of the association between different
PSA ranges and DFS under different treatment modalities, a
multicenter study identified PSA <0.2 ng/ml at 4 years after LDR
prostate BT as a threshold value to predict the long-term (10–15
years) freedom from prostate cancer (149). Nevertheless, how
long is the “long-term”? Lazarev et al. (150) reported their study,
which identified 757 men with localized prostate cancer who
underwent definitive LDR-BT, suggesting that 17-year rates for
Frontiers in Oncology | www.frontiersin.org 16
biochemical failure-free survival (BFFS) (79%), DMFS (97%),
prostate cancer specific survival (PCaSS) (97%), and OS (72%).
They also revealed the 17-year BFFS (86%, 80%, and 65%, p <
0.001) and OS (82%, 73%, and 60%, p = 0.09) rate for low-,
intermediate-, and high-risk patients (150). Another study also
reported the 10-year actuarial freedom from biochemical failure
(FFbF) (52.0%), PCaSS (77.8%), and OS (56.7%) in patients who
underwent salvage LDR-BT for biopsy-confirmed intra-prostatic
recurrence after EBRT (151). Placement of hydrogel space
between prostate and rectum immediately after I-125
implantation for prostate cancer significantly reduced RV150
and RV100, without impact on prostate V100 and V150, which
had the potential to reduce late GI toxicity and improve bowel
function (152). A novel optical fiber sensor was developed to
monitor the real-time radiation during the BT, which was
TABLE 5 | Ongoing studies comparing I-125 BT with HDR-BT.

Study
identifier

Cancer type Phase Study arms Outcomes Study
Status

NCT02628041 Prostate cancer II • LDR-BT with I-
125

• HDR-BT

QOL, LC, urinary function, GU/GI toxicity and PSA nadir value. Active,
not
recruiting

NCT01936883 Prostate cancer III • LDR-BT with I-
125

• HDR-BT

QOL, PSA RFS. Recruiting

NCT02258087 Prostate
Cancer

II-III • LDR-BT with I-
125

• HDR-BT

Acute/chronic side effects, QOL, biochemical RFS, locoregional tumor free survival,
disease specific survival.

Recruiting

NCT03426748 Prostate
Cancer

NA • LDR-BT with I-
125

• HDR-BT

QOL, time to return to baseline +/- 3 points for the IPSS, acute/chronic toxicity,
biochemical outcome, histologic outcome, cell cycle progression score, tumor
oxygenation and cell cycle distribution.

Recruiting

NCT02692105 Prostate
Cancer

III • LDR-BT with I-
125

• HDR-BT

QOL, time to return to baseline +/- 3 points for the IPSS, acute/chronic toxicity, TRUS-
MRI fusion, biochemical outcome, histologic outcome, cell cycle progression score.

Recruiting

NCT03322280 Hepatocellular
Carcinoma

NA • TACE with I-125
• TACE

OS, Time to tumor progression, LC, Duration of portal patency, adverse events. Recruiting

NCT03964064 Pancreatic
Cancer

NA • SBRT
• LDR-BT with I-

125

OS, PFS, LC, pain score, QOL, adverse reactions. Recruiting

NCT02048254 Salivary gland
cancer

III • IMRT
• LDR-BT with I-

125

LC, PFS, OS, QOL, radiation-related adverse reactions. Unknown
or
recruiting

NCT00664456 Prostate cancer • 9 x LHRH-A+I-
125 LDR-BT+ 3
x LHRH-A

• 3 x LHRH-A+I-
125 LDR-BT

OS, Clinical PFS, DSS, Salvage therapy non-adaptive interval, QOL, adverse events. recruiting

NCT03944408 Malignant
Airway
Obstruction

NA • Metal bare stent
with 125I seeds

• Metal bare stent

Stenosis grade (1 month and 3 months), OS, technical success, complications and side
effects, tumor growth rate, the time of emergency endoscopic treatment.

Not yet
recruiting

NCT02960087 Prostate cancer NA • LDR-BT with I-
125

• HDR-BT

PSA values by 48months, DFS, Adverse events, QOL, Economic analysis. Recruiting

NCT04610372 Oligometastatic
Prostate
Cancer

NA • EBRT
• HDR-BT
• LDR-BT with I-

125
• SBRT

Urinary Symptoms, EPIC urinary domain, EPIC bowel domain, EPIC sexual domain,
Biochemical failure, Distant metastatic failure, Nodal progression, OS, CSS, Cost
effectiveness.

Recruiting
September 2021 | Volume 11 | Artic
QOL, quality of life; PSA RFS, prostate-specific-antigen recurrence free survival; NA, not applicable; GI, gastrointestinal; GU, genitourinary; IPSS, International Prostate Symptom Score;
EPIC, Expanded Prostate Cancer Index; LDR-BT, low dose rate brachytherapy; HDR-BT, high dose rate brachytherapy; I-125, iodine 125; OS, overall survival; PFS, progression-free
survival; DSS, disease specific survival; CSS, cancer specific survival; LC, local control; LHRH, a chemotherapy regimen, goserelin acetate 3.6mg/4 weeks or leuprorelin acetate 3.75mg/4
weeks; TACE, transhepatic arterial chemotherapy and embolization.
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considered to guarantee the safety and efficacy of the I-125 BT
procedure (153).

Sarcoma
When it comes to sarcoma, a study enrolling 93 patients with
metastatic soft tissue sarcoma after first-line chemotherapy
failure suggested that I-125 BT significantly increases the PFS
time (7.1 vs. 3.6 months, p < 0.001) with better symptom relief
compared with second-line chemotherapy (81). A 12-year study,
enrolling patients (n = 25) with locally recurrent head and neck
soft tissue sarcoma after surgery and EBRT, reported the efficacy
and safety of I-125 BT as a salvage strategy concerning objective
response rate (76.0%), local PFS (median time 16.0 months), and
OS (median time 28.0 months), with a few tolerable side effects
(154). Of note, a cancer center has attempted to distinguish the
difference in efficacy between I-125 BT and MWA on recurrent
retroperitoneal liposarcomas (155).

Others
I-125 BT has also achieved great success in the treatment of various
other tumors. For recurrent cervical cancer after EBRT, I-125 BT is
considered a reliable salvage treatment after initial EBRT and can
mitigate cancer-related pain. However, factors including the
recurrent site, tumor volume, and the prescribed dose impact the
efficacy, as this strategy has been apt to cause pelvic wall recurrence
(156, 157). In application to non-palpable ductal carcinoma in situ,
I-125 can be utilized more effectively than wire-guided localization
for guiding breast conservation surgery (158). Approximately 25%
of patients with breast cancer are diagnosed with occult or non-
palpable breast cancer (159). However, for these patients, the
difficulty to define a clear margin for this type of lesion conflicts
with breast conservation (160). Hence, I-125 BT preoperative
localization as part of image-guided surgery was used to clarify
the target margins and direct the breast conservation. Additionally,
Chan et al. (161) reviewed the importance of I-125 BT in guided
surgical excision of non-palpable breast cancer.
I-125 SEED STENTS IN HOLLOW ORGANS

Primarily, I-125 has been used in the treatment of solid tumors. For
a long time, the symptoms accompanying malignant obstruction in
hollow organs decreased patients’ quality of life. For instance,
concerning unresectable esophageal cancer, clinicians were
primarily perplexed with how to relieve dysphagia and prolong
survival. While SEMS relieved obstructions temporarily in
esophageal cancer treatment, stent restenosis was a subsequent
issue. Encouraged by the long-term benefits brought by
intraluminal BT, which can deliver an effective localized high
radiation dose to tumors elegantly, novel stents loaded with I-125
were developed (13). A preclinical study performed on normal pigs
indicated that the specially designed I-125 seed stent inserted in the
pancreatic duct was feasible and safe in an animal model, which
provided experimental support for its use in the clinical practice of
pancreatic cancer as well as in other scenarios (162).

In the 2000s, physicians attempted to evaluate the efficacy of
I-125 loaded in a SEMS for inoperable esophageal cancer with
Frontiers in Oncology | www.frontiersin.org 17
dysphagia. The trial (n = 53) showed that the I-125 seed stent
significantly improved the survival time (mean 8.3 vs. 3.5
months, p < 0.001) and delayed the time to stent restenosis
(median 4.5 vs. 2 months, p < 0.044) (13). Because of this study, a
multicenter, single-blind, randomized, phase 3 trial (n = 148) was
conducted in China, further confirming the clinical efficacy of
this type of irradiation stent on unresectable esophageal cancer,
with prolonged survival (median 177 vs. 147 days, p = 0.0046)
and a lower dysphagia score in the I-125 seed stent treatment
group. Additionally, the same team also further investigated
which factors can predict the OS outcome and relieve
dysphagia with the I-125 seed stent (11).

Inspired by the successful utility of I-125 seed stent in esophageal
cancer, two key trials (n = 23 and n = 328) were conducted to assess
the efficacy in malignant biliary obstruction (12, 15). The latter trial,
a multicenter, open-label, randomized, phase III trial (n = 328)
comparing the irradiation stent with the uncovered SEMS found
both stents were equally effective in relieving jaundice, but the I-125
seed stent was associated with significantly longer survival (median
202 days vs. 140 days; p = 0.020) and lower stent restenosis rate
(21% vs. 33% at 360 days; p = 0.010) (12). Furthermore, a novel
model was developed, on the basis of radiomics, via a retrospective
study including 106 patients treated with an I-125 seed stent for
unresectable pancreatic cancer combined with malignant biliary
obstruction and predicted that the patients with slow progression
are apt to have a longer restenosis-free survival (163).

Similarly, a prospective RCT was developed to evaluate the
efficacy and safety of I-125 seed stents comparedwith conventional
stents in 66 patients with unresectable malignant airway
obstructions. Statistically and clinically significant improvement
in OS (170 days vs. 123 days, p = 0.015) and a decrease in in-stent
restenosis rate (21.2% vs.45.45%, p= 0.037)were observedwith the
novel I-125 seed stent, without increased complications (14).

Although the I-125 seed-loaded stent has been introduced
into clinical practice, they are not appropriate for all clinical
scenarios, and the long-term toxicity and efficacy of this
approach are still being determined for other tumors and
lesions. The location of the lesion requiring treatment and its
proximity to critical normal tissues with high sensitivity to
radiation must be carefully considered.
BIOLOGICAL EFFECTS OF CONTINUOUS
LOW-DOSE-RATE IRRADIATION BY I-125

Despite a large number of studies reporting the biological effects
of EBRT (21), little attention is paid to I-125 BT, which generates
continuous LDR irradiation. In the past decade, emerging
evidence reported the radiobiological and immunological
effects mediated by I-125. Of note, in contrast to EBRT,
the continuous LDR irradiation could surmount problematic
tumor growth that might occur during the EBRT interval, based
on cell reoxygenation, cell cycle redistribution, cell repopulation,
and cell repair. Concerning the radiobiological effects, it has been
found that I-125 could inhibit cell proliferation in vitro and delay
tumor growth in tumor models by upregulating apoptosis- and
September 2021 | Volume 11 | Article 717180

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Advances in I-125 Brachytherapy
cell arrest-related genes, such as BNIP3 and WNT9A, through
irradiation-induced DNA methylation (164). Moreover, the
signaling pathways participating in the apoptosis induced by I-
125 were explored to include the downregulation of hypoxia-
inducible factor (HIF)1a, vascular endothelial growth factor
(VEGF), and matrix metalloproteinase (MMP)-2/MMP-9 (165,
166). Besides apoptosis, I-125 seed radiation was found to
activate the phosphoinositide 3-kinase (PI3K)/AKT signaling
pathway to induce paraptosis-like cell death and trigger
mitophagy by elevating mitochondria reactive oxygen species
(ROS) level via the HIF1a-BCL2/Adenovirus E1B 19kDa
Interacting Protein 3 (BNIP3)-NIP-3-Like Protein X (NIX)
signaling pathway (167, 168). Given that mitophagy is an
autoregulatory cell mechanism, it might be an option for
potential targeted therapy to enhance the efficacy of I-125 BT
whenused in tandem. In addition, theWarburg effect is suppressed
by I-125 seed radiation via upregulating miR-338 to inhibit 6-
phosphofructokinase (PFKL), as the Warburg effect is deemed to
be the landmark metabolic process of malignant tumors (169).

Additionally, the efforts to improve the clinical performance of I-
125 for use in LDR-BT continue. A preclinical study performed on
HCC models showed that the induced apoptosis and tumoricidal
effect by I-125 seed radiation were facilitated by lobaplatin through
the upregulation of the protein kinase RNA-like ER kinase (PERK)-
eukaryotic initiation factor 2a (eIF2a)-Activating Transcription
Factor 4 (ATF4)-CCAAT Enhancer Binding Protein homologous
protein (CHOP) pathway (170). Moreover, hampering the
expression of PERK can counteract the synergistic antitumor effect
of lobaplatin on I-125 seed radiation, which predicated the potential
combination therapy in future clinical practice (170). A novel cancer-
targeting agent, known as folic acid-conjugated selenium
nanoparticles, was developed to augment the I-125-mediated
tumoricidal effects through increasing ROS and activating the
mitogen-activated protein kinase (MAPK) and P53 pathways,
resulting in DNA damage (171). Furthermore, the expression of
DNA-PKCs, which are regarded as the key factors for DNA repair in
the non-homologous end-joining pathway, was found to predict
biochemical recurrence in prostate cancer after I-125 BT (172).

Theoretically, localized continuous radiation is assumed to
yield an immune response analogous to EBRT. One study
concerning the immune status after I-125 BT indicated that
the frequency of CD3+T cells, CD4+T cells, and CD3-CD16+/
CD56+NK cells increased significantly after the treatment, with a
decrease of blood tumor markers (173, 174).

Difficulties in immunological studies of I-125 seed radiation
include the construction of irradiated animal models, relatively
lengthy observation periods, and the required dose to induce a
local and/or systemic immune response. More preclinical and
clinical investigations are needed to further investigate the
immunomodulation of I-125 seed radiation.
PERSPECTIVE

High-Level Randomized Clinical Trials
RCTs are vital to inform medical decisions and improve cancer
care, and all patients who wish to undergo I-125 BT should be
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encouraged to take part in RCTs. Currently, the majority of
clinical trials focusing on I-125 BT were single-armed or single-
center. This has led to preliminary data showing I-125 BT as a
safe and effective alternative to EBRT or surgery with a low risk
of complications for patients with recurrent or inoperable
lesions. The limitations of sample size and lack of control have
restricted the ability to obtain high-level evidence-based
conclusions for use in clinical practice and the optimization of
guidelines. In addition, the benefit of I-125 BT in many tumors
remains to be evaluated, given the lack of evidence of greater
tumor control or less toxicity with this approach. Many in the
oncology community are eagerly awaiting data from RCTs that
compare current radiotherapeutic techniques with I-125 BT.
Therefore, multicenter double-blind RCTs should be
conducted to confirm the clinical efficacy in terms of I-125 BT.
The Introduction of Artificial Intelligence
Navigation With I-125 BT
The combination of AI and robotic technology has spawned
advances such as cyber-knife, which has played a critical role in
the modern use of SBRT. Therefore, it might be not only feasible
but also beneficial to introduce AI navigator systems into I-125
BT. A clinical trial has been carried out on AI navigator-guided I-
125 BT in some cancer centers to assess whether it can facilitate
the accuracy of I-125 seed localization and shorter operation
time. Thus, the integration of multiple advanced technologies
would promote the popularization of I-125 BT.
Investigation of Immunological Effects
I-125 BT
The low-dose rate continuous irradiation-related biological
effects are complicated. The underlying mechanism of I-125-
induced apoptosis and tumor-killing effects remains fully
unrevealed. Besides, the changes of the local tumor immune
microenvironment (TIME) and the followed alteration of the
systemic immune state after I-125 BT are still elusive. The
question remains: Is the immunomodulation by I-125
analogous to EBRT, such as enhanced immune recognition
and local accumulation of immunosuppressive factors? The
prospect of exploring the optimal regimen of immunotherapy
with I-125 BT is promising. Future investigation should help to
determine the immunological effects of I-125.
I-125 BT in Combination With
Other Strategies
As the preclinical studies suggested, the third-generation
platinum drug, lobaplatin, can enhance the tumoricidal effects
of I-125. This may indicate that combinations of I-125 seeds with
chemotherapy agents might be of interest in the future.
Moreover, the autoprotective mechanisms of tumor cells, such
as mitophagy, provide a potential therapeutic target (167, 168).
Future experimental studies on the radioimmunological effects of
I-125 may elucidate multiple therapeutic strategies based on the
systemic immunomodulation of I-125.
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CONCLUSION

A rapid advance of technology has progressively increased the
accuracy of I-125 BT, reduced unexpected adverse effects, and
substantially improved survival. Consequently, the use of I-125
BT has expanded to multiple sites and the dose of radiation has
been escalated with this technique. This has given rise to
improvements in disease control. I-125 BT not only provides
an opportunity to preserve organs that otherwise would have
been surgically removed but also plays a critical role in the
salvage of recurrent and refractory cancer. The endeavor to
increase the accuracy, improve the LC, and minimize the side
effects of I-125 BT continues to evolve.
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