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ABSTRACT Chemotaxis and energy taxis permit directed bacterial movements in
gradients of environmental cues. Nitrate is a final electron acceptor for anaerobic
respiration and can also serve as a nitrogen source for aerobic growth. Previous
studies indicated that bacterial nitrate taxis is mediated by energy taxis mechanisms,
which are based on the cytosolic detection of consequences of nitrate metabolism.
Here we show that Pseudomonas aeruginosa PAO1 mediates nitrate chemotaxis on
the basis of specific nitrate sensing by the periplasmic PilJ domain of the PA2788/
McpN chemoreceptor. The presence of nitrate reduced mcpN transcript levels, and
McpN-mediated taxis occurred only under nitrate starvation conditions. In contrast
to the NarX and NarQ sensor kinases, McpN bound nitrate specifically and showed
no affinity for other ligands such as nitrite. We report the three-dimensional struc-
ture of the McpN ligand binding domain (LBD) at 1.3-Å resolution in complex with
nitrate. Although structurally similar to 4-helix bundle domains, the ligand binding
mode differs since a single nitrate molecule is bound to a site on the dimer symme-
try axis. As for 4-helix bundle domains, ligand binding stabilized the McpN-LBD
dimer. McpN homologues showed a wide phylogenetic distribution, indicating that
nitrate chemotaxis is a widespread phenotype. These homologues were particularly
abundant in bacteria that couple sulfide/sulfur oxidation with nitrate reduction. This
work expands the range of known chemotaxis effectors and forms the basis for the
exploration of nitrate chemotaxis in other bacteria and for the study of its physio-
logical role.

IMPORTANCE Nitrate is of central importance in bacterial physiology. Previous stud-
ies indicated that movements toward nitrate are due to energy taxis, which is based
on the cytosolic sensing of consequences of nitrate metabolism. Here we present
the first report on nitrate chemotaxis. This process is initiated by specific nitrate
binding to the periplasmic ligand binding domain (LBD) of McpN. Nitrate che-
motaxis is highly regulated and occurred only under nitrate starvation conditions,
which is helpful information to explore nitrate chemotaxis in other bacteria. We
present the three-dimensional structure of the McpN-LBD in complex with nitrate,
which is the first structure of a chemoreceptor PilJ-type domain. This structure re-
veals striking similarities to that of the abundant 4-helix bundle domain but employs
a different sensing mechanism. Since McpN homologues show a wide phylogenetic
distribution, nitrate chemotaxis is likely a widespread phenomenon with importance
for the life cycle of ecologically diverse bacteria.

KEYWORDS Pseudomonas aeruginosa, chemoreceptor, chemotaxis, nitrate

Many bacteria are capable of flagellum-driven tactic movements in stimulus gra-
dients. Genome analyses have revealed that more than half of the bacterial

genomes contain genes necessary for taxis (1). The canonical form of taxis is based on
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stimulus reception by the chemoreceptor that leads to changes in the activity of the
CheA autokinase, which subsequently modulates transphosphorylation to the CheY
response regulator. The phosphorylated form of CheY binds to the flagellar motor,
ultimately causing taxis toward or away from the stimulus (2).

Many bacteria possess the capacity to perform chemotaxis and energy taxis. The
typical chemotaxis mechanism is initiated by the recognition of specific chemoeffectors
at periplasmic ligand binding domains (LBDs), leading to receptor activation. Chemo-
receptor function is largely determined by the nature of the chemoeffectors recog-
nized, and the chemoreceptors specific for different compound classes such as amino
acids, tricarboxylic acid (TCA) cycle intermediates, polyamines, purines, or inorganic
phosphate have been identified (3). Alternatively, energy taxis is a metabolism-
dependent form of taxis and represent directed movement in gradients of physico-
chemical parameters that affect metabolism (4). In contrast to chemotaxis, it is not the
chemoeffector that is sensed per se but the consequences of its metabolism. Energy
taxis occurs in response to a very wide range of stimuli, including metabolizable
substrates such as sugars, organic acids, and amino acids; electron acceptors such as
oxygen, nitrate, fumarate, and dimethyl sulfoxide; and compounds that affect metab-
olism otherwise, such as light or metabolic inhibitors (5–7).

Escherichia coli, the model organism traditionally used to study chemotaxis, has 4
chemoreceptors with a periplasmic LBD that mediate chemotaxis primarily with respect
to amino acids, sugars, or dipeptides (8). In addition, it has an Aer chemoreceptor that
mediates energy taxis by sensing redox changes via a flavin adenine dinucleotide
(FAD)-containing cytosolic PAS domain (8). However, genome analyses have indicated
that many other bacteria have significantly more chemoreceptors (up to 80) than E. coli
(5). In addition, these chemoreceptors are characterized by diversity in the LBD type
since more than 80 different LBD types were found to form part of chemoreceptors (9).

The elevated number of chemoreceptors and their diversity in the LBDs suggest that
the chemosensory capacity of many bacteria is very extensive but remains in general
largely unexplored. The scientific community is now only at the beginning of the
process of identifying the chemotactic spectra of many bacteria, establishing links
between chemoeffectors and LBD types, and identifying the physiological relevance of
chemotaxis to newly identified chemoeffectors (9).

Here, we have addressed this issue using the opportunistic human pathogen
Pseudomonas aeruginosa PAO1 as a model (9, 10). This bacterium has 26 chemorecep-
tors that feed into four chemosensory pathways (11). Two pathways, corresponding to
Che and Che2, were shown to play a role in chemotaxis. Whereas the Che pathway
appears to be essential for chemotaxis (12, 13), the Che2 pathway was found to be
required for optimal chemotactic responses (14). Alternatively, the Chp pathway was
associated with twitching motility (15–18), whereas the Wsp pathway modulates cyclic
diguanylate monophosphate (c-di-GMP) levels (19). P. aeruginosa chemoreceptors em-
ploy together 11 different LBD types for signal sensing (9), with the 4-helix bundle (4HB)
(20), CACHE (21), and helical bimodular (HBM) (22) domains being most abundant (9).
Several of these receptors have been functionally annotated, and all were found to
mediate chemoattraction. The 4HB domain containing receptor CtpH responded spe-
cifically to inorganic phosphate (Pi) (23, 24), the HBM domains containing McpK and
CtpL were identified as �-ketoglutarate (25)- and Pi (23, 24)-specific receptors, and the
paralogous dCACHE domains containing receptors PctA, PctB, and PctC were shown to
mediate chemotaxis to amino acids (26–29), whereas the sCACHE domain containing
receptor PA2652 was found to mediate taxis to different C4-carboxylic acids (30, 31).

P. aeruginosa has two chemoreceptors, PA2788 and PA0411/PilJ, that possess a
PilJ-type LBD (Pfam signature PF13675) (9). This domain is annotated in the Pfam
database (32) as “Type IV pili methyl-accepting chemotaxis transducer N-ter.” The PilJ
receptor feeds into the Chp pathway and is not related to chemotaxis (18), whereas
PA2788 was predicted to feed into the Che pathway (11). However, the ligands
recognized by the PilJ and PA2788 are unknown. Bioinformatic analyses have shown
that PilJ domains represent 2% of all chemoreceptor LBDs (9). In addition, a search in
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the Pfam database revealed that PilJ domains are also employed by other bacterial
sensor proteins such as sensor kinases, diguanylate cyclases, and transcriptional regu-
lators. In this study, we aimed at identifying the function of the PilJ domain containing
chemoreceptors in P. aeruginosa.

RESULTS
Nitrate is a specific ligand for PA2788-LBD. To identify ligands that bind to

PA2788, we cloned the DNA sequence encoding the LBD of PA2788 into an expression
vector. Protein was expressed in E. coli and purified by affinity chromatography.
High-throughput ligand screening assays were then conducted using the thermal shift
method (33). In this method, changes in the melting temperature (Tm) of a protein,
representing the midpoint of thermal protein unfolding, are recorded. The binding of
ligands typically increases the Tm, and shifts of greater than 2°C are considered
significant. We screened 480 ligands from Biolog compound arrays PM1, PM2A, PM3B,
PM4A, and PM5 that served as bacterial carbon, nitrogen, phosphorus, and sulfur
sources.

In the absence of ligand, the Tm of PA2788-LBD was 43.5°C. Fig. 1A shows the

FIG 1 Identification of nitrate as a PA2788-LBD ligand. (A) Thermal shift assays using compounds of
Biolog compound array PM3B. Shown are the Tm changes with respect to the ligand-free protein. The
insert shows the thermal unfolding curves of ligand-free PA2788-LBD and in the presence of nitrate. (B)
Microcalorimetric binding studies of PA2788-LBD. The upper panel shows the heat changes caused by
the injection of 2 mM (12.8-�l aliquots) NaNO3 into buffer and 36 �M PA2788-LBD as well as the titration
of PA2788-LBD with 2 mM NaNO2, 2 mM ammonia, and 1 mM uric acid. The lower panel depicts the
concentration-normalized and dilution heat-corrected integrated peak areas of the PA2788-LBD titration
data with NaNO3. The line corresponds to the best fit using the “One binding site model” of the MicroCal
version of ORIGIN.
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changes in Tm caused by each of the 95 compounds of array PM3B comprising nitrogen
sources. In the presence of NaNO3, the Tm was increased by 3.5°C, whereas NaNO2

caused only a minor increase of 0.5°C. No significant Tm shifts were obtained for the
compounds in arrays PM1, PM2A, PM4A, and PM5.

To verify ligand binding, isothermal titration calorimetry (ITC) experiments were
conducted. In an initial control experiment, the heat changes derived from the injection
of 2 mM NaNO3 into buffer were recorded (Fig. 1B), with results showing that the levels
of dilution heat were low and uniform. Titration of PA2788-LBD with the same ligand
caused endothermic heat changes (ΔH � 0.38 � 0.1 kcal/mol) indicative of an entropy-
driven binding process (TΔS � 6.4 kcal/mol) characterized by a dissociation constant of
47 � 8 �M. The same protein was also titrated with NaNO2, ammonia and uric acid
(Fig. 1B), but an absence of binding was noted in all cases, confirming the thermal shift
assay results. We were intrigued by the failure of PA2788-LBD to sense nitrite since
other sensor proteins were found to sense nitrate as well as nitrite (34–36). ITC
experiments performed with ligands provide information only on higher-affinity bind-
ing events. To confirm that PA2788-LBD does not bind nitrite with low affinity, we
performed titrations of PA2788-LBD with nitrate in the absence and presence of 20 mM
nitrite. In cases of nitrite binding, this would alter nitrate recognition. However, this was
not the case (see Fig. S1A in the supplemental material), confirming that PA2788-LBD
is a nitrate-specific receptor. Following the demonstration that PA2788 specifically
binds nitrate, this chemoreceptor was named McpN.

Nitrate is not recognized by the LBDs of the PilJ and PA4520 chemoreceptors.
Inspection of the chemoreceptor repertoire of P. aeruginosa (9) suggests that two other
chemoreceptors may also bind nitrate. First, the LBD of the PilJ (PA0411) receptor is
composed of two consecutive PilJ domains (9). Second, chemoreceptor PA4520 was
predicted to contain a NIT LBD (Pfam PF08376). This domain, representing approxi-
mately 3% of all extracellular prokaryotic LBDs (21), was predicted to recognize nitrate
and nitrite (37).

To verify whether these receptors also bind nitrate, we generated the purified
individual LBDs of both receptors for thermal shift assay ligand screening using the
PM3B array. In the absence of ligand, PilJ-LBD and PA4520-LBD unfolded with Tm values
of 41.8 and 34.4°C, respectively. In both cases, however, no significant ligand-induced
Tm shifts were noted (Fig. S2A and B) and microcalorimetric titrations confirmed the
absence of NaNO3 and NaNO2 binding (Fig. S2C). To exclude the possibility that
endothermic and exothermic contributions to binding canceled out each other at a
given analysis temperature, the experiments were repeated at 15°C; however, the same
result was produced, confirming the absence of nitrate/nitrite binding to PilJ-LBD and
PA4520-LBD.

McpN mediates nitrate chemotaxis under nitrate starvation conditions. To
assess the function of McpN, we conducted quantitative capillary chemotaxis assays for
NaNO3 using the wild-type (wt) strain as well as a mutant deficient in the mcpN gene.
These assays were conducted using the standard conditions that we routinely employ
to study P. aeruginosa chemotaxis. This assay involves cell culture in MS minimal
medium (4.2 g/liter Na2HPO4, 2.8 g/liter KH2PO4, 2.0 g/liter NH4NO3, 0.2 g/liter MgSO4

7H2O, 17.0 mg/liter FeCl3 6H2O, 0.8 mg/CoCl2 6H2O, 0.6 mg/liter CaCl2 2H2O, 0.3 mg/
liter Na2MoO4 2H2O, 0.1 mg/liter H3BO3, 0.2 mg/liter ZnSO4 7H2O, 0.2 mg/liter CuSO4

7H2O, 0.2 mg/liter MnSO4 7H2O) supplemented with glucose (note that this medium
also contains 25 mM NH4NO3 as a nitrogen source). However, only very minor, non-
significant responses were detected over the entire nitrate concentration range
(Fig. S3).

Previous studies have shown that chemotaxis to Pi in PAO1 was not observed in rich
medium containing significant amounts of Pi but was induced by Pi starvation (23). We
hypothesized that this might also be the case for nitrate chemotaxis and followed an
approach similar to that described previously by Wu et al. (23). Thus, cells were
precultured in rich 2� YT medium (10 g yeast extract liter�1, 16 g Bacto tryptone
liter�1, 10 g NaCl liter�1) and then diluted 133-fold into N0 medium (which lacks
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nitrogen sources) and continued to grow for another 3 h. Under these conditions,
strong chemotactic responses to NaNO3 were obtained. Initial significant responses
were obtained at a NaNO3 concentration of 5 �M, whereas maximal responses were
observed at 500 �M (Fig. 2). No nitrate chemotaxis was observed for the mcpN mutant,
suggesting that it is the sole nitrate chemotaxis receptor. The complementation of this
mutant with a plasmid harboring the mcpN gene restored nitrate chemotaxis (Fig. 2).

To identify the possible roles of the PilJ receptor and the NIT domain containing
PA4520 chemoreceptor in nitrate chemotaxis, single mutants with mutations of the
corresponding genes were also analyzed. As shown in Fig. 2A, their responses to nitrate
were similar to those seen with the wt strain, confirming that the observed nitrate
chemotaxis was mediated solely by McpN.

Nitrate reduces mcpN transcript levels. To explain the absence of taxis under
conditions of nitrate abundance, we hypothesized that nitrate might repress expression
of the mcpN gene. To verify this hypothesis, we quantified mcpN transcript levels by
reverse transcription-quantitative PCR (RT-qPCR). These assays were carried out using
RNA from cells grown using the same protocol used for the chemotaxis assays under

FIG 2 The McpN chemoreceptor of P. aeruginosa mediates nitrate chemotaxis. (A) Quantitative capillary
chemotaxis assays of different P. aeruginosa PAO1 strains at different NaNO3 concentrations. Cells were
grown in rich 2� YT medium and then diluted 133-fold into N0 medium (deficient in nitrogen sources).
Data represent means of results from three biological replicates conducted in triplicate. (B) RT-qPCR
analysis of the mcpN transcript in the wild-type strain and in a mutant defective in the NarX sensor kinase.
Cells were gown in MS medium supplemented with glucose (containing 25 mM NH4NO3) or in nitrate-
deficient N0 medium (inoculated using a culture grown in 2� YT medium) until an OD600 of 0.15 was
reached (time zero), at which point NaNO3 was added to reach a final concentration of 1 mM. Further
samples were taken after 20 and 40 min. Shown are mcpN transcript levels normalized with respect to
the transcript levels of the rpoD reference gene at time zero under conditions of nitrate abundance. Data
represent means and standard deviations of results from three biological replicates conducted in
triplicate.
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conditions of nitrate abundance and limitation. As shown in Fig. 2B, mcpN transcript
levels were approximately 16 times higher under nitrate-limiting conditions than under
nitrate-abundant conditions. To verify that the absence or presence of nitrate was the
cause for these differences, NaNO3 was added to these cultures to reach a final
concentration of 1 mM and samples were taken for RT-qPCR experiments after addi-
tional periods of growth of 20 and 40 min. The results showed that the addition of
nitrate to cells grown under nitrate-limiting conditions reduced mcpN transcript levels
to those seen under nitrate-abundant conditions, indicating that nitrate reduces mcpN
expression (Fig. 2B).

The NarX/NarL two-component system (TCS) senses nitrate and regulates genes
involved in nitrate metabolism (38). To identify a potential role of this TCS in mcpN
expression, we quantified mcpN transcript levels in a mutant defective in the gene
encoding the NarX sensor kinase. However, RT-qPCR data revealed no statistical
differences in the transcript levels of mcpN (Fig. 2B).

McpN signals through the Che pathway. The 26 PAO1 chemoreceptors signal

through four different chemosensory pathways, and McpN was predicted to signal
through the Che pathway (11). To verify this prediction, we conducted chemotaxis
assays for NaNO3 using mutants defective in the genes encoding the CheA paralogues
of the Che1 (CheA1) and Che2 (CheA2) pathways. As shown in Fig. S4, no nitrate
chemotaxis was observed in the cheA1 mutant, whereas the responses of the cheA2
mutant were comparable to wt levels. These results thus confirm that McpN signals
through the Che pathway (11).

The three-dimensional (3D) structure of McpN-LBD. McpN-LBD in complex with

nitrate was crystallized in a buffer at pH 7.5, and its structure was resolved by X-ray
crystallography to a resolution of 1.3 Å. According to the Matthews coefficient, the unit
cell accommodates three chains. A structural alignment of these three chains resulted
in root mean square deviation (RMSD) values below 0.5, indicating that these chains
can be considered identical. Chains A and B of the unit cell form a dimer (Fig. 3A),
whereas chain C forms another dimer with a symmetry-related chain. The McpN-LBD
monomer is composed of 4 �-helices that pack into a 4-helix bundle. Dimerization is
achieved through the interaction of 22 residues of chains A and B that establish 16
hydrogen bonds and occlude a surface of approximately 1,100 Å2 in each monomer.

A single molecule of nitrate is bound to a site with a positive surface charge at the
dimer interface. The binding site is situated on the dimer symmetry axis; consequently,
the same amino acids from the two monomers establish interactions with bound
nitrate. Whereas G58, A59, and M62 establish nonbonded contacts, R61 played a key
role in recognition since it forms two hydrogen bonds with nitrate (Fig. 3B). To verify
the role of R61, we generated a McpN-LBD R61A mutant. The intrinsic tryptophan
fluorescence emission spectrum (Fig. S5A) and the thermal unfolding properties of the
mutant protein (Fig. 1; see also Fig. S5B) were comparable to those seen with the native
protein, indicating that this amino acid replacement did not cause major changes to
the overall protein structure. Analysis of this protein by the thermal shift assay and ITC
showed that this protein was unable to recognize nitrate (Fig. S5B and C).

The McpN-LBD structure was aligned to all structures currently deposited in the
protein data bank using the DALI algorithm, and the closest structural homologues are
listed in Table 1. Surprisingly, the closest structure was a LBD of a histidine kinase that
belonged to a different family, namely, CHASE3. The high level of structural similarity
between this domain and McpN-LBD is illustrated in Fig. 4A. The only chemoreceptor
LBD with significant structural similarity was the HBM domain of the McpS chemore-
ceptor, which is composed of two 4-helix bundles (39).

Nitrate binding promotes McpN-LBD dimerization. Analytical ultracentrifugation

(AUC) experiments were conducted to assess the oligomeric state of McpN-LBD.
Initially, we used the three-dimensional structure of McpN-LBD to calculate the ex-
pected sedimentation (S) coefficients using HYDROPRO (40) software. This analysis
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resulted in s20,w values of 1.7 S and 2.8 S (at 20 degrees and using water) for the
monomeric and dimeric species, respectively.

Sedimentation velocity experiments were performed on 5 �M to 40 �M McpN-LBD
in the absence of ligand, and data obtained with 10 and 20 �M protein are shown in
Fig. 3D. At 10 �M, two peaks could be identified with s20,w values of 1.85 S and 2.69 S,
which fit well with the values determined for the monomer and dimer, respectively. At

FIG 3 The three-dimensional structure of McpN-LBD in complex with nitrate. (A) Side (left) and top
(right) views of the overall structure. Nitrate is shown in red. (B) The nitrate binding pocket. Shown are
amino acids from both chains that interact with nitrate. The |2Fo-Fc| electron density of nitrate is
contoured at 1.5 sigma. (C) Schematic representation of amino acids involved in hydrogen bonding to
nitrate, shown as dotted lines, while the spoked arcs represent residues that make nonbonded contacts.
(D) Analysis of the oligomeric state of McpN-LBD using sedimentation velocity analytical ultracentrifu-
gation (AU). Shown are the sedimentation velocity c(s) profiles of ligand-free McpN-LBD at different
concentrations and protein in complex with nitrate.
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20 �M and 40 �M, only protein dimers were observed, indicating that the equilibrium
had shifted completely to this oligomeric state. To assess the effect of nitrate binding
on the oligomeric state, the experiments described above were repeated in the
presence of saturating nitrate concentrations. No changes in oligomeric state occurred
at the 20 and 40 �M concentrations, whereas a single peak with s20,w � 2.79 S (Fig. 3D)
was obtained at 10 �M protein, indicating that nitrate binding had shifted the equi-
librium entirely to the dimeric state. Taken together, the data indicate that McpN-LBD
was present in a monomer-dimer equilibrium and that nitrate binding stabilized the
dimeric state.

Definition of the N-box. To identify potential McpN homologues in other species,
we conducted a BLAST-P search of McpN-LBD in the NCBI database of nonredundant
protein sequences, excluding members of the Pseudomonas genus. An alignment of the
top 87 sequences is shown in Fig. S6. All sequences belonged to the PilJ family and

TABLE 1 Structural alignment of McpN-LBD with structures deposited in the Protein Data Banka

PDB
ID Protein type Species Ligand Pfam/InterPro ID

Z-
score

No. of
aligned
residues

Sequence
identity
(%) Reference

3VA9 LBD of HK9 SK Rhodopseudomonas palustris CHASE3 (PF05227) 13.6 114 13 Unpublished
5XSJ LBD of LytS SK Clostridium beijerinckii XylFII ligand binding

protein
Unannotated 13.3 112 6 82

4K0D LBD of Adeh_2942
SK

Anaeromyxobacter dehalogenans Unannotated 12.3 117 17 83

2YFB LBD of McpS CR1 Pseudomonas putida TCA cycle
intermediates

HBM (PF16591) 12.0 113 12 39

3EZH LBD of NarX SK Escherichia coli Nitrate/nitrite PilJ (PF13675) 11.9 104 21 72
3O1J LBD of TorS SK Vibrio parahaemolyticus TorT periplasmic

binding protein
TorS-like (IPR038188) 11.2 111 14 84

4IGG �-Catenin Homo sapiens �-Catenin Vinculin (PF01044) 10.7 114 5 85
5JEQ LBD of NarQ SK Escherichia coli Nitrate/nitrite PilJ (PF13675) 10.6 103 15 73
5XA5 �-Catenin Caenorhabditis elegans �-Catenin Vinculin (PF01044) 10.4 110 7 85
5XFL �-Catenin Mus musculus �-Catenin Vinculin (PF01044) 10.3 114 5 85
aShown are the structures with a Z-score above 10. The listed structures share less than 90% sequence similarity. SK, sensor kinase; CR, chemoreceptor.

FIG 4 Structural alignment of the McpN-LBD C� chain with structural homologues. In all cases, McpN-LBD is shown
in blue. (A) Alignment with a CHASE3 domain of an uncharacterized histidine kinase of Rhodopseudomonas palustris
(PDB ID 3VA9), the closest structural homologue found in a DALI search (Table 1). (B) Alignment with Tar-LBD (PDB
ID 1VLT). Bound aspartate (Tar) is shown in green, whereas bound nitrate (McpN) is shown in blue. (C) Alignment
with the sensor domain of the NarX histidine kinase (PDB ID 3EZH). Bound nitrates overlap and are shown in blue
(McpN) and orange (NarX).
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formed part of chemoreceptors. Most of the corresponding species were marine
bacteria, and a significant proportion of them are able to oxidize elemental sulfur or
sulfite (see Table S1 in the supplemental material). Furthermore, a number of human
pathogens such as Enterobacter cloacae, Streptococcus pneumoniae, and Eggerthia
catenaformis were among the species that harbor McpN homologues (Table S1).

The sequence alignment of McpN-LBD homologues revealed only a very modest
level of overall sequence identity of approximately 5%. However, the zone around the
nitrate binding site, which we have termed the N-box, was highly conserved and the
corresponding sequence logo is shown in Fig. 5A. We have shown above that not all PilJ
domains bind nitrate, since no binding was observed for the PilJ LBD, which is
composed of two PilJ domains (Fig. S2). As shown in Fig. S7, the N-box was not
conserved in either of the PilJ domains of the PilJ chemoreceptor. We then scanned the
TrEMBL database using PROSITE (41) and the following consensus pattern for the
N-box: [IVL]-[ND]-x-A-G-x-Q-R-M-L-[ST]-Q. The random statistical probability of a match
was well below 1 sequence.

However, 941 sequences containing PilJ domains which are likely to be nitrate
binding domains were retrieved. The retrieved sequences formed part of all major
families of signal transduction systems, namely, transcriptional regulators, sensor ki-
nases, chemoreceptors, and diguanylate cyclases. There were 1,135 protein sequences
with at least one PilJ domain in Pfam at the time of the search, and the N-box may be
usable as a means to identify PilJ domains that are able to bind nitrate.

Nitrate chemotaxis in other bacterial species. Subsequent work was aimed at
assessing nitrate chemotaxis in other species. To that end, we conducted quantitative
capillary chemotaxis assays using different strains grown under conditions of nitrate
abundance and limitation. Pseudomonas putida KT2440 and Pseudomonas fluorescens

FIG 5 Definition of the N-box of PilJ domains. (A) The sequence logo of the N-box as derived from the
alignment shown in Fig. S6. (B) Structure of McpN-LBD in which the 12 amino acids of the N-box are
shown as sticks together with bound nitrate.
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KU-7 do not have an McpN homologue but contain, as in the case of P. aeruginosa, a
NIT domain containing chemoreceptor. Our experiments showed that P. putida KT2440
was devoid of nitrate chemotaxis whereas P. fluorescens showed only minor responses
to 50 mM nitrate (Fig. 6).

We then studied two bacterial species that are among the top 10 plant-pathogenic
bacteria (42), namely, Pectobacterium atrosepticum and Xanthomonas campestris pv.
campestris. Interestingly, the responses of P. atrosepticum were very similar to those of
PAO1, since only very minor responses were observed under nitrate abundance con-
ditions but strong responses were observed under nitrate starvation conditions (Fig. 6).
There is no McpN homologue among the 36 chemoreceptors of this strain, but there
is a single receptor with a NIT domain. X. campestris pv. campestris also showed
significant chemotaxis under nitrate-limiting conditions and only minor responses
under nitrate abundance conditions (Fig. 6). Altogether, these data suggest that the
induction of nitrate chemotaxis by nitrate limitation is common to other bacteria.

DISCUSSION

Nitrate is a final electron acceptor for anaerobic respiration and also serves as a
nitrogen source for aerobic growth. Taxis to nitrate has been observed for a significant
number of bacteria such as E. coli, Salmonella enterica serovar Typhimurium (43, 44),
Pseudomonas spp. (45–48), Shewanella spp. (49, 50), Azospirillum brasilense (51), Rho-
dobacter sphaeroides, Agrobacterium tumefaciens (52), Thioploca spp. (53), and Syn-
echococcus spp. (54). The three major bacterial pathways for nitrate metabolism include
respiratory, assimilatory, and dissimilatory nitrate reduction (55), and any type of
metabolism can lead to energy taxis. In some of the cases, it has been demonstrated
that bacterial nitrate taxis is based on energy taxis (44, 49, 51, 52). For example, deletion
or inhibition of enzymes that participate in nitrate metabolism abolished nitrate taxis
(49). In other reports, the molecular mechanism of nitrate taxis, such as in the case of,
for example, lake water bacteria (46) or different denitrifying strains (45, 47), is unclear.

FIG 6 Nitrate chemotaxis in other species. Quantitative capillary chemotaxis assays of different strains to NaNO3.
(A) Cells grown under conditions of nitrate abundance. (B) Cells grown under conditions of nitrate limitation. Data
represent means and standard deviations of results from three biological replicates conducted in triplicate.
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It is possible that those observations were based on chemotaxis. Here we identify the
molecular mechanism of nitrate-specific chemotaxis that is initiated by the specific
recognition of nitrate at a periplasmic chemoreceptor LBD. McpN homologues show a
broad phylogenetic distribution, including those of archaea and bacteria belonging to
the Firmicutes and Proteobacteria phyla (see Table S1 in the supplemental material),
which indicates that nitrate chemotaxis may be a widespread mechanism.

Interestingly, among the species that harbor McpN homologues were a significant
number of bacteria isolated from marine sediments that are able to oxidize sulfide or
elemental sulfur (Table S1). There is evidence that the oxidation of reduced sulfur
compounds in these bacteria is coupled to the reduction of electron acceptors such as
nitrate (56). As a consequence, some sulfide oxidizers were found to store nitrate in
vacuoles (57) at concentrations of up to 370 mM (58, 59). This intracellular nitrate is
used to oxidize sulfide in deeper anoxic zones of sediments. This process has been
particularly well studied in Beggiatoa spp. (60), which are also among the species that
contain an McpN homologue (Table S1). On the basis of experiments performed with
nitrate-reducing/sulfide-oxidizing shelf sediment bacteria belonging to the Thioploca
genus, a functional model was proposed (53). The authors showed that the nitrate
concentration in the sediment was lower than that in the flume water and that nitrate
chemotaxis directed bacteria to the sediment surface, where they filled their vacuoles
with nitrate. They then migrated back into deeper sediment layers, where they oxidized
sulfide to sulfate until the nitrate was depleted, which induced the upward movement.
Taken together, the data thus suggest the particular importance of nitrate chemotaxis
in marine sulfide/sulfur-oxidizing bacteria.

Nitrate serves PAO1 as the sole nitrogen source for growth, and the anaerobic
growth of this strain is accomplished through the denitrification enzyme pathway that
catalyzes the sequential reduction of nitrate to nitrogen gas (61). Nitrate chemotaxis
was observed in pathogenic P. aeruginosa bacteria but not in the nonpathogenic P.
putida and P. fluorescens, suggesting that it may be related to virulence. Previous
studies have shown a link between virulence and nitrate metabolism for anaerobically
grown PAO1, since a mutant with a mutation in the nitrate reductase gene was
avirulent in Caenorhabditis elegans (61). PAO1 causes airway infections in cystic fibrosis
patients, and the sputum nitrate/nitrite concentration was 774 �M in cystic fibrosis
patients, well above the concentration seen with the healthy control group (421 �M)
(62). Importantly, these concentrations are in the range of the optimal chemotaxis
responses measured here (Fig. 2), indicating that nitrate chemotaxis may be related to
pathogenicity, as in the case of S. Typhimurium, where taxis to host-derived nitrate is
required for efficient host infection (44).

PAO1 nitrate chemotaxis was observed only under nitrate starvation conditions
(Fig. 2A), whereas no taxis was observed in under nitrate abundance conditions (see
Fig. S3 in the supplemental material), and similar results were seen for P. atrosepticum
(Fig. 6). This is unusual, since chemotactic behaviors are typically either constitutive or
inducible by the chemoeffector (63, 64). However, striking similarities exist between Pi

and nitrate chemotaxis in PAO1. Pi taxis was observed only under Pi starvation
conditions and not under Pi abundance conditions (23, 24). As in the case of mcpN, the
presence of Pi was shown to decrease the transcript levels of both Pi chemoreceptor
genes, i.e., ctpL and ctpH (65). Pi was identified as a key signal molecule that controls
the expression of many virulence genes and features in PAO1 (65, 66). Pi and nitrate are
both inorganic anions, and it is tempting to speculate that chemotaxis repression
mediated by chemoeffector abundance is a feature of this compound family.

Almost one-third of all chemoreceptor LBDs are recognized by the Pfam 4HB
domain signature (9). Signaling of chemoreceptors with this domain has been exten-
sively studied, and the 3D structure reveals a 4-helix antiparallel bundle (67, 68).
Although the McpN-LBD sequence is not recognized by the Pfam 4HB signature, its
structure superimposes very well on that of the 4HB Tar-LBD (Fig. 4B). This, together
with the fact that the closest structural McpN-LBD homologue is a CHASE3 domain
(Table 1), demonstrates that the 4-helix bundle is a conserved structural motif for ligand
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sensing formed by members of different LBD families. Although conserved in structure,
the modes of ligand binding for McpN-LBD and Tar-LBD are different. The Tar-LBD
dimer recognizes two signal molecules with high negative cooperativity that bind to
the dimer interface at two sites that are not on the dimer symmetry axis (68, 69). In
contrast, a single molecule of nitrate binds to a single site located at the dimer
symmetry axis of McpN-LBD (Fig. 3A). However, 4HB domains and McpN-LBD (Fig. 3D)
have in common that the individual domains are present in a monomer-dimer equi-
librium and that ligand binding shifts this equilibrium to the dimeric state (69, 70).

The NarX/NarL and NarQ/NarP two-component systems control transcriptional re-
sponses to nitrate and nitrite, which are the preferred anaerobic electron acceptors in
E. coli (71). The LBDs of the NarX and NarQ sensor kinases are structural homologs of
McpN-LBD (Table 1), and their 3D structures in complex with nitrate have been solved
(72, 73). Although McpN-LBD and NarX-LBD share only 21% sequence identity, their
structures align very well and the nitrate binding site is conserved (Fig. 4C). McpN-LBD
differs from NarX-LBD in several aspects. Our AUC studies showed that McpN-LBD has
an intrinsic propensity to dimerize which is enhanced in the presence of nitrate. In
contrast, NarX-LBD is monomeric even at a concentration of 10 mM and in the presence
of nitrate (72). NarX and NarQ are characterized by a certain plasticity in ligand
recognition, since they bind to nitrate, nitrite, and sulfite (34–36). In contrast, McpN-LBD
recognizes nitrate exclusively and has no physiologically relevant affinity for nitrite
(Fig. 1; see also Fig. S1A). The superimposition of the ligand binding pockets of
NarX-LBD and McpN-LBD (Fig. S1B) did not provide any obvious reason for this
difference in ligand specificity data.

The NIT domain is present in different signal transduction protein families and was
previously proposed to be a sensor domain for nitrate and nitrite (37). However, the
recombinant NIT domain of PA4520 did not bind nitrate or nitrite (Fig. S2) and a mutant
defective in this receptor was not affected in nitrate chemotaxis (Fig. 2). In addition, P.
putida and P. fluorescens both possess a NIT domain containing a chemoreceptor which,
however, did not mediate nitrate chemotaxis under the experimental conditions tested
(Fig. 6). The NIT domain may thus represent a superfamily that contains subfamilies
with different ligand binding properties and biological functions.

The demonstration of specific nitrate chemotaxis as reported here widens the range
of known chemoeffectors and provides the basis for an assessment of this phenotype
in other bacteria and for the elucidation of its physiological relevance.

MATERIALS AND METHODS
Bacterial strains, culture media, and growth conditions. Bacterial strains used are listed in Table 2.

Bacteria were grown aerobically at 30°C or 37°C, unless otherwise specified, in lysogeny broth (LB), 2�
YT medium (10 g yeast extract liter�1, 16 g Bacto tryptone liter�1, 10 g NaCl liter�1), or MS medium
(4.2 g/liter Na2HPO4, 2.8 g/liter KH2PO4, 2.0 g/liter NH4NO3, 0.2 g/liter MgSO4 7H2O, 17.0 mg/liter FeCl3
6H2O, 0.8 mg/CoCl2 6H2O, 0.6 mg/liter CaCl2 2H2O, 0.3 mg/liter Na2MoO4 2H2O, 0.1 mg/liter H3BO3,
0.2 mg/liter ZnSO4 7H2O, 0.2 mg/liter CuSO4 7H2O, 0.2 mg/liter MnSO4 7H2O) supplemented with 20 mM
D-glucose as a carbon source. Alternatively, Xanthomonas campestris was grown in M9 minimal medium
supplemented with 20 mM D-glucose, 5 mM NaNO3 and 5% (vol/vol) LB medium. E. coli DH5� was used
as a host for gene cloning. When necessary, antibiotics were used at the following final concentrations
(in micrograms per milliliter): ampicillin, 100; kanamycin, 50, tetracycline, 40.

Plasmid construction. The plasmids and oligonucleotides used are listed in Table 2 and in Table S2
in the supplemental material, respectively. Protein expression plasmids were constructed by amplifica-
tion from genomic DNA of P. aeruginosa PAO1 for the DNA fragments encoding the LBDs of PilJ (amino
acids 36 to 315), McpN (amino acids 44 to 179), and PA4520 (amino acids 38 to 321). The resulting PCR
products were cloned into pET28(�) to generate plasmids pPilJ-LBD, pMcpN-LBD, and pET4520-LBD. In
all cases, plasmids were verified by sequencing. For the construction of the complementing plasmid
pBBRMcpN, the mcpN gene was amplified using primers listed in Table S2. The resulting PCR fragment
was cloned into the NdeI and BamHI sites of pBBR1MCS2_START, and the plasmid was transformed into
P. aeruginosa PAO1-McpN by electroporation.

Protein overexpression and purification. E. coli BL21(DE3) was transformed with the expression
plasmids, and the resulting strains were grown in 2-liter Erlenmeyer flasks containing 400 ml LB medium
supplemented with kanamycin. Cultures were grown under conditions of continuous stirring (200 rpm)
at 30°C. The growth temperature was lowered to 16°C when an optical density at 600 nm (OD600) of 0.5
was reached, and protein expression was induced after 30 min by the addition of 0.1 mM isopropyl
�-D-1-thiogalactopyranoside. Cultures were grown for another 14 h prior to harvesting of cells by
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centrifugation at 10,000 � g and 4°C for 30 min. Cell pellets were resuspended in buffer A (20 mM
Tris-HCl, 0.1 mM EDTA, 300 mM NaCl, 10 mM imidazole, 5% [vol/vol] glycerol, pH 7.6) and broken by
French press treatment at a gauge pressure of 62.5 lb/in2. After centrifugation at 20,000 � g for 1 h, the
supernatant was loaded onto a 5-ml HisTrap column (Amersham Bioscience) previously equilibrated with
buffer A. After washing with buffer A containing 35 mM imidazole was performed, protein was eluted by
the use of a 35 to 500 mM imidazole gradient in buffer A. Proteins were dialyzed into the following
buffers for analysis: for PA2788-LBD, 20 mM Tris-HCl (pH 7.4); for PA4520-LBD, 5 mM Tris-HCl, 5 mM MES
(morpholineethanesulfonic acid), and 5 mM PIPES [piperazine-N,N=-bis(2-ethanesulfonic acid)] (pH 7.5);
for PA0411-LBD, 50 mM HEPES (pH 7.5).

Differential scanning fluorimetry (DSF). DSF assays were performed on a MyIQ2 Real-Time PCR
instrument (Bio-Rad). Compounds from different arrays (Biolog, Hayward, CA, USA) were dissolved in
50 �l water, which, according to the manufacturer, corresponds to a concentration of 10 to 20 mM. The
composition of these arrays is provided in http://208.106.130.253/pdf/pm_lit/PM1-PM10.pdf. Screening
was performed using 96-well plates. Each well contained 2.5 �l of the dissolved compound, 20.5 �l
protein, and 2 �l SYPRO Orange (Life Technologies). The control well contained protein without ligand.
Samples were heated from 23°C to 85°C at a scan rate of 1°C/min, and fluorescence changes were
monitored. Tm values correspond to the minima of the first derivatives of the raw data.

Isothermal titration calorimetry (ITC). Experiments were performed on a VP microcalorimeter
(Microcal, Amherst, MA, USA) at 25°C. Proteins were placed into the sample cell (36 to 65 �M). Compound
solutions (1 to 5 mM) were prepared in dialysis buffer and placed into the injector syringe. Titrations
involved the injection of 9.6-�l to 19.2-�l aliquots of compound solution into the protein. In cases in
which no binding was observed, the experiment was repeated at an analysis temperature of 15°C. The
mean enthalpy values from the titration of buffer with compounds were subtracted from raw titration
data prior to data analysis performed with the “One binding site model” of the MicroCal version of
ORIGIN.

Analytical ultracentrifugation (AUC). Experiments were performed on a Beckman Coulter Optima
XL-I analytical ultracentrifuge (Beckman-Coulter, Palo Alto, CA, USA) equipped with UV-visible light

TABLE 2 Bacterial strains and plasmids used in this study

Strain or plasmid Genotype or relevant characteristic(s)a

Reference
or source

Strains
Escherichia coli BL21(DE3) F– ompT gal dcm lon hsdSB(rB

– mB
–) �(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5])

[malB�]K-12(�S)
86

Escherichia coli DH5� F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 �80dlacZΔM15
Δ(lacZYA-argF)U169, hsdR17(rK

– mK
�), �–

87

Pseudomonas putida KT2440 Wild-type strain 88
Pseudomonas aeruginosa PAO1 Wild-type strain 89
Pseudomonas aeruginosa PAO1-McpN PAO1 transposon mutant pa2788::ISlacZ/hah; Tcr 90
Pseudomonas aeruginosa PAO1-PilJ PAO1 transposon mutant pa0411::ISphoA/hah; Tcr 90
Pseudomonas aeruginosa PAO1-PA4520 PAO1 transposon mutant pa4520::ISphoA/hah; Tcr 90
Pseudomonas aeruginosa PAO1-NarX PAO1 transposon mutant pa3878::ISphoA/hah; Tcr 90
Pseudomonas aeruginosa PAO1-CheA1 PAO1 transposon mutant pa1458::ISphoA/hah; Tcr 90
Pseudomonas aeruginosa PAO1-CheA2 PAO1 transposon mutant pa0178::ISlacZ/hah; Tcr 90
Pseudomonas fluorescens KU-7 Wild-type strain 91
Pectobacterium atrosepticum SCRI1043 Wild-type strain 92
Xanthomonas campestris pv. campestris Wild-type strain M. Milagros-

Lopez
(IVIA, Spain)

Plasmids
pET28b(�) Protein expression plasmid; Kmr Novagen
pMcpN-LBD pET28b(�) derivative containing a DNA fragment encoding McpN-LBD cloned

into the NdeI/XhoI sites; N-terminal His6 tag; Kmr

This study

pPilJ-LBD pET28b(�) derivative containing a DNA fragment encoding PilJ-LBD cloned
into the NdeI/EcoRI sites; N-terminal His6 tag; Kmr

This study

pET4520-LBD pET28b(�) derivative containing a DNA fragment encoding PA4520-LBD cloned
into the NdeI/SalI sites; N-terminal His6 tag; Kmr

This study

pBBR1MCS2_START oriRK2 mobRK2; Kmr 93
pBBRMcpN pBBR1MCS2_START derivative containing mcpN gene; Kmr This study
pCR2.1-TOPO PCR cloning vector; ori pUC ori f1 lacZ�; Apr, Kmr Invitrogen
pCR-McpN-LBD pTOPO derivative containing a DNA fragment encoding McpN-LBD; Apr, Kmr This study
pCR-McpN-R61A pTOPO derivative containing a DNA fragment encoding McpN-LBD (R61A);

Apr, Kmr

This study

pMcpN-R61A pET28b derivative containing a DNA fragment encoding His-tagged McpN-LBD
(R61A); Kmr

This study

aAp, ampicillin; Km, kanamycin; Tc, tetracycline.
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absorbance and interference optics detection systems, using an An50Ti 8-hole rotor and 12-mm-path-
length charcoal-filled epon double-sector centerpieces. The experiments were carried out at 10°C using
5 �M to 40 �M McpN-LBD in the absence and presence of 0.6 mM NaNO3.

Sedimentation velocity (SV) runs were carried out at a rotor speed of 48,000 rpm using 400-�l
samples with the dialysis buffer as the reference. A laser was used at a wavelength of 235 nm in the
absorbance optics mode. Least-squares boundary modeling of the SV data was used to calculate
sedimentation coefficient distributions with the size-distribution c(s) method (74) implemented in SEDFIT
v14.1 software. Buffer density (� � 1.003 g/ml [0.99989 g/ml in the presence of NaNO3]) and viscosity
[� � 0.013137 poise [0.01313 poise in the presence of NaNO3]) at 10°C were estimated using SEDNTERP
software (75) for the buffer components. The partial specific volume used was 0.7192 ml/g as calculated
from the amino acid sequence using SEDNTERP software.

Intrinsic tryptophan fluorescence spectroscopy. McpN-LBD and McpN-LBD R61A mutants were
dialyzed into 20 mM Tris-HCl (pH 7.4), and the reaction mixtures were adjusted to a concentration of
5 �M. Proteins were placed into a PTI QM-2003 fluorimeter (Photon Technology International, Law-
renceville, NJ), and emission spectra were recorded at wavelengths of 305 to 400 nm following excitation
at 295 nm. Spectra were recorded at 20°C using a slit width of 4 nm with a scan speed of 1 nm/s. Spectra
were corrected with the buffer emission spectrum.

Quantitative capillary chemotaxis assays. Assays were conducted using two different protocols
that differed under the cell culture conditions. Under conditions of nitrate abundance, overnight cultures
in MS minimal medium supplemented with 20 mM glucose as a carbon source (note that this medium
contains 25 mM NH4NO3) were used to inoculate fresh medium to reach an OD600 of 0.05. Cells were
cultured at 30°C or 37°C until an OD600 of 0.4 to 0.5 was reached. Under conditions of nitrate limitation,
150 �l of an overnight culture in rich 2� YT medium was used to inoculate 20 ml of N0 medium (MS
lacking a nitrogen source). Growth was continued for 3 h (pseudomonads) or 4.5 h (P. atrosepticum), at
which point the cells had reached an OD600 of 0.15 to 0.2. For X. campestris, M9 minimal medium
supplemented with 20 mM D-glucose, 5 mM NaNO3, and 5% (vol/vol) LB was used for the conditions of
nitrate abundance, whereas M8 minimal medium (M9 without nitrogen source) supplemented with
20 mM D-glucose and 5% (vol/vol) LB was used for the conditions of nitrate limitation. Cells were grown
for 6 h until the OD600 reached 0.25 to 0.3.

Under both conditions, cells were washed twice by centrifugation (1,667 � g and 6 min at 4°C) and
resuspension in chemotaxis buffer (50 mM potassium phosphate, 20 �M EDTA, 0.05% [vol/vol] glycerol,
pH 7.0) and then resuspended in the same buffer to reach an OD600 of 0.1. Aliquots (230 �l) of the
resulting cell suspension were placed into the wells of a 96-well microtiter plate. Capillaries (Microcaps;
Drummond Scientific [reference P1424]) (1 �l) were heat-sealed at one end and filled with buffer
(control) or chemoeffector solution prepared in chemotaxis buffer. The capillaries were immersed into
the bacterial suspensions at its open end. After 30 min, capillaries were removed from the wells, rinsed
with sterile water, and emptied into 1 ml of chemotaxis buffer. Serial dilutions were plated onto M9
minimal medium plates supplemented with 20 mM glucose and incubated overnight at 30 or 37°C. CFU
counts were determined and corrected with the buffer control.

RT-qPCR gene expression analysis. Total RNA was extracted using a High Pure RNA isolation kit
(Roche Diagnostics) and treated with Turbo DNase (Invitrogen). RNA quality was verified by agarose gel
electrophoresis and quantified spectrophotometrically. Subsequently, cDNA was synthesized from
500 ng RNA using SuperScript II reverse transcriptase (Invitrogen) and 200 ng of random hexamer
primers (Roche) following the instructions of the manufacturers. Quantitative PCR was performed using
iQ SYBR green supermix (Bio-Rad) in a MyiQ2 thermal cycler (Bio-Rad). The following protocol was used:
95°C (5 min), 35 cycles of 95°C (10 s) and 61°C (30 s), and melting curve analysis from 55 to 95°C, with an
increment of 0.5°C/10 s. Gene expression data were normalized to expression of the rpoD reference gene.
The primers used are listed in Table S2.

McpN-LBD crystallization and structure resolution. Crystallization conditions were screened using
the capillary counter-diffusion technique and commercially available crystallization kits GCB-CSK,
PEG448-49, and AS-49 (Triana Science & Technology, Granada, Spain). The protein, maintained at
1.5 mg/ml in 20 mM Tris-HCl–200 mM NaCl (pH 7.5), was incubated at 4°C with 1.7 mM NaNO3, and the
excess of NaNO3 was removed by centrifugation using Amicon concentrators (3-kDa cutoff). The
protein-ligand complex was loaded into 0.2-mm-inner-diameter capillaries, and crystals of sufficient size
appeared in 0.82 M K/phosphate– 0.82 M Na/phosphate (0.1 M Na/HEPES, pH 7.5). Crystals were extracted
from the capillary, flash-cooled in liquid nitrogen, and stored until data collection. Crystals were
diffracted at beam line ID23-1 of the European Synchrotron Radiation Facility (ESRF). Data were indexed
and integrated with XDS (76) and scaled with SCALA (77). Attempts at molecular replacement using
homology models generated using the NarX sensor domain (PDB identifier [ID] 3EZI) and the NarQ sensor
domain (PDB ID 5IJI) were unsuccessful. Phases were obtained using Arcimboldo (78) and searching for
two helices that were 30 amino acids in length. Refinement was initiated with Refmac (79) and finalized
with phenix.refine (80), tracking the quality with MolProbity (81). Refinement statistics and quality
indicators are summarized in Table S3.

Site-directed mutagenesis. An overlapping PCR mutagenesis approach was used to construct the
alanine substitution mutant McpN-LBD R61A. First, a NdeI/XhoI DNA fragment of pMcpN-LBD was cloned
into the same sites of pCR2.1-TOPO and transformed into E. coli DH5� (dam positive [dam�]). Next, the
resulting pCR-McpN-LBD plasmid was fully amplified by PCR using a complementary primer pair carrying
the mutation. The parental plasmid was cleaved using DpnI, and plasmids with the desired mutation
were recirculated with T4 DNA ligase (Roche). The presence of the mutation in the resulting plasmid,
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pCR-McpN-R61A, was confirmed by sequencing prior to cloning into the NdeI/XhoI sites of pET28(�) to
generate pMcpN-R61A (Table 2).

Data availability. Coordinates and structure factors of McpN-LBD were deposited at the PDB with
accession code 6GCV.
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