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Background: Natural killer (NK) cells play a significant role in antitumor immunity and are closely related 
to tumor prognosis and recurrence. NK cell-based tumor immunotherapy, including immune checkpoint 
inhibition and CAR-engineered NK cells, is a promising area of research. However, there is a need for better 
NK cell-related models and associated biomarkers.
Methods: The sequences of NK cell-related genes were obtained from the published NK cell CRISPR/
Cas9 library data, and the common genes were selected as NK cell-related genes. The RNA sequencing 
(RNA-seq) and clinical data of 32 solid tumors from The Cancer Genome Atlas (TCGA) were downloaded 
from the UCSC Xena database, and the RNA-seq data of normal samples were downloaded from the 
Genotype-Tissue Expression (GTEx) database. The differentially expressed NK cell-related genes 
(DENKGs) between the tumor and normal samples were analyzed. The DENKGs related to the prognosis 
of solid tumors were selected via univariate Cox analysis, and 32 kinds of solid tumor prognostic models were 
constructed using least absolute shrinkage and selection operator (LASSO) and multivariate Cox analysis. 
Survival, receiver operating characteristic (ROC), and independent prognostic analyses were employed 
to test the effectiveness of the model, along with a nomogram model and prediction curve. Differences in 
the immune pathways and microenvironment cells were analyzed between the high- and low-risk groups 
identified by the model.
Results: We constructed a pan-cancer prognostic model with 63 NK cell-related genes and further 
identified DEPDC1 and ASPM as potentially offering new directions in tumor research by literature 
screening.
Conclusions: In this study, 63 prognostic solid tumor markers were investigated using NK cell-related 
genes, and for the first time, a pan-cancer prognostic model was constructed to analyze their role in the 
immune microenvironment, which may contribute new insights into tumor research.
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Introduction

Natural killer (NK) cells are a type of cytotoxic lymphocytes 
that are essential for cancer surveillance and can act as 
effectors without prior sensitization (1). A study has 
demonstrated that infused allogeneic NK cells can safely 
cross the human leukocyte antigen barrier and avoid graft-
versus-host disease reaction (2).

NK cell-based tumor immunotherapy, including NK cell-
based immune checkpoint inhibition and CAR-engineered 
NK cells. Some researchers have proposed utilizing NK 
cells as novel targets for immune checkpoint inhibition, 
suggesting that the combination of anti-programmed 
death 1 (PD-1), anti-programmed death-ligand 1 (PD-L1) 
inhibitors with NK cell-specific checkpoint inhibitors may 
hold significant value for combination immune checkpoint 
therapy (3). Besides, drawing inspiration from the CAR-T 
immunotherapy, researchers have extended their focus to 
other immune cells, including CAR-NK, CAR-CIK, and 
CAR-MΦ. Among these, CAR-NK cells exhibit several 
advantages over CAR-T cells, including better safety, 
superior antitumor activity, and high efficiency for ‘off-the-
shelf’ manufacturing (4-6). 

A recent study demonstrates uti l izat ion of  the 
nanotechnology in NK cell-based tumor immunotherapy. 
However, the full realization of engineered NK cells’ 
potential in clinical practice has been hindered by the 
absence of suitable models to comprehensively study 
human NK cell biology complexity (7). Additionally, it has 
been emphasized that to maximize patient benefits from 
immunotherapy, personalized analysis of cancer based on 
biomarkers are of paramount importance (3). Hence, there 
is an urgent need to develop NK cell-related models or 
identify associated biomarkers through diverse approaches. 
In this study, we construct a pan-cancer prognostic model 
based on 63 NK cell-related genes and screened two 
key genes, ASPM and DEPDC1, which may provide a 
new direction for future study to further analyze of the 
mechanisms underlying NK cell-mediated tumor immunity 
and lay the foundation for personalized drug development. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-434/rc).

Methods

Data download and preprocessing

The CRISPR/Cas9 library data related to NK cell 
killing were obtained from the literature (8-10), and the 
intersection was obtained via Venn diagram analysis (11). 
RNA sequencing (RNA-seq) [fragments per kilobase per 
million (FPKM) value] and the clinical data of 32 cancers 
from The Cancer Genome Atlas (TCGA) database were 
downloaded from the USCS Xena database (https://xena.
ucsc.edu/), RNA-seq data (FPKM value) of normal tissues 
were downloaded from the GTEx database (https://
gtexportal.org/home/), and pan-cancer prognostic data were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/gds). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The normalizeBetweenArrays algorithm 
in the “limma” R package (The R Foundation for Statistical 
Computing) (12) was used to correct the data.

Differentially expressed NK cells associated with tumor 
prognosis

We first extracted information on the messenger RNA 
(mRNA) expressions of NK cell-related genes from the 
RNA-seq data obtained from the GTEx and TCGA 

Highlight box

Key findings
• The research developed a pan-cancer prognostic model using 

63 genes related to natural killer (NK) cells. By screening the 
literature, DEPDC1 and ASPM were identified as potential areas 
for new tumor research.

What is known and what is new?
• NK cells play a significant role in antitumor immunity and are 

closely related to tumor prognosis and recurrence.
• A pan-cancer prognostic model was constructed with 63 NK cell-

related genes and further identified two genes, DEPDC1 and 
ASPM, which were not reported to be associated with NK cell 
killing in previous studies.

What is the implication, and what should change now?
• In this paper, a pan-cancer prognostic model was constructed to 

analyze their role in the immune microenvironment, which may 
contribute new insights into tumor research.

• Two genes, DEPDC1 and ASPM, were further identified. By 
reviewing the literature, it is found that the possible associations 
of ASPM with thymoma and uveal melanoma have not yet been 
reported. Furthermore, there exists some disagreement about the 
relationship between DEPDC1 expression and the prognosis of 
stomach adenocarcinoma, which remains to be further explored in 
future studies.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-434/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-434/rc
https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/gds


Li et al. Pan-cancer prognostic model of NK cell-related genes 1938

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(4):1936-1953 | https://dx.doi.org/10.21037/tcr-24-434

databases, analyzed the differences in these genes between 
the tumor and normal samples using the Wilcoxon test, 
and determined the common differentially expressed NK 
cell-related genes (DENKGs) in different tumors using 
the “RobustRankAggreg” R package (13). Univariate Cox 
analysis was employed to screen the prognosis-related 
DENKGs for solid tumors.

 

Prognostic model of NK cells in solid tumors

We used the “glmnet” R package (14) to screen the 
overfitted prognosis-related DENKGs via least absolute 
shrinkage and selection operator (LASSO) regression, 
and the prognostic model of NK cells in solid tumors was 
constructed via multivariate Cox analysis. Furthermore, 
the data were randomly categorized into training and test 
groups at a ratio of 8:2 for model verification. Additionally, 
six different cancer datasets from GEO were used to further 
validate our prognostic model. 

Nomogram model

The “survival” R package (15) was used to conduct survival 
curve and receiver operating characteristic (ROC) analyses 
of the model, and independent prognostic analysis was 
employed to verify the effectiveness of the model. In 
addition, a nomogram model of solid tumor prognosis was 
constructed, and the nomogram calibration curve was used 
to test its prognostic effect. ROC and concordance index 
(C-index) were also used to analyze the accuracy of the 
nomogram model.  

Analysis of the immune microenvironment 

TCGA pan-cancer samples were classified into high- and 
low-risk groups according to the risk model. The “GSEA” 
R package (16) was used to analyze the enriched immune 
pathways in the high- and low-risk groups so as to verify the 
enrichment effect of the immune pathways on the model. 
The proportion of immune cells in pan-cancer samples was 
analyzed using the “CIBERSORT” R package (17), and the 
difference of immune cells between the high- and low-risk 
groups was analyzed.

Analysis of tumor mutational burden (TMB)

To characterize the differences in tumor mutation between 
the high- and low-risk groups, we downloaded pan-cancer 

mutation data from UCSC Xena, calculated the TMB 
using the Perl script, and categorized the patients into two 
groups. Furthermore, we separately analyzed the differences 
in the TMB value between the high- and low-risk groups.

Gene analysis of the NK cell prognostic model

First, the interactions between the genes in the model 
were analyzed using the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) (18) database (https://
cn.string-db.org/), and those with binding scores >0.7 were 
selected as the core genes. Second, the relationship between 
core genes and immune microenvironment and stem cell 
scoring was further analyzed using the “CIBERSORT” R 
package (19). Prognostic survival analysis was also employed 
as an important method for core gene screening.

Statistical analysis

Data are presented as means ± standard error of the mean 
(SEM). Wilcoxon test was applied to analyze the differences 
of NK cell-related genes between the tumor and normal 
samples according to the TCGA and GTEx database. 
Statistical analyses were performed using R 4.1.2. P<0.05 
was considered statistically significant. A Perl script was 
used to calculate the TMB value.

Results

Differential and prognostic NK cell-related genes

The design and process of our study are presented in Figure 1.  
Five CRISPR/Cas9 library results were obtained from the 
studies conducted by Kearney et al. (8), Freeman et al. (9), 
and Sheffer et al. (10). A total of 771 NK cell-related genes 
were obtained via Venn diagram analysis performed to 
determine the intersection of ≥ two datasets, which were 
found to be valid (Figure 2A,2B). After the combination of 
the TCGA and GTEx data, the differences in the 730 NK 
cell-related genes between tumor and control samples were 
tested. A total of 184 DENKGs were screened using the 
“RobustRankAggreg” R package (13) (Figure 2C). Univariate 
Cox analysis was employed to screen 136 DENKGs related 
to pan-cancer prognosis (Table 1).

DENKG prognostic risk model

After the overfitted DENKGs were screened via LASSO 
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Figure 1 Visualization of the study concept. NK, natural killer; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.
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Figure 2 Recognition of differential NK cell-related genes. (A,B) Venn diagrams illustrating the process of obtaining 771 NK cell-related 
genes. (C) Pan-cancer differential heatmap of differentially expressed NK cell-related genes after combined examination. The color scale 
of the heat map is the z-score score of the RNA-seq sequencing data. neg, negative; pos, positive; ACC, adrenocortical carcinoma; BLCA, 
bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adeno carcinoma; 
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Table 1 Univariate Cox analysis of natural killer cell-related genes 
in pan-cancer

Gene HR HR 95L HR 95H P value

ASPM 1.765335 1.64416 1.89544 2.63E−55

CRY2 0.300167 0.25784 0.34944 2.66E−54

DEPDC1 1.726787 1.60937 1.85277 3.33E−52

SNX1 0.176422 0.14077 0.2211 2.79E−51

TMEM158 1.614313 1.51535 1.71974 8.43E−50

GTSE1 1.747023 1.62188 1.88182 5.37E−49

LRRC27 0.391062 0.34329 0.44548 2.74E−45

MSANTD3 3.782003 3.13263 4.56599 1.46E−43

E2F8 1.629834 1.52008 1.74751 6.44E−43

ZIC2 1.396849 1.32864 1.46856 4.03E−39

B4GALT5 3.647815 3.00407 4.42951 5.31E−39

CFAP69 0.448298 0.39738 0.50574 6.93E−39

SRXN1 1.77672 1.62956 1.93717 8.34E−39

HERC1 0.334825 0.28332 0.39569 9.93E−38

SLC35C1 2.903049 2.46438 3.4198 3.08E−37

CRBN 0.297112 0.24494 0.3604 7.18E−35

KANK3 0.558185 0.50789 0.61347 1.04E−33

TCF19 1.947962 1.73628 2.18545 6.58E−30

WDR20 0.264804 0.21015 0.33367 1.92E−29

NRBF2 4.169672 3.21529 5.40734 4.94E−27

CDC7 1.696141 1.54023 1.86783 6.61E−27

SYNE2 0.525487 0.46596 0.59263 9.76E−26

LMF1 0.561003 0.50312 0.62555 2.39E−25

PNO1 3.388568 2.65755 4.32067 7.32E−23

TMEM132A 1.576354 1.43967 1.72601 7.96E−23

ANXA6 0.541267 0.47693 0.61429 1.97E−21

ERCC5 0.448042 0.37941 0.52908 2.94E−21

CCDC71 0.341456 0.27282 0.42736 6.29E−21

NMRK1 0.537575 0.47142 0.61301 1.96E−20

LAMB3 1.303835 1.22995 1.38216 4.94E−19

Table 1 (continued)

CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head 
and Neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 
carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous 
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; PEAD, rectum adenocarcinoma; SKCM, skin 
cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; UCEC, uterine 
corpus endometrial carcinoma; NK, natural killer; RNA-seq, RNA-sequencing.

Table 1 (continued)

Gene HR HR 95L HR 95H P value

RAC1 6.708947 4.39132 10.2498 1.34E−18

ATOH8 0.759045 0.71341 0.8076 2.92E−18

DNTTIP1 2.82242 2.23025 3.57182 5.81E−18

BRIP1 1.439142 1.32391 1.56441 1.24E−17

ARF3 0.240691 0.17233 0.33618 6.58E−17

DLG2 0.63909 0.57383 0.71176 3.72E−16

LUC7L2 0.311179 0.2349 0.41223 4.07E−16

THBS3 1.748406 1.52642 2.00267 7.32E−16

PDK4 0.788456 0.74393 0.83565 1.11E−15

TRAF7 2.762126 2.15155 3.54598 1.57E−15

PPIL1 2.558938 2.03091 3.22425 1.61E−15

IKZF3 0.757816 0.70736 0.81187 3.04E−15

UACA 0.617324 0.54721 0.69642 4.43E−15

PRR15L 0.861562 0.82994 0.89438 5.67E−15

PEG3 0.787961 0.74086 0.83805 3.49E−14

CCAR2 0.399318 0.31483 0.50648 3.77E−14

TSEN15 2.341763 1.86901 2.9341 1.41E−13

CMYA5 0.741102 0.68439 0.80252 1.63E−13

ZNF331 0.674646 0.6074 0.74934 2.03E−13

RELB 1.63665 1.43324 1.86893 3.45E−13

AP1M1 1.948639 1.62797 2.33247 3.53E−13

DMGDH 0.779652 0.72862 0.83426 5.73E−13

C1QTNF1 1.412917 1.28567 1.55276 7.06E−13

GTF2H3 2.453881 1.92031 3.13571 7.19E−13

MRPL15 2.507044 1.94514 3.23128 1.26E−12

CDK5RAP3 0.480827 0.39191 0.58992 2.24E−12

PITPNM2 1.439583 1.29924 1.59509 3.36E−12

BCAN 1.149548 1.10369 1.19731 1.95E−11

EDEM2 2.480786 1.89159 3.2535 5.12E−11

MOB1A 2.455448 1.87707 3.21204 5.56E−11

EXD3 0.660047 0.58233 0.74813 8.02E−11

Table 1 (continued)
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Table 1 (continued)

Gene HR HR 95L HR 95H P value

OXTR 1.264809 1.17689 1.3593 1.65E−10

VEGFA 1.339791 1.22426 1.46622 2.05E−10

DNAJB6 1.950501 1.57684 2.41271 7.40E−10

ITPKC 1.751919 1.46413 2.09628 9.12E−10

SAC3D1 1.483356 1.30664 1.68398 1.11E−09

POLE3 2.436907 1.82458 3.25474 1.61E−09

SLC35A2 1.980095 1.58576 2.47248 1.65E−09

C2orf74 0.780065 0.719329 0.84593 1.90E−09

CYP51A1 1.345769 1.220756 1.48359 2.37E−09

FBLN1 1.230317 1.148977 1.31741 2.86E−09

BRI3BP 1.506361 1.315343 1.72512 3.18E−09

STK4 1.891211 1.528935 2.33933 4.27E−09

PYGO2 0.451677 0.341712 0.59703 2.36E−08

EFEMP1 1.238168 1.148672 1.33464 2.39E−08

IKBKG 1.491816 1.292539 1.72182 4.56E−08

CD34 0.752885 0.677572 0.83657 1.30E−07

PFKFB4 1.30387 1.180117 1.4406 1.84E−07

HFM1 0.671015 0.577273 0.77998 2.03E−07

TREM2 1.253687 1.151075 1.36545 2.11E−07

SHC2 0.836544 0.781848 0.89507 2.30E−07

SCAMP5 0.793343 0.726576 0.86624 2.45E−07

PID1 1.168711 1.100984 1.2406 3.08E−07

MET 1.163761 1.097253 1.2343 4.39E−07

PDP1 0.718749 0.632071 0.81731 4.74E−07

DDR2 1.211411 1.123883 1.30576 5.38E−07

ME3 0.813547 0.749458 0.88312 8.26E−07

TAP1 1.43316 1.241208 1.6548 9.33E−07

NDEL1 1.685718 1.355619 2.0962 2.65E−06

PDCL 0.53852 0.414899 0.69897 3.29E−06

ARHGAP10 0.769212 0.68814 0.85984 3.88E−06

CYB5A 0.810169 0.738754 0.88849 7.78E−06

HERC2 0.667784 0.555699 0.80248 1.65E−05

SOX10 5.64E−36 2.26E−52 1.41E−19 2.52E−05

GP1BB 5.64E−36 2.26E−52 1.41E−19 2.52E−05

DAZAP2 0.500619 0.358446 0.69918 4.92E−05

TM9SF2 0.554394 0.415449 0.73981 6.14E−05

MZF1 0.767031 0.67355 0.87349 6.34E−05

Table 1 (continued)

Table 1 (continued)

Gene HR HR 95L HR 95H P value

CC2D2A 0.805539 0.723826 0.89648 7.42E−05

SPINT1 0.904722 0.860319 0.95142 9.64E−05

MYL3 0.869839 0.810814 0.93316 0.0001

GRB2 0.488561 0.338547 0.70505 0.000129

CDK10 0.752894 0.650412 0.87152 0.000144

POLR1B 1.438897 1.19174 1.73731 0.000154

STAT1 1.357285 1.153264 1.5974 0.000237

TMEM81 1.304715 1.131917 1.50389 0.000243

CLIP4 1.161742 1.070908 1.26028 0.000307

MAP3K12 1.210209 1.090331 1.34327 0.000337

NIF3L1 1.671069 1.24791 2.23772 0.000568

YDJC 1.239501 1.093703 1.40473 0.000772

LEO1 0.667489 0.525121 0.84845 0.000958

SON 0.645861 0.491231 0.84917 0.001743

PLIN2 1.145417 1.049574 1.25001 0.002325

CNBD2 0.629512 0.463982 0.8541 0.002948

SLC35B3 0.692636 0.538824 0.89035 0.004152

ABCA8 0.901293 0.839446 0.9677 0.004166

TMEM209 1.355676 1.099138 1.67209 0.004467

ASPG 1.100884 1.028925 1.17788 0.005325

NOP10 1.617456 1.135009 2.30497 0.007798

AKAP12 1.101045 1.025406 1.18226 0.008029

MBD2 0.749007 0.604766 0.92765 0.008095

TRAF2 0.785976 0.657473 0.93959 0.008193

PSMB3 1.516803 1.110832 2.07114 0.008759

ARHGAP24 0.900004 0.831823 0.97377 0.008763

IFNGR2 1.403803 1.082233 1.82092 0.010609

HSPA4 0.670607 0.48797 0.9216 0.013767

RNF31 1.255841 1.04685 1.50655 0.014168

UGP2 1.346234 1.058687 1.71188 0.015302

LTC4S 0.701113 0.524051 0.938 0.016805

SPTBN1 1.227038 1.034371 1.45559 0.018888

MICAL3 1.126359 1.01696 1.24753 0.022455

UNG 1.295687 1.036186 1.62018 0.023105

ZBTB12 1.123996 1.010022 1.25083 0.032132

TMEM87B 0.860211 0.747686 0.98967 0.03528

NAALAD2 0.873619 0.766974 0.99509 0.041947

SAMD4A 1.096398 1.000643 1.20132 0.04841

HR, hazard ratio; 95L, lower limit of 95% confidence interval; 
95H, higher limit of 95% confidence interval.
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regression, multifactor Cox analysis was employed to 
construct the risk model. Furthermore, 63 prognostic genes 
(Table S1) were identified via multivariate Cox analysis and 
were used to construct a pan-cancer prognostic risk model 
according to the following risk formula: (expressing gene1 × 
β gene1) + (expressing gene2 × β gene2). In addition, the pan-
cancer samples from TCGA were randomly categorized into 
groups at a ratio of 8:2 to test the effectiveness of the model.

Testing the prognostic risk model for pan-cancer

Survival and ROC analyses revealed that our model could 
well predict tumor prognosis (Figure 3A,3B), disease 
progression, and recurrence (Figure 3C,3D). This finding 
was also verified in the survival analysis of both the 
training and validation groups (Figure 3E,3F). Independent 
prognostic analysis was performed on age, sex, cancer stage, 
and risk score. Multivariate and univariate independent 

prognostic analyses revealed that our risk score could 
predict tumor prognosis independently of other clinical data 
(Figure 4A,4B).

Nomogram model

To further study the prognosis of pan-cancer, we 
constructed a nomogram model (Figure 4C) and used the 
nomogram (Figure 4D) and ROC curve (Figure 4E) to verify 
the effectiveness of the model. The line chart and ROC 
curve demonstrated that our model was effective, and the 
C-index (Figure 4F) was >0.7, which was ideal.

Analysis of the immune microenvironment

The enrichment of immune pathways showed that there 
were differences in most immune pathways between 
the high- and low-risk groups of our model (Figure 5A). 

Figure 3 Prognostic risk model test of pan-cancer. (A) Analysis of the total survival time of patients in the high- and low-risk groups in the 
prognostic model. (B) Receiver operating characteristic curve of the 1-, 3-, and 5-year AUC value for testing the model. (C,D) Kaplan-
Meier curves of progression-free survival and disease-free survival in the high- and low-risk groups. (E,F) Survival analysis of the high- and 
low-risk groups of both the training and validation groups for further verifying the model. AUC, area under the curve.
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Figure 4 Clinical analysis of the prognostic characteristics of natural killer cell-related genes. (A) Univariate Cox regression analysis of the 
clinical features and signature-based risk scores. (B) Multivariate Cox regression analysis. (C) Nomogram for predicting the 1-, 3-, and 5-year 
survival rates of patients. (D) Nomogram correction curve of the predicted OS for 1, 3, and 5 years. (E,F) Receiver operating characteristic 
curve and concordance index chart of clinical features and signature-based risk scores, respectively. ***, P<0.001. CI, confidence interval; OS, 
overall survival; Pr, probability; AUC, area under the curve.
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These differences were analyzed using the CIBERSORT 
algorithm (19). As can be seen from the Figure 5B, our 
model was different in most immune cells. To further 
understand the relationship between NK cells and tumor 
prognosis, we analyzed the survival of resting and activated 
NK cells for pan-cancer prognosis, and activated NK cells 
predicted according to the algorithm cells were found to be 
associated with good tumor prognosis (Figure 5C,5D).

Analysis of TMB

The higher the TMB value is, the worse the tumor 
prognosis. We obtained pan-cancer mutation data from 
TCGA database and determined the correlation between 
pan-cancer TMB and the high- and low-risk groups of the 
model. Then we testified the accuracy of our model and 
classified each tumor to analyze the correlation between 
TMB and risk score and drew a radar map (Figure 5E,5F).

Prognostic core genes of pan-cancer NK cells

A total of 63 prognosis-related DENKGs from the 
STRING database were included to analyze the protein-
protein relationship. A protein-protein interaction (PPI) 
network map was established and visualized using the 
Cytoscape software (version 3.9.1) (Figure 6A). Genes with 
a binding coefficient of ≥0.7 were selected as the core genes 
and were displayed in a correlation analysis map (Figure 6B).

Analysis of the immune microenvironment and prognosis 
of core genes

The expression values of the above-mentioned core genes 
in various tumors were correlated with immune, stromal, 
and stem cell scores, and the related heat map was created  
(Figure 6C-6F). The immune and stromal scores were 
negatively correlated with the expression levels of the core 
genes (Figure 6C,6D). Conversely, a significant positive 
correlation existed between the expression of the core 
genes and RNA stemness scores (RNAss) (Figure 6E). A 
total of 15 core genes were linked to tumor prognostic 
data, and the gene survival curves in each tumor were 
drawn to further screen the pan-cancer related genes that 
were linked to prognosis in NK cells. Among the 15 core 
genes, ASPM and DEPDC1 were found to play a key role 
in the prognosis of 12 and 14 tumor types, respectively 
(Table 2). It is noteworthy to highlight that high DEPDC1 
gene expression was associated with better prognosis of 

colon adenocarcinoma (COAD), stomach adenocarcinoma 
(STAD), rectum adenocarcinoma (READ) and thymoma 
(THYM), whereas low DEPDC1 gene expression was 
associated with better prognosis in ten other types of cancer 
(Figure 7, Figure S1). In addition, five different tumor types 
were collected in GEO database to verify our findings 
(Figure 8). We also observed that the expression of DEPDC1 
varied in its correlation with activated and resting NK cells 
across different cancer types (Figure S2).

Discussion

PD-L1 inhibitors have been approved by the US Food and 
Drug Administration (FDA) for the treatment of melanoma, 
lung cancer, and other diseases, and their application in 
immunotherapy has made a significant progress (20); 
however, immunotherapy is not effective in all tumors (21), 
and this limitation has spurred research into identifying the 
reasons underlying this lack of efficacy and into developing 
new therapeutic approaches. 

NK cells are innate immune-related lymphocytes, which also 
play a particularly significant role in antitumor immunity (22). 
NK cell-based tumor immunotherapy, including immune 
checkpoint inhibition and CAR-engineered NK cells, is a 
promising area of research. However, there is a need for 
better NK cell-related models and associated biomarkers. 
Thus, we conducted a pan-cancer analysis focusing on the 
role of NK cell-related genes in pan-cancer. However, in 
comparison with other studies, the NK cell-related genes 
used in the present study were not obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. 
Considering that there are still unknown NK cell-related 
genes to be mined, we selected the library of CRISPR/Cas9, 
a gene-editing technology which enables large-scale and in-
depth sequencing (23), for analysis.

Because the library was sequenced in vitro, 14,148 
samples were used from TCGA and GTEx pan-cancer data 
to analyze the expressions of the aforementioned genes 
in the tumor and control samples. After the DENKGs 
were analyzed, a pan-cancer prognostic model was 
constructed with 63 NK cell-related genes via univariate 
and multivariate Cox analyses. Based on the ROC results, 
the model had a 1-year area under the curve (AUC) value 
of 0.747 for predicting tumor prognosis, which was higher 
than that based on tumor staging (1-year AUC =0.673). The 
C-index of the model was >0.7, thus confirming its value 
in the study of pan-cancer prognosis. The high- and low-
risk grouping of the prognostic model was verified through 

https://cdn.amegroups.cn/static/public/TCR-24-434-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-434-Supplementary.pdf
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Figure 5 Immune microenvironment and tumor mutational burden analyses of prognostic characteristics. (A) Heatmap of the differential 
enrichment of immune-related pathways in the high- and low-risk groups of the prognostic models. The color scale of the heat map is the z-score 
score of the RNA-seq sequencing data. (B) Composition of immune infiltration in the high- and low-risk groups. (C,D) Kaplan-Meier survival 
curves of resting NK cells, activated NK cells, and pan-cancer prognosis in the high- and low-risk groups, respectively. (E) Correlation between 
tumor mutational burden and risk score. (F) Violin plot of tumor mutational burden in the high- and low-risk groups. *, P<0.05; **, P<0.01; 
***, P<0.001. IFN, interferon; HLA, human leukocyte antigen; APC, antigen-presenting cells; MHC, major histocompatibility complex; 
CCR, C-C chemokine receptor; NK, natural killer; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast 
invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon 
adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; 
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, 
lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, 
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin 
cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; 
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma; RNA-seq, RNA-sequencing.
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Figure 6 Screening of core genes for the prognosis of pan-cancer NK cells and their immune microenvironment. (A) The protein-
protein interaction network diagram of 63 prognosis-related differentially expressed NK cell-related genes. (B) Correlation heatmap of 
15 core genes from further screening. (C,D) Correlation between the immune and stromal scores and the 15 core genes in pan-cancer. 
(E) Correlation between the 15 core genes and pan-cancer RNA stem cell score. (F) Correlation between pan-cancer RNA stem cell 
score and pan-cancer DNA stem cell score. The color scale of the heat map is the z-score of the RNA-seq sequencing data. RNAss, RNA 
stemness score; DNAss, DNA stemness score; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive 
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon 
adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; 
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum 
adenocarcinoma; SARC sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; 
THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal 
melanoma; NK, natural killer; RNA-seq, RNA-sequencing.
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Table 2 Survival analysis of 15 core natural killer cell-related genes 
in pan-cancer 

Gene Cancer type P value

HERC1 KIRC 1.46E−06

LGG 9.58E−06

LIHC 0.045917

UVM 0.003986

DNAJB6 CESC 0.018468

OV 0.01384

SKCM 0.029439

UCEC 0.00546

SHC2 ACC 0.010142

CESC 0.048921

KICH 0.02189

LGG 0.000556

OV 0.005896

SKCM 0.035547

SOX10 KIRC 0.003434

LIHC 0.03873

VEGFA BLCA 0.018589

CESC 0.006546

KIRP 0.000228

LGG 0.001337

PRAD 0.026486

SARC 0.025041

UCEC 0.039948

MET ACC 0.027873

LGG 0.000381

PAAD 9.42E−05

UVM 0.016287

POLE3 ACC 0.00025

ESCA 0.02957

THYM 0.028938

ASPM ACC 4.00E−09

KIRC 0.000205

KIRP 0.000217

LGG 6.97E−08

LIHC 0.006928

Table 2 (continued)

Table 2 (continued)

Gene Cancer type P value

LUAD 0.015197

MESO 0.002203

PAAD 0.043426

PCPG 0.007278

THYM 0.016468

UCEC 0.00157

UVM 0.047649

E2F8 BLCA 0.048864

KIRC 0.002008

KIRP 0.000346

LGG 0.000236

LIHC 1.64E−06

MESO 0.000717

PAAD 0.044548

PCPG 0.032873

STAD 0.003008

THYM 0.019958

DEPDC1 ACC 2.32E−05

COAD 0.049063

KIRC 0.015496

KIRP 0.000238

LGG 6.99E−08

LIHC 0.000543

LUAD 0.012019

MESO 2.40E−05

PAAD 0.010571

PCPG 0.006069

READ 0.027713

STAD 0.027779

THYM 0.007332

UVM 0.039939

BRIP1 ACC 0.020404

COAD 0.017831

KIRP 0.014144

LGG 5.95E−05

LUAD 0.014512

Table 2 (continued)
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Table 2 (continued)

Gene Cancer type P value

MESO 1.74E−06

PAAD 0.014325

READ 0.00895

THYM 0.019396

SLC35C1 COAD 0.0358

PCPG 0.030677

STAD 0.045321

SLC35B3 READ 0.002272

SARC 0.003276

THCA 0.027777

THYM 0.024145

HSPA4 LUAD 0.046428

SARC 0.030118

SKCM 0.011044

STAD 0.047031

RAC1 ACC 0.008144

DLBC 0.021017

GBM 0.000632

KIRC 0.002018

LGG 0.006966

LIHC 0.001216

MESO 0.002586

PCPG 0.02042

SKCM 0.041701

UVM 0.012914

ACC, adrenocortical carcinoma; BLCA, bladder urothelial 
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical 
squamous cell carcinoma and endocervical adenocarcinoma; 
COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm 
diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; 
GBM, glioblastoma multiforme; KICH, kidney chromophobe; 
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, 
brain lower grade glioma; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; MESO, mesothelioma; OV, ovarian 
serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; 
PCPG, pheochromocytoma and paraganglioma; PRAD, prostate 
adenocarcinoma; READ, rectum adenocarcinoma; SARC 
sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; THCA, thyroid carcinoma; THYM, thymoma; 
UCEC, uterine corpus endometrial carcinoma; UVM, uveal 
melanoma.

immune pathway and immune cell analysis.
Given that the range of 63 genes is still too large 

for researchers to practically examine, PPI analysis was 
employed to further screen the genes that play a key role 
in pan-cancer. Subsequently, 15 genes were selected with 
a binding coefficient of >0.7, and their correlations were 
analyzed in relation to the pan-cancer immune, matrix, 
RNA stem cell, and DNA stem cell scores. Among all these 
15 genes, the one with the highest immune and matrix 
scores was BRCT repeats of breast cancer, type 1 (BRIP1), 
which was negatively correlated with the immune score of 
most tumors but positively correlated with the stem cell 
score. The protein encoded by this gene is a member of the 
RecQ DEAH helicase family and interacts with the BRCT 
repeats of breast cancer, type 1 (BRCA1). Previous studies 
have demonstrated that BRCA1 is a tumor-suppressor 
gene, and its mutations are known to increase susceptibility 
to many cancers, including breast, ovarian, pancreatic, 
and prostate cancer (24,25). The results of the present 
bioinformatics analysis indicated that BRCA1 is highly 
expressed in most tumors and may be related to tumor stem 
cells. Furthermore, survival analysis revealed that BRCA1 
was associated with the poor prognosis of most tumors, 
such as pancreatic adenocarcinoma and adrenocortical 
carcinoma. This provides a new direction for the study of 
NK cell-related genes in pan-cancer.

Finally, the prognostic ability of the 15 genes was 
analyzed in pan-cancer, with the most prominent genes 
being ASPM and DEPDC1, as they were found to play a 
significant role in the prognosis of 12 and 14 tumor types, 
respectively. 

ASPM (spindle microtubule assembly factor) is a protein-
coding gene, which is mainly involved in cell mitosis, cell 
cycle progression, and DNA damage repair (26,27). Initially, 
research on ASPM focused on its mutations with autosomal 
recessive primary microcephaly [MicroCephaly Primary 
Hereditary (MCPH)], with mutations in ASPM accounting 
for over 40% of MCPH cases (28,29). In a recent study, 
Razuvaeva et al. hypothesized that mutations in ASPM inhibit 
the growth of neural progenitor cells, thereby impeding 
neurogenesis and leading to MCPH, thus providing a 
possible explanation for why ASPM mutations are the 
most commonly mutated genes in MCPH (30). Moreover, 
ASPM is also closely associated with the occurrence and 
development of various cancers (31-35). A study indicates 
that ASPM promotes the proliferation, migration, invasion, 
and stemness of malignant tumors via the WNT/β-catenin 



Translational Cancer Research, Vol 13, No 4 April 2024 1949

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(4):1936-1953 | https://dx.doi.org/10.21037/tcr-24-434

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0         2         4         6         8        10        12
Time, years

39         21          7          3           2           0          0
40         37         23        13          6           4          2

High 
Low

D
E

P
D

C
1 

le
ve

ls

P<0.001

Cancer: ACC

High Low

0         2         4         6         8        10        12

DEPDC1 levels

Time, years

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0       2       4       6       8      10     12     14     16
Time, years

140     68      35      15      4        3        1       1        1
146     82      41      21      9        1        0       0        0

High 
Low

D
E

P
D

C
1 

le
ve

ls

P<0.001

Cancer: KIRP
High Low

0       2       4       6       8      10     12     14     16

DEPDC1 levels

Time, years

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0          2         4         6         8

42                 7                 0                 0                 0
42                23                8                 3                 0

High 
Low

D
E

P
D

C
1 

le
ve

ls

P<0.001

Cancer: MESO
High Low

0         2         4         6         8

DEPDC1 levels

Time, years

Time, years

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0         2         4         6         8        10

175           59            13            3              0              0
175           41            10            4              3              1

High 
Low

D
E

P
D

C
1 

le
ve

ls

P=0.02

Cancer: STAD

High Low

0         2         4         6         8        10

DEPDC1 levels

Time, years

Time, years

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0         2         4         6         8        10        12

59         44         31        18         11         6           2
59         43         21         5           2          1           0

High 
Low

D
E

P
D

C
1 

le
ve

ls

P=0.007

Cancer: THYM

High Low

0         2         4         6         8        10        12

DEPDC1 levels

Time, years

Time, years

1.00

0.75

0.50

0.25

0.00

O
ve

ra
ll 

su
rv

iv
al

0         2         4         6         8        10

 79            38            10            4              3              2
 79            38             7             1              0              0

High 
Low

D
E

P
D

C
1 

le
ve

ls

P=0.02

Cancer: READ

High Low

0         2         4         6         8        10

DEPDC1 levels

Time, years

Time, years

A B C

D E F

Figure 7 Kaplan-Meier survival curve of DEPDC1 in six cancer types in the high and low gene expression groups. Low expression of 
DEPDC1 is associated with better prognosis of ACC (A), KIRP (B), and MESO (C), while high expression of DEPDC1 relates to better 
prognosis of STAD (D), THYM (E), and READ (F). ACC, adrenocortical carcinoma; KIRP, kidney renal papillary cell carcinoma; MESO, 
mesothelioma; STAD, stomach adenocarcinoma; THYM, thymoma; READ, rectum adenocarcinoma.

signaling pathway; for example, in the case of prostate 
cancer, ASPM maintains a subpopulation of prostate cancer 
stem cells by increasing the protein stability of disheveled-3 
(Dvl-3), the cardinal upstream regulator of the canonical 
Wnt signaling pathway (36). Moreover, Tsai et al. suggest 
the clinical utility of APSM as a prognostic biomarker for 
cancer and propose viable molecular targeting and synthetic 
lethal approaches to leverage its therapeutic potential (27).  
The results of our bioinformatic analysis confirmed 
that ASPM is an oncogene that is upregulated in most 
tumors, and our study suggested, for the first time, that 
ASPM plays a significant role in the pan cancer immune 
microenvironment. Moreover, the possible associations 
of ASPM with THYM and uveal melanoma have not yet 
been reported. Further experiments should be conducted to 
confirm this result.

DEPDC1  is a DEP domain protein-coding gene 
containing 1, which is closely associated with poor 
prognosis in various malignant tumors, such as breast 
cancer, bladder cancer, osteosarcoma, and oral squamous 

cell carcinoma (37-40). Huang et al., through the analysis 
of glycolysis-related genes, confirmed that DEPDC1 
promotes the malignant progression of oral squamous cell 
carcinoma through the WNT/β-catenin signaling pathway 
and suggest that DEPDC1 may be a novel biomarker and 
therapeutic target for oral squamous cell carcinoma (40). 
In our survival analysis, DEPDC1 was associated with the 
poor prognosis of most tumors, including adrenocortical 
carcinoma, kidney renal clear cell carcinoma, kidney renal 
papillary cell carcinoma, and liver hepatocellular carcinoma 
(HCC), but interestingly, the presence of DEPDC1 in 
COAD, STAD, and rectal adenocarcinoma was associated 
with a good prognosis. The good prognosis of STAD is 
consistent with another bioinformatics analysis study, in 
which a high level of DEPDC1 expression was associated 
with a good progression-free interval in cases of STAD (41). 
However, another study revealed that a higher expression of 
DEPDC1 was associated with poor prognosis in STAD, and 
further experimentation is needed to confirm whether the 
expression of DEPDC1 is correlated with tumor metastasis 
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Figure 8 Pan-cancer prognostic survival curve of DEPDC1. The Kaplan-Meier survival curves show the differences in DEPDC1 gene 
expression in the prognosis of pan-cancer. Better prognosis of COAD (C) and STAD (E) was associated with high DEPDC1 gene expression, 
whereas low DEPDC1 gene expression was associated with the better prognosis of LGG (A), LUAD (B), LICH (D), and PRAD (F). LGG, 
lower grade glioma; LUAD, lung adenocarcinoma; COAD, colon adenocarcinoma; LIHC, liver hepatocellular carcinoma; STAD, stomach 
adenocarcinoma; PRAD, prostate adenocarcinoma.
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and differentiation (42). This inconsistency is likely due 
to differences in data processing and analytical tools; 
nevertheless, additional studies should be conducted to 
further clarify the relationship between DEPDC1 expression 
and the prognosis of STAD.  

As identified the most prominent NK cell-related genes 
in this research, both ASPM and DEPDC1 can promote 
the malignant progression of cancers through the WNT/
β-catenin signaling pathway, which plays a significant role 
in various physiological processes such as cell proliferation, 
differentiation, migration (43). Increasing research has 
revealed the correlation between dysregulation of the Wnt/
β-catenin signaling pathway and the development and 
progression of tumors, such as colorectal cancer, melanoma, 

and leukemia (44-46). Through a comprehensive literature 
review, a significant correlation was unveiled between NK 
cells and the WNT/β-catenin signaling pathway. Emerging 
evidence highlights the participation of the Wnt/β-catenin 
signaling pathway in the development and differentiation of 
NK cells (47,48). For instance, one study demonstrated that 
the introduction of DKK1, a natural inhibitor of β-catenin-
dependent Wnt signal, results in diminished NK cell 
counts (49). Nevertheless, there exists some inconsistency 
regarding the impact of Wnt/β-catenin signaling pathway 
inhibition on NK cell activation and cytotoxicity. In one 
study, Xiao et al. proposed that the suppression of NK cell 
activation mediated by DKK2, also a natural inhibitor of 
Wnt signal, may be independent of the Wnt/β-catenin 
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signaling pathway (50). However, in gastrointestinal tumors, 
particularly HCC and gastric cancer (GC), ISG12a has been 
demonstrated to suppress Wnt/β-catenin signaling pathway, 
thereby downregulating PD-L1 expression and rendering 
cancer cells sensitive to NK cell-mediated death (51). Given 
the limited literature on the association between Wnt/
β-catenin signaling and NK cells, this controversy deserves 
more attention and further exploration in the future. 

Conclusions

This study investigated the role of NK cell-related genes in 
pan-cancer and constructed a prognostic model with 63 NK 
cell-related genes. Survival and ROC analyses employed 
prove the effectiveness of the model. In addition, the roles 
of the 63 NK cell-related genes in cancer were analyzed, 
and two significant genes were identified—DEPDC1 and 
ASPM—that may offer a potential direction in tumor 
immune research. 

We also further discovered that DEPDC1 is variably 
related to the prognosis of 14 kinds of cancer; among 
these, the association between DEPDC1 expression and 
the prognosis of STAD remains to be further explored. 
The association between ASPM expression and the poor 
prognosis of THYM and uveal melanoma has been 
characterized, which have not been examined in previous 
bioinformatics analyses. Although our research still has 
certain limitations, including missing clinical cohort data 
and a lack of experimental verification to evaluate the 
analysis results, our findings potentially open new avenues 
of research in this field.  
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