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Abstract
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have

been used to integrate the complex network of interacting molecular components involved

in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream

of previously known components of cell cycle control, with the aim of understanding the

mechanisms underlying the emergence of the cyclic behavior of such components. We

focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are

conserved among eukaryotes, when experimental data for this system was not available,

we considered experimental results from yeast and animal systems. We are proposing a

Boolean gene regulatory network (GRN) that converges into only one robust limit cycle

attractor that closely resembles the cyclic behavior of the key cell-cycle molecular compo-

nents and other regulators considered here. We validate the model by comparing our in sil-
ico configurations with data from loss- and gain-of-function mutants, where the endocyclic

behavior also was recovered. Additionally, we approximate a continuous model and recov-

ered the temporal periodic expression profiles of the cell-cycle molecular components

involved, thus suggesting that the single limit cycle attractor recovered with the Boolean

model is not an artifact of its discrete and synchronous nature, but rather an emergent con-

sequence of the inherent characteristics of the regulatory logic proposed here. This dynam-

ical model, hence provides a novel theoretical framework to address cell cycle regulation in

plants, and it can also be used to propose novel predictions regarding cell cycle regulation

in other eukaryotes.

Author Summary

In multicellular organisms, cells undergo a cyclic behavior of DNA duplication and deliv-
ery of a copy to daughter cells during cell division. In each of the main cell-cycle (CC)
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stages different sets of proteins are active and genes are expressed. Understanding how
such cycling cellular behavior emerges and is robustly maintained in the face of changing
developmental and environmental conditions, remains a fundamental challenge of biol-
ogy. The molecular components that cycle through DNA duplication and citokinesis are
interconnected in a complex regulatory network. Several models of such network have
been proposed, although the regulatory network that robustly recovers a limit-cycle steady
state that resembles the behavior of CC molecular components has been recovered only in
a few cases, and no comprehensive model exists for plants. In this paper we used the plant
Arabidopsis thaliana, as a study system to propose a core regulatory network to recover a
cyclic attractor that mimics the oscillatory behavior of the key CC components. Our analy-
ses show that the proposed GRN model is robust to transient alterations, and is validated
with the loss- and gain-of-function mutants of the CC components. The interactions pro-
posed for Arabidopsis thaliana CC can inspire predictions for further uncovering regula-
tory motifs in the CC of other organisms including human.

Introduction
The eukaryotic cell cycle (CC) in multicellular organisms is regulated spatio-temporally to
yield normal morphogenetic patterns. In plants, organogenesis occurs over the entire lifespan,
thus CC arrest, reactivation, and cell differentiation, as well as endoreduplication should be
dynamically controlled at different points in time and space [1]. Endoreduplication is a varia-
tion of the CC, in which cells increase their ploidy but do not divide. Normal morphogenesis
thus depends on a tight molecular coordination among cell proliferation, cell differentiation,
cell death and quiescence. These biological processes share common regulators which are influ-
enced by environmental and developmental stimuli [1–3]. It would not be parsimonious to
depend on different regulatory circuits to control such interlinked cellular processes, CC
behaviors and responses. Thus we postulate that a common network is deployed in all of them.
Such overall conserved CC network may then connect to different regulatory networks under-
lying cell differentiation in contrasting tissue types or to signal transduction pathways elicited
under different conditions, and thus yield the emergence of contrasting cellular behaviors in
terms of cycling rate, entrance to endocycle, differentiation, etc.

Furthermore, the overall CC behaviors are widely conserved and robust among plants and
animals. Hence, we aim at further investigating the collective behavior of the key upstream reg-
ulators and studied CC components to understand the mechanisms involved in the robustness
of CC regulation under changing developmental stages and environmental conditions faced by
plants along their life-cycles. Previous studies, that have shown the oscillatory behavior of sev-
eral transcription factors, that had not been associated as direct regulators of the CC, support
our proposed hypothesis [4]. We thus propose to uncovering the set of necessary and sufficient
regulatory interactions underlying the core regulatory network of plant CC, including some
key upstream transcriptional regulators.

Computational tools are essential to understanding the collective and dynamical behavior
of these components within the regulatory networks involved. As a means of uncovering the
main topological and architectural traits of such networks, we propose to use Boolean formal-
isms that are simple and have proven to be useful and powerful to follow changes in the activity
of regulators of complex networks in different organisms and biological processes [5, 6].

Although the key CC components have been described in different organisms, the complex-
ity and dynamic nature of the molecular interactions that are involved in CC regulation and
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the emergence of the cyclic behavior of the CC molecular components are not well understood
yet. The use of systemic, dynamic and mathematical or computational approaches has been
useful towards this already. Previous models have focused mainly on yeast and animal systems
and have been useful to analyze many traits of CC behavior such as robustness, hysteresis, irre-
versibility and bistability [7–11]. The latter two properties have been validated with experimen-
tal data [12–14].

We herein summarize the main traits and components of the eukaryotic CC. The molecular
CC regulators have been described and they are well conserved across distantly related organ-
isms [15, 16]. CC progression is regulated by Cyclin-Dependent Kinases (CDKs) [17] that asso-
ciate with different cyclins to confer substrate specificity [18]. CDK-cyclin complexes trigger
the transition from G1 (Gap 1) to synthesis phase (S phase) in where the genome is duplicated,
and from G2 (Gap 2) to mitotic phase (M phase) for the delivery of the newly duplicated DNA
to the two daughter cells [19] (see for a review [17, 20]). The CDK-cyclin activity also regulates
the cell transit between G and S phases during the endoreduplication process [21, 22].

Two CDKs (CDKA and CDKB) are involved in CC regulation. CDKA;1-CYCDs and
CDKA;1-CYCA3 complexes regulate G1/S and S phase progression [23–25]; while
CDKB-CYCA2 and CDKB-CYCBs regulate G2/M phase and M progression [26–28]. Thus
CDK-cyclin activity is finely-tuned by phosphorylation, interactions with CDK inhibitors such
as Kip-related proteins (KRPs), and degradation of cyclins and KRPs by Skp1/Cullin/F-
box (SCF), as well as by the anaphase-promoting complex/Cyclosome (APC/C) [29–31].
Besides these components, plant CC machinery has a greater number of CC regulators than
other eukaryotes and some of those components such as the CDKB are plant-specific.

Several key transcriptional regulators participate in the G1/S and G2/M transitions [32].
The E2F/RBR pathway regulates G1/S transition by transcriptional modulation of many genes
required for CC progression and DNA replication [33, 34]. While E2Fa and E2Fb with their
dimerization partner (DP) activate transcription of a subset of S phase genes, E2Fc-DP
represses transcription [35]. The function of E2Fa and E2Fb is inhibited by their interaction
with RBR [36]; in G1/S transition CDKA;1-CYCD-mediated RBR hyperphosphorylation,
releases E2Fa/b-DP heterodimers allowing transcriptional activation of E2Fa and E2Fb targets.
Simultaneously the E2Fc-DP transcriptional inhibitor is degraded [37].

Little is known about the regulation of G2/M transition in plants, however a class of con-
served transcription factors belonging to the MYB family has been described, that seem to have
key roles in CC regulation. MYB transcription factors have a prominent role during G2/M
transition, by regulating, for example, CYCB1;1 which is determinant in triggering mitosis
[38–43]. For the mitosis exit, APC/C mediates degradation of the mitotic cyclins as CYCB1;1
and CYCA2;3, inactivating CDK-cyclin complexes. CCS52A2, an activator subunit of APC/C,
is transcriptionally inhibited by E2Fe [44].

Some previous models have recovered the limit cycle attractor as well for CC components
[45–48]. A pioneer model of the CC focused on mitotic CDK-cyclin heterodimer and a cyclin
protease oscillatory behavior [49]. On the other hand, Novak and Tyson incorporated addi-
tional nodes and interactions to model the G1/S and G2/M transitions of the S. pombe CC [50,
51]. They also analyzed evolutionary roles of CC regulators [52], mutant phenotypes [53], sta-
ble steady states [7] and the role of cues such as cell size or pheromones in CC progression [54,
55]. Additionally, comprehensive CC continuous models [45] and generic modules for eukary-
otic CC regulation [56, 57] have been proposed.

In addition to continuous formalisms, CC models have used discrete approaches as Boolean
models for yeast and mammalian systems [46–48, 58–61], and more recently, hybrid models
for mammalian cells have been published [62]. Subsequently, time-delayed variables [63] and
variables defining CC events [47, 48] were incorporated. Time robustness was improved with
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specifications of the temporal order with which each component is activated [60]. Recent pub-
lished reports on CC dynamics use steady state probability distributions and potential land-
scapes, and highlight the enormous potential of CC models to characterize normal and altered
regulation of mammalian CC [64, 65].

Yeast CC Boolean models with summatory thresholds [58, 59], incorporated self-degrada-
tion for proteins, but did not incorporate several negative regulators explicitly. In a later work
[61], nodes were kept active when the summatory effect of their regulators was greater than the
activation threshold, which implies self-degradation of the protein, when such summatory is
equal to or below the threshold. Fauré and Thieffry have transformed CC Boolean models, that
use threshold functions, to models with a combinatorial scheme, and they have also presented
a broader discussion about these two approaches to logical frameworks [66].

Two Boolean models of budding yeast CC and another one of mammalian CC recover cyclic
attractors [46–48]. The mammalian CC model [46] also recovers a fixed-point attractor corre-
sponding to G0. In another study, Fauré and collaborators integrated three modules to yield a
comprehensive model for the budding yeast CC GRN [47]. The components included variables
to represent cellular growth, citokinesis, bud formation, DNA replication and the formation of
the spindle. The yeast CC model by Irons also included variables of CC events (e.g. bud forma-
tion or DNA replication) as well as time delays [48]. In contrast to other eukaryotes, in Arabi-
dopsis thaliana (A. thaliana herein) very few attempts have been made to integrate available
experimental data on CC regulators using mechanistic models. Only a study that considers the
G1/S transition has been proposed and contributed to show some additional conserved features
of this CC control point among eukaryotes [67].

We integrated available experimental data on 29 A. thaliana regulatory interactions involved
in CC progression into a Boolean discrete model, that recovers key properties of the observed
plant CC. The regulatory network, that we put forward, also incorporates three uncovered inter-
actions, based on animal systems (E2Fb! SCF, CDKB1;1-CYCA2;3 a E2Fa, APC/C a SCF), as
well as 16 interactions based on bioinformatic analyses. Therefore, the latter proposed interac-
tions constitute new predictions that should be tested experimentally. The use of yeast or animal
data is supported by the fact that main CC components or regulatory motifs are conserved
among eukaryotes [16]. In our model, we include solely molecular components and avoid artifi-
cial self-degradation loops, which have been used for recovering the limit cycle attractor. We vali-
dated the model simulating loss- and gain-of-function lines, and hence demonstrate that the
Boolean network robustly implements true dynamical features of the biological CC regulatory
network under wild type and genetic alterations. Possible artifacts due to the discrete dynamical
nature of the model used, and of its synchronous updating scheme, were discarded by comparing
the Boolean model results to those of a continuous approximation model. The continuous model
indeed recovers the robust limit cycle that mimics the dynamical behavior of CC components
under a wide range of parameters tested. Finally, we provide novel predictions that can be tested
against biological experimental measurements in future studies. The model put forward consti-
tutes a first mechanistic and integrative explanation to A. thaliana CC.

Materials and Methods

Boolean model
We proposed a Boolean approach to integrate and study the qualitative complex logic of regu-
lation of the molecular components underlying the CC dynamics. We formalized available
experimental data on logical functions and tables of truth that rule how the state of a particular
component is altered as a function of the states of all the components that regulate it. In a Bool-
ean model each node state can be 0, when the expression of a gene or other type of molecular
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component or complex of such components is unexpressed or “OFF”, or 1 when it is expressed,
or “ON”. Nodes states are updated according to the function: Xi(t+1) = Fi(Xi1(t), Xi2(t), . . .,
Xik(t)), where Xi(t+1) is the state of Xi gene at time t+1 and Xi1(t), Xi2(t), . . ., Xik(t) is the set of
its regulators at time t. The set of logical rules for all the network components defines the
dynamics of the system. By applying the logical rules to all nodes for several iterations, the
dynamics of the whole network can be followed until it reaches a steady state; a configuration
or set of configurations that does not change any more or are visited in a cyclical manner,
respectively. Such state is called an “attractor”. Single-point attractors only have one GRN con-
figuration, or cyclic attractors with period n, which have n configurations that are visited indef-
initely in the same order. In this paper we propose a GRNmodel that converges to a single
limit cycle attractor that recovers the CC molecular components’ states of presence (network
configuration) in a cyclic pattern that mimics the pattern observed for the molecular compo-
nents included in the model along the different CC phase.

Model assumptions
A. thaliana CC Boolean model has the following assumptions:

1. Nodes represent mRNA, proteins or protein complexes involved in CC phase transitions.
Node state “ON” is for the presence of regulator, and “OFF” is for absence; in the latter case,
it may also indicate instances in which a component may be present but non-functional due
to a post-translational modification.

2. The state of the RBR (RETINOBLASTOMA-RELATED) node corresponds to a 1 or “ON”
when this protein is in its hypo-phosphorylated form and therefore is ready to inhibit E2F
transcription factors.

3. When a particular CDK is not specified, a cyclin can form a complex with CDKA;1, a kinase
that is always present because it is expressed in proliferative tissues [68] during the complete
CC.

4. E2Fa, E2Fb and E2Fc need dimerization partner proteins (DPa or DPb) for its DNA-bind-
ing. Given that DP expression does not change drastically in CC [69], we assumed that the
state of these heterodimers is given only by the presence of E2F factors.

5. The Boolean logical functions integrate and formalize experimental data available mainly
for the A. thaliana root apical meristem, however some data from leaves were considered,
and we assumed that these are also valid for CC regulation in the root meristem. Also, data
from other systems and data obtained by sequence promoter analysis were considered as
indicated in each case [27, 39, 40, 67, 70–85] (summarized in Table 1).

6. The dynamics of complex formation (such as CDK-cyclin and KRP1, or RBR and E2F fac-
tors) are specified directly in the Boolean function of their target genes. For instance, the
logic rule for E2Fb is E2Fa & !RBR, indicating that E2Fb state is “ON” when it is transcrip-
tionally activated by E2Fa free of RBR. All E2Fa targets also included in their logical rules
RBR, as is shown in S1 Text. Then, the presence of KRP1 or RBR in a logical rule does not
imply that they are regulators acting directly on the corresponding target.

7. The updating scheme for the node states was synchronous.

Periodic expression and promoter sequence analysis
Most regulatory interactions and logical rules were obtained from the A. thaliana data [20, 21,
25–27, 29, 30, 35, 37, 38, 40, 43, 44, 78–80, 85–103] (detailed in Table 2). A. thaliana CC-
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dependent expression data for validation was obtained from: [72–74]. The consensus site used
for MYB77 was CNGTTR, according to: [75, 76], while that for MYB3R4 was AACGG accord-
ing to: [43]. The motifs were searched in the regulatory sequences of all network nodes using
Pathmatch tool (http://arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl) of TAIR. Regula-
tory sequences in TAIR10 Loci Upstream Sequences-1000bp and TAIR10 5’ UTRs datasets
were used.

Software for robustness analysis and mutant simulation
We used BoolNet [104] (a library of R language [105]) and Atalia(Á. Chaos; http://web.
ecologia.unam.mx/achaos/Atalia/atalia.htm) to simulate the CC GRN dynamics and perform
robustness, and mutant analyses. Systematic alterations in Boolean functions for robustness

Table 1. Hypothetical Interactions for the A. thalianaCC Network.

Regulator Target Data supporting the proposition of the interaction Refs.

E2Fb ! SCF F-box protein Skp2 is part of the SCF complex and is transcriptionally
regulated by E2F1 in humans. In A. thaliana, it has only been reported that
E2F factors regulate FBL17, another F-box protein.

[67, 70]

E2Fb ! MYB77 Direct regulation between E2F and MYB factors has been reported in
budding yeast and mammals, but in plants it could include at least one
intermediary; A. thaliana could have a similar regulation because its CC also
presents transcriptional waves in G1/S and G2/M transitions as yeasts and
mammals. After analyzing the two main families of transcription factors
involved in CC regulation: TCP and MYB, we propose MYB77 as a mediator
between E2F and MYB regulation. Using available microarray analyses, we
found that MYB77 shows CC-dependent expression with a peak in M phase.
In addition to having binding sites for E2F, with the identification of the
binding site recognized by MYB77, we can hypothesize that MYB77
regulates MYB3R1/4 and other CC genes.

[39,
71–74]

MYB77 ! E2Fe, KRP1, MYB3R1/4,
CYCB1;1, CYCA2;3, CDKB1;1,
CCS52A2

The sequence CNGTTR identified as a consensus site recognized by
MYB77 was used to find its possible targets among CC core genes. Several
of them are expressed just before G2 to M phase transition.

[75–77]

MYB3R1/4 ! SCF, RBR, CDKB1;1, CYCA2;3,
APC/C, E2Fc, MYB3R1/4, KRP1

The consensus site of MYB3R4 was found in SKP2A, RBR, CDKB1;1,
CYCA2;3, CCS52A2, KRP1, E2Fc, MYB3R1/4 and CYCB1;1 by in silico
analysis described in the Materials and Methods section. In tobacco,
NtmybA1 and NtmybA2 genes have the MSA sequence and they can
regulate themselves. MYB3R1/4 might promote the expression of KRP1,
since KRP1 has a peak of expression in G2/M and has eight putative MSA
elements. CYCB1;1 regulation by MYB3R1/4 also has experimental support.

[40, 78]

CDKB1;1-CYCA2;3 a E2Fa It has been hypothesized that a cause of low levels of E2Fa could be due to
its high turnover rate as result of CDKB1;1 phosphorylation. This E2F factor
has putative CDK-phosphorylation sites in its N-terminal end, and a high
CDK activity inversely correlates with its DNA binding ability in vitro. This
hypothesis is supported by observations in mammalian cells.

[27,
79–81]

APC/C a SCF It was proposed that APC/C and SCF functions are mutually exclusive during
CC progression, which led to the identification of the relationship amongst
them. In proliferating mammal cells, levels of Skp2, a SCF subunit, oscillate
under the pattern of APC/C substrates. Furthermore, the APC/C subunit
Cdh1 participates in the degradation of Skp2 and the reduction of Cdh1
expression stabilizes Skp2. A. thaliana SCF and APC/C seem have the same
roles during CC as their animal counterparts.

[82–85]

A summary of the data led us to propose interactions that have not been previously described for A. thaliana CC. a stands for negative regulation and !
for positive regulation.

doi:10.1371/journal.pcbi.1004486.t001

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 6 / 28

http://arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl
http://web.ecologia.unam.mx/achaos/Atalia/atalia.htm
http://web.ecologia.unam.mx/achaos/Atalia/atalia.htm


analyses were done with Atalia, while stochastic perturbations in random networks to compare
attractor’s robustness were done with BoolNet. For random perturbations made in transitions
between network configurations or in Boolean functions, the “bitflip”method was applied. To
validate the GRNmodel proposed here, we used BoolNet and simulated loss- and gain-of-func-
tion mutations for each node, by skipping the node’s logical rule and setting the respective
gene to “0” and “1”, respectively.

Table 2. Experimental Interactions for the A. thalianaCC Network and their Evidence.

Regulator Target Description of the interaction Refs.

CDKA;1-CYCD3;1 a RBR Studies suggest that complexes formed by CDKA;1 and D-type cyclins phosphorylate RBR. [20, 86–89]

CDKA;1-CYCD3;1 a RBR–
E2Fb

E2Fb–RBR complex diminishes in CYCD3;1 overexpressor line. [90]

CDKA;1-CYCD3;1 a E2Fc CDKA;1 bound to D-type cyclin affects formation of E2Fc-DPb complex and its binding to DNA.
The recognition of E2Fc by the SCF complex depends on phosphorylation mediated by CDKA;1.

[35, 37, 91]

SCF a CYCD3;1 SCF is involved in the ubiquitination required for CYCD3;1 degradation. [92]

SCF a KRP1 SCF ubiquitinates KRP1 to be degraded. [85, 93]

SCF a E2Fc E2Fc shows the accumulation in skp2a mutant (subunit of SCF); the overexpression of SKP2A
reduces levels of E2Fc.

[35, 91]

RBR a E2Fa/b RBR is a negative regulator of E2Fa/b transcriptional activity. [90]

E2Fa ! E2Fb E2Fb transcription is induced in E2Fa overexpressor line. [94]

E2Fa ! E2Fc E2Fc has binding sites for E2F and it is induced in E2Fa-DPa overexpressors. [80, 94]

E2Fa ! RBR Transcriptional control of RBR is under E2Fa transcriptional activity. [95]

E2Fa ! APC/C CCS52A2, a component of APC/C, is induced when RBR-free E2Fa is overexpressed. [90]

E2Fb ! CYCB1;1 CYCB1;1 expression is induced when RBR-free E2Fb increases; targets of E2Fb are genes
needed for G2/M transition.

[79, 80, 90]

E2Fb ! CDKB1;1 Inducible expression of E2Fb promotes CDKB1;1 expression. [79]

E2Fb ! E2Fe E2Fb induces transcription of E2Fe. [96]

E2Fc a CDKB1;1 The effect of E2Fb can be countered by E2Fc; with E2Fc destabilization increments CDKB1;1. [96, 97]

E2Fc a CYCB1;1 CYCB1;1 expression increases when E2Fc expression is silenced; E2Fc overexpression reduces
CYCB1;1 level.

[37]

E2Fc a E2Fa E2Fa messengers increase when E2Fc expression is silenced. [37]

E2Fc a E2Fe E2Fc counteracts the positive effect that E2Fb has in the expression of E2Fe. [96]

E2Fe a APC/C Expression of CCS52A, a subunit of APC/C, is downregulated by E2Fe. [44]

MYB3R1/4 ! CYCB1;1 MYB3R1/4 recognizes the sequence AACGG required for CYCB1;1 expression; other regulators
seem to drive its G2/M-specific expression.

[38, 43]

CDKB1;1 – CYCA2;3 CYCA2;3 interacts with CDKB1;1 to form a functional complex. [25, 27]

CDKB1;1-CYCA2;3 a KRP1 In complex with CYCA2;3, CDKB1;1 could promote KRP1 proteolysis as promotes KRP2
proteolysis; both KRPs could have similar roles in mitosis entry, since both interact with CDKA;1
and are expressed in G2/M.

[21, 27, 78]

CDKB1;1, CDKA;1 – CYCB1;1 B-type cyclins interact with B-type and A-type CDKs. [25, 26]

CDKA;1-CYCB1;1 ! MYB3R1/
4

The overexpression of MYB3R4 enhances the 2-fold activity of its target promoters in comparison
to WT, and the co-expression of MYB3R4 and CYCB1;1 enhances them 4-fold; CycB1 and other
mitotic cyclins enhances the activity of NtmybA2 factors in tobacco.

[40, 98, 99]

KRP1 a CYCD3;1 KRP1 is able to interact with CDKA;1 and CYCD3;1. [29, 93, 100,
101]

KRP1 a CYCB1;1 KRP1 binding to CDKA;1 inhibits the activity of CDKA–CYCB1;1. [30, 100]

APC/C a CYCB1;1 The APC/C complex ubiquitinates CYCB1;1 to be degraded. [102]

APC/C a CYCA2;3 CYCA2;3 is stabilized with loss-of-function mutations in APC/C subunits or with mutations in its D-
box.

[27, 103]

Summary of experimental evidence supporting interactions of A. thaliana CC GRN. a represents negative regulation, ! is for positive and — represents

the formation of functional complex.

doi:10.1371/journal.pcbi.1004486.t002
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Continuous model
For the continuous model, we followed [106, 107]. In the continuous version of the model the
rate of change for each xi node is represented by a differential equation that comprises produc-
tion as well as decay rates:

dxi
dt

¼ �e0:5h þ e�h�ðoiÞ

ð1� e0:5hÞ � ð1þ e�h�ðoi�0:5ÞÞ � gixi ð1Þ

The parameter h determines the form of the curve; when h is very close to 0, the curve
becomes a straight line, while with values close to 100, the curve approximates a step function.
The parameter ωi is the continuous form of Fi(Xi1(t), Xi2(t), . . ., Xik(t)) used in the Boolean
model, and γi is its degradation rate. Detailed information about the continuous model can be
found in S2 Text.

Results

The regulatory network recovers a dynamical model of A. thaliana CC
The CC model proposed here integrates and synthesizes published data for A. thaliana CC
components interactions, as well as some molecular data from other organisms (mammal and
yeast), that we propose as predictions for A. thaliana CC regulation, and assume to be con-
served among all eukaryotes. The whole set of interactions and nodes included in the model
and detailed in Tables 1 and 2 are shown in Fig 1. Four types of molecular interactions can be
distinguished: (i) transcriptional regulation, (ii) ubiquitination, (iii) phosphorylation and (iv)
physical protein-protein interactions. Additionally, an in silico analysis of transcription factors
and promoters was carried out, in order to further substantiate 16 predicted interactions in the
GRN (these are: E2Fb!MYB77; MYB77! E2Fe, MYB3R1/4, KRP1, CYCB1;1, CYCA2;3,
CDKB1;1 and CCS52A2; MYB3R1/4! SCF, RBR, CDKB1;1, CYCA2;3, APC/C, KRP1, E2Fc
and MYB3R1/4). The logical rules are available in S1 Text.

Our results show that the nodes and interactions considered are sufficient to recover a single
robust cyclic steady state, and thus the cyclic behavior of the components considered. Such
behavior closely resembles the periodic patterns observed during actual CC progression, Fig 2.
The first two columns or network configurations match a G1 state, given that during the early
G1 phase, the CDKA;1-CYCD3;1 complex is absent or inactive by the presence of KRP1 [92,
93, 108]. The CDKA;1-CYCD3;1 state is given only by the presence of CYCD3;1 since CDKA;1
is always expressed in proliferative cells [68]. To facilitate understanding, in Fig 2 the complex
CDKA;1-CYCD3;1 is shown instead of only CYCD3;1. The absence of mitotic cyclins
(CYCA2;3 and CYCB1;1) at this stage [28, 38], as well as the APC/C presence until the early
G1 phase, which is needed for the mitosis exit, also coincides with experimental observations
[44, 109, 110]. The presence of the RBR protein in G1-phase implies an inactive state of the
E2F, as expected [33, 111, 112]. Then, the third column resembles G1/S transition, where the
presence of CDKA;1-CYCD3;1 complex would be inducing RBR phosphorylation and its inac-
tivation [32]. In the fourth configuration, the S-phase is represented by RBR inactivation and
E2Fa/b transcriptional activation [113]. In the fifth and sixth configuration, E2Fc state returns
to “ON” but RBR state is kept in “OFF”, which indicates that transcription driven by E2Fa and
E2Fb can still happen. Indeed, the E2Fb factor appears from the fifth configuration and it is
consistent with their function regulating the expression of genes needed to achieve the G2/M
transition. In the sixth configuration, MYB77 is turned on, although in synchronization experi-
ments it has been observed to be on until the beginning of mitosis [73]. During G2-phase the
MYB transcription factors and KRP1 are expressed [31, 73, 93], the former would maintain
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dimers of CDKA;1 and mitotic cyclins inactive; and together, this data is consistent with what
is observed in the seventh configuration of the CC attractor. In the eighth column, KRP1 is lost
because it was phosphorylated by CDKB1;1-CYCA2;3, which is active in the G2/M transition
and the onset of mitosis [27]. The phosphorylation of KRP1 drives its degradation and poste-
rior activation of mitotic complexes such as CDKA;1-CYCB1;1 to trigger mitosis [21, 78] (con-
figuration 9 and 10 in Fig 2). The lack of APC/C at the onset of mitosis is determinant for the
accumulation of the mitotic cyclins, but APC/C presence is necessary for the mitosis exit [110],
which occurs in the eleventh configuration of the attractor (Fig 2). Thus, our CC GRNmodel
recovers a unique attractor of eleven network configurations (Fig 2), which shows a congruent

Fig 1. Regulatory network of the A. thalianaCC. The network topology depicts the proteins included in the model as well as the relationship among them.
Nodes are proteins or complexes of proteins and edges stand for the existing types of relationships among nodes. The trapezoid nodes are transcription
factors, the circles are cyclins, the squares are CDKs, the triangle represent stoichiometric CDK inhibitor, the hexagons are E3-ubiquitin ligase complexes
and the octagon is a negative regulator of E2F proteins. Edges with arrow heads are positive regulations and edges with flat ends illustrate negative
regulations. The red edges indicate regulation by phosphorylation while blue ones indicate ubiquitination, the green ones show physical protein-protein
interactions and the black edges transcriptional regulation. Only CDK-cyclin interactions are not represented with a line. Interactions to or from rhombuses
stand for interactions that involve the CDK as well as the cyclin. A solid line indicates that there is experimental evidence to support such interaction and
dotted lines represent proposed interactions grounded on evidence from other organisms or in silico analysis.

doi:10.1371/journal.pcbi.1004486.g001
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cyclic behavior of its components with that observed experimentally. This result validates that
the proposed set of restrictions converge to a single cyclic behavior, which is independent of
the initial conditions. A further validation of the proposed CC model, would imply that the
recovered cyclic attractor is robust to permanent alterations, as is the case for real CC behavior
that is highly robust to external and internal perturbations [14, 58, 114, 115].

The CC Boolean model is robust to alterations
To provide further validation for the proposed CC regulatory network, we performed robust-
ness analyses of the attractor to four types of alterations in the logical functions of the model.
First, we altered the output of each logical rule by systematically flipping one by one, each one
of their bits. We found that 87.47% of the perturbed networks recovered the original attractor,
while 1.77% of the altered networks maintained the original attractor and produced new ones
(see supplementary material S3 Text for details). In contrast, the remaining 10.76% of alter-
ations reduced the number of network configurations of the original attractor. In the second
robustness analysis, after calculating the transitions between one network configuration to the
next one, one bit (i.e. the state of a node) of this next configuration is randomly chosen and its
value changed. Then, the network is reconstructed and its attractors recovered again. This pro-
cedure was repeated 100 times, thus we found that in 88.2 ± 3.2 out of the 100 perturbations
(mean ± SD) the original attractor was reached. These results suggest that the proposed GRN
for A. thaliana CC is robust to alterations as expected and in coincidence with previous GRN
models proposed for other developmental processes [116, 117].

To confirm that the robustness recovered in these two types of analyses is a specific property
of the network under study, we performed robustness analyses of randomly generated

Fig 2. Attractor corresponding to a dynamic network of CC in A. thaliana. 100% of the whole set of network configurations converges to a unique
attractor composed by 11 configurations. Each column is a network configuration (state of each network component) and the rows represent the state of each
node during CC progression. The squares in green indicate components that are in an “ON” state and the ones in red are nodes in an “OFF” state.

doi:10.1371/journal.pcbi.1004486.g002
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networks with similar structures (same number of input interactors for the logical functions)
to the one proposed here for the A. thaliana CC regulatory network, and compared the above
robustness analyses results to those recovered for equivalent analyses for the random networks.
We generated 1000 random networks. Then, 100 copies of the random and of our network
were done. In each copy we randomly flipped the value of one bit in one logical function (to
confirm the first robustness analysis), or in one next configuration (for the second robustness
analysis). When perturbations are made in logical functions, the A. thaliana CC GRN recovers
its attractor in 68% of perturbations, while the median of percentage of cases in which such
attractor was recovered in the random networks was only 18.55% (mean 19.12% ± 13.86 SD,
Fig 3A). The difference between the 68% of this latter analysis and the 87.47% of the first
robustness analysis could be due to sampling error. If transitions between network configura-
tions are perturbed, the median of original attractors recovered in random networks is 24.2%
(mean 24.6% ± 18.2 SD). In contrast, the original attractor of A. thaliana CC GRN was found
in 88% of perturbed networks starting with that grounded on experimental data (Fig 3B).
These results confirm that the CC GRN proposed here is much more robust than randomly
generated networks with similar topologies and suggests that its robustness is not due to overall
structural properties of the network.

Boolean models can produce cyclic dynamics as an artifact due to their discrete nature and
the time delays implied. To address this issue we approximated the Boolean model to a contin-
uous system of differential equations following [106, 107, 118, 119]. To recover steady states of
such continuous system, the continuous versions of the GRN were evaluated for 1000 different
randomly picked initial conditions (See S2 Text). In all cases and independently of the method-
ology (i.e. [106, 107] or [118, 119]), we recovered the same limit cycle steady state. In the con-
tinuous model, key cyclins for the main phase transitions, CYCD3;1 and CYCB1;1, have an
oscillatory behavior that is not attenuated with time (Fig 4). Importantly, this result is robust to
changes in the decay rates or alterations of the h parameter that affects the shape of activation
function (see details in S2 Text); the limit cycle was recovered in 92.86% of the cases. The
results of the continuous model corroborate that the limit cycle attractor recovered by the Bool-
ean version, is not due to an artifact associated to the discrete and synchronous nature of the
Boolean model, but is rather an emergent property of the underlying network architecture and
topology. In addition, the recovery of the cyclic behavior of the continuous model constitutes a
further robustness test for the Boolean model.

Previous studies have also tested asynchronous updating schemes [46]. In this study we have
used a continuous form of the model to discard that the recovered cyclic attractor is due to an
artifact owing to the discrete and synchronous nature of the model used. Future studies could
approach analyses of asynchronous behavior of the model by devising some priority classes dis-
tinguishing fast and slow processes, and thus refining the asynchronous attractor, under a plausi-
ble updating scheme. On the other hand, biological time delays may be involved in CC
progression, but they are not enough for irreversibility. The CC unidirectionality has been pro-
posed to be a consequence of system-level regulation [120], here we hypothesize that the ordered
transitions of A. thaliana CC are an emergent property of network architecture and dynamics.

Simulated loss- and gain-of-function mutants recover observed patterns:
normal CC and endocycle
An additional validation analysis for the proposed A. thaliana CC model implies simulating
loss- and gain-of-function mutations and comparing the recovered attractors with the expres-
sion profiles documented experimentally for each mutant tested. We simulated mutants by fix-
ing the corresponding node to 0 or 1 in loss- and gain-of-functions mutations, respectively.
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Fig 3. Attractor robustness analysis. Random networks with similar structure to A. thalianaCCGRNwere
less tolerant to perturbations than original CC GRN. The frequency of perturbations that recovered the
original attractor after a perturbation in the Boolean functions, is shown in: (A), where the red line indicates
that A. thaliana CCGRN recovers its original attractor in 68% of perturbations (the median of random
networks was 18.55% and mean 19.12% ± 13.86 SD). When transitions between network configurations are
perturbed (B), A. thaliana CCGRN recovers its original attractor in 88% (vertical red line) of perturbations,
while the median of random networks that recover the original attractor was 24.2% (mean 24.6% ± 18.2 SD).
Vertical blue line indicates the 95% quantile. 1000 random networks were analyzed.

doi:10.1371/journal.pcbi.1004486.g003

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 12 / 28



The recovered altered configurations are summarized in S4 Text, and in Table 3 as well as in
Table 4 for gain- and loss-of-function mutants, respectively. The simulated mutant attractors
are coherent with experimental data in most cases [2, 21, 23, 30, 35, 37, 43, 44, 76, 79, 80, 88,
90–93, 103, 108, 109, 111, 113, 114, 121–129]. In Fig 5 we show a representative example of
attractors recovered by simulations of CDKB1;1 and KRP1 loss-of-function and APC/C and
E2Fa gain-of-function mutants. It is noteworthy that several simulated mutants, such as
mitotic cyclins or B-type CDK loss-of-function, converge to a cyclic attractor that corresponds
to the configuration observed under an endoreduplicative cycle (e.g. Fig 5A). In such attractors,
endoreduplication inductors, such as APC/C, KRP1 and E2Fc [37, 78, 130] are present, at least
in some network configurations (Fig 5A, 5C and 5D-right). Another outstanding feature of
these mutant attractors is that, although mitotic CDK-cyclin complex may be present, it is
inhibited by KRP1, therefore there is no CDK-cyclin activity to trigger the onset of mitosis.
These data are coincident with the reported regulation during the onset of endoreduplication
[21]. In the attractors where E2Fa coincides with alternating states of RBR, it suggests that
DNA replication may occur (Fig 5). Likely due to plant redundancy, some mutations do not
produce an obvious impaired phenotype. Such is the case of KRP1 loss-of-function, in which
loss-of-function simulation, a cyclic attractor identical to the original one is recovered, as is
expected (see Table 4), because such mutants do not show an evident altered CC behavior (Fig
5B) [93].

Interestingly, the simulation of a constitutively active APC/C also converges to a single
cyclic attractor, which corresponds to an endoreduplication cycle, since it has Gap and S
phases, but lacks an M-phase configuration. This coincides with the experimental observation
that the overexpression of one of the APC/C subunits (CCS52A) promotes entry to an endo-
cycle [44] (see Table 3). Another interesting example is the gain-of-function mutation of E2Fa
that yields two cyclic attractors, one corresponding to the normal CC cycle and the other one

Fig 4. Continuous version of the A. thaliana CCBooleanmodel. In this graph we show the activity of the CDKA;1-CYCD3;1 and the CDKA;1-CYCB1;1
complexes as a function of the amount of cyclins, and KRP1 inhibitor. The CDK-cyclin activity is the limiting factor to pass the G1/S and the G2/M
checkpoints. A little more than two complete CC are shown (upper horizontal axis) to confirm that oscillations are maintained.

doi:10.1371/journal.pcbi.1004486.g004
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to an endocycle (Table 3). It has been shown that this gene is required for both processes [111]
that are apparently exclusive, although in both processes the DNA replication occurs and
among E2Fa targets there are genes required for S-phase. Thus our model suggests that the reg-
ulation of E2Fa at the end of G2 phase is decisive for CC exit and transition to endoreduplica-
tion. In this E2Fa gain-of-function simulation, we found an inconsistency with APC/C because
this E3 ubiquitin ligase is decisive for endoreduplication, while in the simulated attractor is
only present in one network configuration (Fig 5D-right). Such behavior observed in the
endoreduplication attractor for E2Fa gain-of-function leads to unstable activity in the CDK-
cyclin complex (Fig 5D), thus suggesting that the increase in APC/C is required for endoredu-
plication entry as well as its progression. In the attractor of the simulated APC/C gain-of-func-
tion, the states of the CYCD3;1, SCF, E2Fb, E2Fc and MYB nodes are more stable than in

Table 3. Phenotypes of gain-of-function mutations in CC components.

Node Phenotypes of gain of function Recovered attractor(s) Refs. Model

CYCD3;1 Inhibition of CC exit, increases division zones and ectopic
divisions. Decreases G1 phase duration and increases G2
duration. Delays expression of G2/M genes.

Fixed-point attractor of G2-phase. [108,
121]

PA

SCF SKP2A gain-of-function enhances proliferation, and
increases number of cells in G2/M and ploidy levels
decrease.

Oscillates between G1 and S. [122,
123]

NR

RBR CC arrest, cells in root apical meristem lose CYCB1;1
expression; in rice, the number of cells synthesizing DNA
decrease.

Fixed-point attractor characterizing G1 arrest. [2, 88] A

E2Fa Mitosis and endoreduplication are promoted. One attractor comprising 40.48% of initial conditions that
is a WT CC. The other closely resembles an endocycle
but APC/C activity is lower (59.52% of configurations).

[111,
113]

A

E2Fb Cell division is induced but endoreduplication is suppresed;
CC duration and cells are shorter, and the amount of S-
phase transcripts increases.

Similar to WT but with a shorter S phase. [79, 80] A

E2Fc Overexpression of a non-degradable form of E2Fc leads to
larger cells or a lack of division.

Fixed-point attractor where only E2Fc and CYCD3;1 are
present, congruent with a CC-arrest.

[35] PA

E2Fe Reduces ploidy levels. CC arrest in M phase. [44] PA

MYB77 Plants are stunted but there is no information about how CC
could be affected.

CC arrest in a mitotic state. [76] -

MYB3R1/
4

No available data about how it could alter cell division. Two fixed-point attractors of CC arrest at early G1 phase,
state of E2Fa varies among them.

- -

CYCB1;1 Root growth enhanced, slightly small cells. WT CC [124] A

CDKB1;1 Does not seem to affect CC behavior. WT CC [125] A

CYCA2;3 Not enough to produce multicellular trichomes but the
proportion of polyploid cells is less.

WT CC [103] A

KRP1 CC arrest and inhibition of cell proliferation, G2 phase is
longer; a weak overexpression of KRP2 led to an increment
in DNA ploidy.

Attractor with period 2 oscillating between G1 and G1/S
transition.

[21, 30,
126]

PA

APC/C Gain-of-function of APC/C subunit CCS52A2 enhanced
endoreduplication entry; more cells with increased DNA
ploidy.

Cyclic attractor pointing to endocycle. [44] A

Summary of mutant phenotypes and recovered attractors simulating that mutation. A means that the result of simulation is in Agreement with the data

available in the reference(s). PA means it is Partially Agrees with evidence, because not all expected traits were reproduced by the attractor but this does

not contradict the mutant phenotype. NR are attractors that do not make sense with expected behavior and therefore, the model did Not Recover the

mutant phenotype.

doi:10.1371/journal.pcbi.1004486.t003
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endoreduplication attractors of CDKB1;1 loss-of-function or E2Fa gain-of-function, where
E2Fb, E2Fc and MYB factors expression states alternate between “ON” and “OFF” (Fig 5).

We highlight APC/C gain-of-function simulations, as it provides a possible mechanism for
plant hormones action over the CC machinery and, thus how such key morphogens regulate
cell proliferation patterns. Recently, Takahashi and collaborators reported a direct connection
between cytokinins and CC machinery in A. thaliana root [131]. The authors showed that
ARR2, a transcriptional factor of cytokinins signaling, induces expression of APC/C activator
protein CCS52A1. Our simulated APC/C gain-of-function is congruent with that observation,
since it reproduces the configuration attained by a cell entering an endocycle when APC/C
activity is enhanced (Fig 5C), as it happens at the elongation zone of A. thaliana root. There-
fore, our model is able to recover the attractors of loss- and gain-of-function mutant pheno-
types reported experimentally, and it thus provides a mechanistic explanation for observed
patterns of expression in both normal CC and during endoreduplication cycles or endocycle.

Table 4. Phenotypes of loss-of-function mutations in CC components.

Node Phenotypes of loss of function Recovered attractor(s) Refs. Model

CYCD3;1 When this cyclin is depleted by sucrose starvation, cells are
arrested in G1 phase; in adult leaves, triple mutant of
cycd3;1–3 led to a diminished number of cells.

Period 2 oscillating between G1 and G1/S transition. [23,
92]

A

SCF Plants with a diminished level of SKP2 do not show obvious
affected development but KRP1 is accumulated.

Similar to a normal CC but endoreduplication would be
favored by the KRP1 stabilization.

[93] A

RBR Proliferation is promoted and cell differentiation is impaired;
downregulation of RBR in rice promotes an increase of cells
in S-phase.

One attractor of a normal CC (includes 81.98% of possible
configurations) and other attractor oscillates among
G2-S-G2 (18.02% of configurations).

[127] A

E2Fa Expression of E2Fb, RBR and other CC regulators decrease;
more cells in G1 and G2 with respect to WT.

Fixed-point attractor with E2Fe and CYCD3;1 present
suggesting an arrest in a Gap phase.

[90] PA

E2Fb Without information. Fixed-point attractor representing the G1/S transition. - -

E2Fc Mitotic proteins such as CYCB1;1 have increased
expression, ploidy is reduced.

Fixed-point attractor of M phase arrest. [37,
91]

PA

E2Fe Increased endoreduplication. Attractor of endoreduplication (period 7). [44] A

MYB77 Lower density of lateral roots, inconclusive data to evaluate
simulation.

CC of seven configurations. [76] -

MYB3R1/
4

Lower levels of G2/M transcripts, incomplete cell division,
some embryos only have one cell with multiple nuclei.

2 attractors, the first seems a three-configurations
endocycle, and the second is a CC of seven configurations
where APC/C is always absent.

[43] A

CYCB1;1 Cyclin widely used as a marker of cell proliferation, its
absence is associated with differentiated cells.

Attractor characterizing endocycle (period 8), intriguingly
APC/C is never present.

[128] -

CDKB1;1 Overexpression of a dominant negative allele leads to
enhanced endoreduplication.

Attractor of endoreduplication (period 11). [129] A

CYCA2;3 In null mutants, cells with 2C DNA content decreases before
than in WT, endocycles begin before and are faster than in
WT.

Attractor which is an endocycle (period 7). [103] PA

KRP1 No evident phenotypic effects observed but relative kinase
activity increases to 1.5 in relation to WT.

A CC without alterations. [114] A

APC/C Loss of CCS52A2 function (activator subunit of APC/C)
produces a decrement in the number of meristematic cells
without affecting endoreduplication index; cells in quiescent
center become mitotically active.

Fixed-point attractor of a CC arrest previous to conclude
mitosis.

[109] PA

Summary of mutant phenotypes and recovered attractor when that mutation was simulated. Abbreviations in Model column are as in Table 3.

doi:10.1371/journal.pcbi.1004486.t004
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Plant E2Fc and KRP1: validation of A. thaliana CCGRN
We test if the CC GRN recovers the periodic patterns observed in synchronization experiments
of A. thaliana CCmolecular components. Interestingly, the E2Fc repressor and KRP1 are regu-
lators that have two short lapses of expression in the attractor recovered in the continuous
model (Fig 6), and experimentally they also show two peaks of expression when synchronized
with aphidicolin [74]. In such synchronization experiments, the expression of E2Fc increases

Fig 5. Attractors recovered by simulations of loss- or gain-of-functionmutants of four CC components. (A) The simulation of loss of CDKB1;1
function produced only one cyclic attractor with period 7 that resembles G1! S!G2!G1 cycle, whereas in (B) with simulation of loss of KRP1 function,
one cyclic attractor was attained, which has period 11 and comprises 100% of the initial conditions. This attractor is almost identical to WT phenotype but
without KRP1. With the simulation of APC/C gain-of-function, a single attractor with period 7 was recovered, which is shown in (C) and is consistent with an
endoreduplication cycle. Attractors obtained with the simulation of E2Fa overexpression are shown in (D). Two attractors were found, one of them has period
10 and the 40.48% of the initial conditions converge to that cycle that is closely similar to theWT CC attractor. The second attractor that correspond to E2Fa
overexpression has period 8 and it is very similar to the endoreduplication attractor of loss of CDKB1;1 function, which comprises 59.52% of possible network
configurations.

doi:10.1371/journal.pcbi.1004486.g005
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from late S to middle G2, but then it decreases dramatically in late G2. In the model, E2Fc
appears from S to G2 phase, and then a second increment of E2Fc expression in G2/M is
observed. The latter correspondence is a further validation of the CC GRNmodel proposed
here. Furthermore, synchronization experiments using sucrose have shown that KRP1 is
expressed previous to G1/S transition and before mitosis [132], in a similar way that occurs in
the model. More recently it has been proposed that KRP1 has a role during G1/S and G2/M
transitions [93]; the latter should be important for endoreduplication control [78]. Once again,
such roles and expression profiles are consistent with the recovered active state of KRP1 in our
model.

In contrast with the consistent behaviors of E2Fc and KRP1 components to recovered
results with our model, E2Fe results do not coincide with previous observations. In our model
this E2F factor presents only one peak from S to early M phase, but according to synchroniza-
tion experiments [69], E2Fe has two peaks of expression. One of its peaks is due to regulation
by other E2F family factors during S phase, while the G2/M peak could be due to MSA ele-
ments. Indeed, when the regulatory motifs for E2F binding are deleted from E2Fe, it can still be
expressed although at lower levels [96], suggesting that additional transcription factors regulate
its expression. Such factors could belong to the MYB family as suggested for the A. thaliana
CC GRN proposed here.

Discussion
The canonical cyclic behavior of eukaryotic cells as they go from DNA duplication to cytokine-
sis suggests that a conserved underlying mechanism with shared molecular components and/
or regulatory logic should exist. While yeast and animal CC have been thoroughly studied and
modelled, plant CC is less studied and no comprehensive model for it has been proposed.

In this study we put forward a Boolean model of the A. thaliana CC GRN. We show that
this model robustly recovers a single cyclic attractor or steady state with 11 network configura-
tions. Such configurations correspond to those observed experimentally for the CC compo-
nents included here at each one of the CC stages. In addition, the canonical order of sequential
transitions that is recovered also mimics the observed temporal pattern of transition from one

Fig 6. Dynamical behavior of E2Fc and KRP1 according to the continuous model. These nodes were chosen by their peculiar pattern of expression,
which was qualitatively recovered by the Boolean and continuous models.

doi:10.1371/journal.pcbi.1004486.g006
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configuration to another one along the CC (Fig 2). The fact that the 16,384 initial conditions of
the proposed system converge to this single cyclic attractor already suggests that the GRN com-
prises a robust module that integrates the necessary and sufficient set of components and inter-
actions to recover molecular oscillations experimentally observed. The proposed GRN is also
robust to alterations, being similarly robust to previously published models for other cell differ-
entiation or developmental modules [116, 117, 133]. The model is validated because it recovers
A. thaliana wild type and altered (in gain- and loss-of-function) configurations and cycling
behaviors. The comparison between experimentally observed and recovered gene configura-
tions is summarized in Tables 3 and 4.

Some cyclins such as CYCD3;1 and CYCB1;1, important components during G1/S and G2/
M transitions, show a mutually exclusive regulation, as occurs in a predator-prey Lotka-Vol-
terra dynamical system [134], even though they do not interact directly. Their mutual exclu-
sion is achieved thanks to the coordinated expression of genes with specific proteolytic
degradation capacity. Our cyclic attractor shows two transcriptional periods, one of them in S-
phase regulated by E2F-RBR pathway, and the second one operating at a time previous to M-
phase and regulated by MYB transcription factors. The SCF and APC/C ubiquitin ligases work
during G2-to-M phases, and during mitosis exit, respectively. Therefore, the fourteen nodes
and their interactions proposed in the CC GRN constitute a necessary and sufficient set of
restrictions to recover the oscillations of node states characteristic of CC phases.

Two alternative possibilities could drive CC progression in actual organisms. The first
would imply that transitions from one CC state to the next would require external cues, like
the cell size. The alternative possibility is that CC progression and the temporal pattern of tran-
sitions among stages are both emergent consequences of an underlying complex regulatory
network, and do not require external cues, or these only reinforce such temporal progression
emergent from complex underlying regulatory interactions. Our CC GRNmodel supports the
latter. This does not imply that several internal or external signals or molecules, such as hor-
mones or other types of cues could alter the CC. Therefore, the two alternative possibilities are
not exclusive but they likely complement or enhance each other. Indeed, A. thaliana CC is reg-
ulated by plant hormones, light, sucrose, osmotic stress [135] or oxidative stress [136]. These
could now be modelled as CC modulators.

In the model proposed here we avoided redundancy. For instance, the KRP1 node repre-
sents the KRP family members that share several functions. Also the metaphase-anaphase tran-
sition could be added to the model when more data about APC/C regulation (i.e. negative
feedback loop comprising CDK-cyclin complexes, or the regulation of Cdc20 homologues)
becomes available in plants. Apparently, these simplifications did not disrupt the main features
of the A. thaliana CC, since the cyclic behavior distinctive of the CC components was correctly
recovered.

Amechanistic model for the A. thaliana CC: novel predictions
Our proposed GRN model suggests some predictions regarding the regulation of certain CC
components in A. thaliana. Such predictions can be classified into two types. The first type per-
tains to those recovered by in silico promoter analysis. The predictions of the second type were
inferred from data of other eukaryotes, because they seem to imply conserved components and
some evidence from A. thaliana suggested that these interactions are part of the CC GRN in A.
thaliana. Three interactions belong to the second type, E2Fb! SCF, CDKB1;1-CYCA2;3 a
E2Fa and APC/C a SCF (see Table 1 for a synthesis of hypothetical interactions). Although
some evidence supports the idea that these interactions could exist in A. thaliana, they should
be corroborated with additional experimental examination.
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Our model provides a dynamic explanation to the cyclic behavior of certain transcription
factors and predicts a novel interaction for E2F and MYB regulators; they connect waves of
periodic expression that seem to be key for the robust limit cycle attractor that characterizes
CC behavior. Interestingly, previous studies have shown that such periodic transcription can
be maintained even in the absence of S-phase and mitotic cyclins [4], which underpin the role
of a transcription factor network oscillator for the correct CC progression [137]. A regulatory
interaction between E2F and MYB factors (or among the equivalent regulators) may be con-
served among other eukaryotes (e.g. mammals and yeast), but there is no experimental support
yet for it in A. thaliana. After looking for the same direct evidence in A. thaliana and not find-
ing it, we thought about an alternative regulatory mechanism that consists in transcription fac-
tors acting between E2F and MYB. Hence, we decided to analyze the important transcription
factor families known so far, to find out if one of their members could be mediating the regula-
tion between E2F and MYB. The TCP (for Teosinte branched 1, Cycloidea, PCF) and the MYB
family were chosen because they have been reported to be involved in CC regulation [42].
Based on their gene expression patterns and promoter sequence analysis, MYB77 was our best
candidate: it is expressed at the beginning of M phase, and could be regulated by E2F and regu-
lator of MYB (see Table 1). A second possibility might be that several tissue-specific transcrip-
tion factors are involved in E2F-MYB genetic regulation (e.g. GL3, MYB88, SHR/SCR [17],
MYB59 [138] or even members of the MADS box gene family could be implied). Indeed, we
have recently documented that a MADS-box gene, XAL1, encodes a transcription factor that
regulates several CC components (García-Cruz et al., in preparation).

A. thaliana CC in comparison to animal and yeast CC
Differences among eukaryotic CCs allow us to recognize or characterize alternative mecha-
nisms for the regulation of CC. The first difference between GRN of A. thaliana CC and that of
other eukaryotes, concerns the number of duplicates of some key regulators. A. thaliana has up
to ten copies of some of the genes that encode for CC regulators (e.g. families of cyclins or
CDK), while yeast, mammals or the algae Ostreococcus tauri, have much fewer duplicates [20,
139–141]. The only exception concerns the homologues of Retinoblastoma protein, of which
there are three members in humans and mouse, and only one copy in A. thaliana [127]. Future
models should address the explicit role of CC duplicated components in the plastic response of
plant development to environmental conditions. Being sessile, such developmental adjust-
ments, as plants grow under varying environments, are expected to be more important, com-
plex and dynamic than in motile yeast and animals. One possibility is that different members
of the same gene family are linked to different transduction pathways of signals that modulate
CC dynamics.

The second difference among A. thaliana and other CC was regarding the transcriptional
regulation throughout the GRN underlying it. For instance, S. cerevisiae does not have RBR or
E2F homologues, but instead has Whi5, Swi4,6 and Mbp1 proteins which perform equivalent
regulatory functions to the former CC components [142, 143]. S. cerevisiae does not have any
MYB transcription factors but it presents other transcriptional regulators, such as Fkh1/2,
Ndd1 and Mcm1 [142, 144, 145], which regulate the G2/M transition in a similar way to MYBs
in mammals.

Contrary to the conservation in G1/S transition [15, 67], molecular components controlling
G2/M transition seem to vary among different eukaryotes. It seems that molecules such as
WEE1 kinase and CDC25 phosphatase are not conserved. In A. thaliana, CDC25-like has
phosphatase and arsenate-reductase functions [146], while A. thalianaWEE1 phosphorylates
monomeric CDKA;1 in vitro [147], and Nicotiana tabacumWEE1 inhibits CDK activity in
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vitro [148]. However the lack of any obvious mutant phenotype of CDC25 or WEE1 loss-of-
function mutants predicts that these genes are not involved in the regulation of a normal CC.
Additionally, although WEE1 has a role during DNA damage [146, 149], does not seem to
have a CDKA;1 recognition domain [150]. CDC25-like does not have the required sites for
CDKA;1 recognition [150]. In summary, the positive regulatory feedback between CDKA;1
and CDC25-like, as well as the mutual-inhibitory feedback loop between CDKA;1 and WEE1,
seem not to be conserved in A. thaliana.

Given all that evidence for G2/M regulation, we integrated the regulatory interactions
between stoichiometric CDK inhibitor (KRP1), B-type plant specific CDK and MYB transcrip-
tional factors. It is not surprising that there are clear differences between plant G2 phase regula-
tion and that of other organisms, because variations in this control point could define cell fate.
Although differences among the A. thaliana CC GRN uncovered here and that of yeasts and
animals have now become clear, we think that the basic regulatory CC module reported here,
will be a useful framework to incorporate and discover new components of the CC GRNs in
plants and also in other eukaryotes.

Despite the fact that our CC GRNmodel recovers observed CC stage configurations and
their canonical pattern of temporal transitions, it did not recover an alternative attractor that
corresponds to the endocycle. We hypothesize that the same multi-stable GRN underlies both
states, and additional components yet to be connected to the CC GRN will ensure a cyclic
attractor corresponding to the complete CC, and another one with shorter period correspond-
ing to the endocycle. In its present form, our model suggests that CYCD3;1 function, which
has been associated with the proliferative state [108] and with a delay in the endocycle onset
[23], is important to enter the endocycle. Besides, it also has been reported that CYCD3;1 plays
a role in G1/S transition [121] and regulates RBR protein during DNA replication [89]. Fur-
thermore, the endoreduplication attractor obtained in some of our mutant simulations (e.g. Fig
5A, 5C and 5D-right) also supports the role of CYCD3;1 in entering an endocycle.

The GRNmodel of A. thaliana CC could help to identify physiological or developmental
interactions involved in the tight relationship between proliferation and differentiation observed
during different stages of development [1, 88, 108, 109, 126]. Previous to cell division, the cell
senses its intracellular and environmental conditions to arrest or promote CC progress. Such
cues directly affect the CCmachinery, which does not depend on a master or central regulator.

CC control is the result of a network formed by feedback and feedforward loops between
complexes of CDK-cyclin and its regulators. It is not evident how complex dynamical processes
such as CC progression emerge from simple interactions among components acting simulta-
neously. The proposed CC GRN will be very helpful to study how cell proliferation/differentia-
tion decisions and balance keeps a suitable spatio-temporal control of CC during plant growth
and development.

Supporting Information
S1 Text. Logical rules of A. thaliana CC Boolean model.
(PDF)

S2 Text. Equations, parameters, analysis of parameters and initial conditions of the contin-
uous version of A. thaliana CCmodel.
(PDF)

S3 Text. New recovered attractors by robustness analysis. Additional attractors yielded by
making alterations in each bit of logical functions.
(PDF)

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 20 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004486.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004486.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004486.s003


S4 Text. Attractors obtained in the simulation of mutant phenotypes.
(PDF)

Acknowledgments
The present manuscript is part of EOG’s PhD thesis in the Graduate Program in Biomedical
Sciences of the Universidad Nacional Autónoma de México (UNAM). EOG acknowledges the
scholarship and financial support provided by Consejo Nacional de Ciencia y Tecnología of
Mexico (CONACyT). This work greatly benefited from input provided by Dr. Joseph G.
Dubrovsky. We also thank Elizabeth Gilbert for editing previous versions of the paper; remain-
ing errors are our responsability. We acknowledge the help from Diana Romo with various
logistical and technical tasks.

Author Contributions
Analyzed the data: AC EA EOG ERABMPS KGC. Wrote the paper: EOG ERABMPS. Con-
ceived and coordinated the study and established the overall logic and core questions to be
addressed: ERAB Conceived and planned the modeling approaches and specific analyses to be
done: EOG ERAB Recovered all the information from the literature: AC EA EOGMPS KGC
Established the logical functions: EA EOG Programmed and ran all the modeling and analyses:
EA EOG.

References
1. Ramirez-Parra E, Desvoyes B, Gutierrez C. Balance between cell division and differentiation during

plant development. Int J Dev Biol. 2005; 49:467–77. doi: 10.1387/ijdb.052001er PMID: 16096957

2. Dudits D, Abrahám E, Miskolczi P, Ayaydin F, Bilgin M, Horváth GV. Cell-cycle control as a target for
calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-cen-
tred pathway. Ann Bot. 2011 5; 107(7):1193–202. doi: 10.1093/aob/mcr038 PMID: 21441245

3. Ubeda-Tomas S, Beemster GT, Bennett MJ. Hormonal regulation of root growth: integrating local
activities into global behaviour. Trends Plant Sci. 2012;.

4. Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES, et al. Global control of cell-cycle
transcription by coupled CDK and network oscillators. Nature. 2008 6; 453(7197):944–7. doi: 10.
1038/nature06955 PMID: 18463633

5. Azpeitia E, Benítez M, Padilla-Longoria P, Espinosa-Soto C, Alvarez-Buylla ER. Dynamic network-
based epistasis analysis: Boolean examples. Front Plant Sci. 2011; 2(92). doi: 10.3389/fpls.2011.
00092 PMID: 22645556

6. Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology: an overview of methodology
and applications. Phys Biol. 2012 10; 9(5):055001. doi: 10.1088/1478-3975/9/5/055001 PMID:
23011283

7. Tyson JJ, Novak B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and
irreversible transitions. J Theor Biol. 2001; 210(2):249–63. doi: 10.1006/jtbi.2001.2293 PMID:
11371178

8. Guardavaccaro D, Pagano M. Stabilizers and destabilizers controlling cell cycle oscillators. Mol Cell.
2006; 22(1):1–4. doi: 10.1016/j.molcel.2006.03.017 PMID: 16600864

9. Zhang T, Schmierer B, Novak B. Cell cycle commitment in budding yeast emerges from the coopera-
tion of multiple bistable switches. Open Biol. 2011; 1(3). doi: 10.1098/rsob.110009 PMID: 22645649

10. Kapuy O, He E, Lopez-Aviles S, Uhlmann F, Tyson JJ, Novak B. System-level feedbacks control cell
cycle progression. FEBS Lett. 2009; 583(24):3992–8. doi: 10.1016/j.febslet.2009.08.023 PMID:
19703449

11. Ingolia N. Cell cycle: bistability is needed for robust cycling. Curr Biol. 2005 12; 15(23):R961–3. doi:
10.1016/j.cub.2005.11.012 PMID: 16332526

12. Pomerening JR, Kim SY, Ferrell JE. Systems-level dissection of the cell-cycle oscillator: bypassing
positive feedback produces damped oscillations. Cell. 2005 8; 122(4):565–78. doi: 10.1016/j.cell.
2005.06.016 PMID: 16122424

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 21 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004486.s004
http://dx.doi.org/10.1387/ijdb.052001er
http://www.ncbi.nlm.nih.gov/pubmed/16096957
http://dx.doi.org/10.1093/aob/mcr038
http://www.ncbi.nlm.nih.gov/pubmed/21441245
http://dx.doi.org/10.1038/nature06955
http://dx.doi.org/10.1038/nature06955
http://www.ncbi.nlm.nih.gov/pubmed/18463633
http://dx.doi.org/10.3389/fpls.2011.00092
http://dx.doi.org/10.3389/fpls.2011.00092
http://www.ncbi.nlm.nih.gov/pubmed/22645556
http://dx.doi.org/10.1088/1478-3975/9/5/055001
http://www.ncbi.nlm.nih.gov/pubmed/23011283
http://dx.doi.org/10.1006/jtbi.2001.2293
http://www.ncbi.nlm.nih.gov/pubmed/11371178
http://dx.doi.org/10.1016/j.molcel.2006.03.017
http://www.ncbi.nlm.nih.gov/pubmed/16600864
http://dx.doi.org/10.1098/rsob.110009
http://www.ncbi.nlm.nih.gov/pubmed/22645649
http://dx.doi.org/10.1016/j.febslet.2009.08.023
http://www.ncbi.nlm.nih.gov/pubmed/19703449
http://dx.doi.org/10.1016/j.cub.2005.11.012
http://www.ncbi.nlm.nih.gov/pubmed/16332526
http://dx.doi.org/10.1016/j.cell.2005.06.016
http://dx.doi.org/10.1016/j.cell.2005.06.016
http://www.ncbi.nlm.nih.gov/pubmed/16122424


13. Charvin G, Oikonomou C, Siggia ED, Cross FR. Origin of irreversibility of cell cycle start in budding
yeast. PLoS Biol. 2010 1; 8(1):e1000284. doi: 10.1371/journal.pbio.1000284 PMID: 20087409

14. Yao G, Tan C, West M, Nevins JR, You L. Origin of bistability underlying mammalian cell cycle entry.
Mol Syst Biol. 2011; 7:485. doi: 10.1038/msb.2011.19 PMID: 21525871

15. Cross FR, Buchler NE, Skotheim JM. Evolution of networks and sequences in eukaryotic cell cycle
control. Philos Trans R Soc Lond B Biol Sci. 2011; 366(1584):3532–44. doi: 10.1098/rstb.2011.0078
PMID: 22084380

16. Jensen LJ, Jensen TS, de Lichtenberg U, Brunak S, Bork P. Co-evolution of transcriptional and post-
translational cell-cycle regulation. Nature. 2006 10; 443(7111):594–7. PMID: 17006448

17. Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues.
Plant Cell Physiol. 2012 6; 53(6):953–64. doi: 10.1093/pcp/pcs070 PMID: 22555815

18. Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, et al. A- and B-type cyclins differentially
modulate substrate specificity of cyclin-cdk complexes. EMBO J. 1993 5; 12(5):1947–54. PMID:
8491188

19. Nieuwland J, Scofield S, Murray JAH. Control of division and differentiation of plant stem cells and
their derivatives. Semin Cell Dev Biol. 2009 12; 20(9):1134–42. doi: 10.1016/j.semcdb.2009.09.011
PMID: 19770062

20. Inzé D, De Veylder L. Cell cycle regulation in plant development. Annu Rev Genet. 2006; 40:77–105.
doi: 10.1146/annurev.genet.40.110405.090431 PMID: 17094738

21. Verkest A, Manes CL, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, et al. The cyclin-
dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis
leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell. 2005; 17
(6):1723–36. doi: 10.1105/tpc.105.032383 PMID: 15863515

22. Beemster GT, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, et al. Genome-
wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of
Arabidopsis. Plant Physiol. 2005 6; 138(2):734–43. doi: 10.1104/pp.104.053884 PMID: 15863702

23. Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, et al. Arabidopsis CYCD3
D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc
Natl Acad Sci U S A. 2007; 104(36):14537–42. doi: 10.1073/pnas.0704166104 PMID: 17726100

24. Boruc J, Inze D, Russinova E. A high-throughput bimolecular fluorescence complementation protein-
protein interaction screen identifies functional Arabidopsis CDKA/B-CYCD4/5 complexes. Plant Sig-
nal Behav. 2010; 5(10):1276–81. doi: 10.4161/psb.5.10.13037 PMID: 20861687

25. Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, et al. Targeted interac-
tomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol. 2010;
6:397. doi: 10.1038/msb.2010.53 PMID: 20706207

26. Weingartner M, Criqui MC, Meszaros T, Binarova P, Schmit AC, Helfer A, et al. Expression of a non-
degradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation
of a phragmoplast. Plant Cell. 2004; 16(3):643–57. doi: 10.1105/tpc.020057 PMID: 15004270

27. Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H, Maes S, et al. CDKB1;1 forms a
functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol. 2009; 150(3):1482–93.
doi: 10.1104/pp.109.140269 PMID: 19458112

28. Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Isterdael GV, et al. Developmental regulation of
CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J. 2011 8; 30(16):3430–41.
doi: 10.1038/emboj.2011.240 PMID: 21772250

29. De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, et al. Functional analysis of
cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell. 2001 7; 13(7):1653–68. doi: 10.1105/
TPC.010087 PMID: 11449057

30. Wang H, Zhou Y, Bird DA, Fowke LC. Functions, regulation and cellular localization of plant cyclin-
dependent kinase inhibitors. J Microsc. 2008 8; 231(2):234–46. doi: 10.1111/j.1365-2818.2008.
02039.x PMID: 18778421

31. Verkest A, Weinl C, Inze D, De Veylder L, Schnittger A. Switching the cell cycle. Kip-related proteins
in plant cell cycle control. Plant Physiol. 2005; 139(3):1099–106. doi: 10.1104/pp.105.069906 PMID:
16286449

32. De Veylder L, Joubes J, Inze D. Plant cell cycle transitions. Curr Opin Plant Biol. 2003; 6(6):536–43.
doi: 10.1016/j.pbi.2003.09.001 PMID: 14611951

33. Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC. G1 to S transition: more than a cell cycle
engine switch. Curr Opin Plant Biol. 2002; 5(6):480–6. doi: 10.1016/S1369-5266(02)00301-1 PMID:
12393009

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 22 / 28

http://dx.doi.org/10.1371/journal.pbio.1000284
http://www.ncbi.nlm.nih.gov/pubmed/20087409
http://dx.doi.org/10.1038/msb.2011.19
http://www.ncbi.nlm.nih.gov/pubmed/21525871
http://dx.doi.org/10.1098/rstb.2011.0078
http://www.ncbi.nlm.nih.gov/pubmed/22084380
http://www.ncbi.nlm.nih.gov/pubmed/17006448
http://dx.doi.org/10.1093/pcp/pcs070
http://www.ncbi.nlm.nih.gov/pubmed/22555815
http://www.ncbi.nlm.nih.gov/pubmed/8491188
http://dx.doi.org/10.1016/j.semcdb.2009.09.011
http://www.ncbi.nlm.nih.gov/pubmed/19770062
http://dx.doi.org/10.1146/annurev.genet.40.110405.090431
http://www.ncbi.nlm.nih.gov/pubmed/17094738
http://dx.doi.org/10.1105/tpc.105.032383
http://www.ncbi.nlm.nih.gov/pubmed/15863515
http://dx.doi.org/10.1104/pp.104.053884
http://www.ncbi.nlm.nih.gov/pubmed/15863702
http://dx.doi.org/10.1073/pnas.0704166104
http://www.ncbi.nlm.nih.gov/pubmed/17726100
http://dx.doi.org/10.4161/psb.5.10.13037
http://www.ncbi.nlm.nih.gov/pubmed/20861687
http://dx.doi.org/10.1038/msb.2010.53
http://www.ncbi.nlm.nih.gov/pubmed/20706207
http://dx.doi.org/10.1105/tpc.020057
http://www.ncbi.nlm.nih.gov/pubmed/15004270
http://dx.doi.org/10.1104/pp.109.140269
http://www.ncbi.nlm.nih.gov/pubmed/19458112
http://dx.doi.org/10.1038/emboj.2011.240
http://www.ncbi.nlm.nih.gov/pubmed/21772250
http://dx.doi.org/10.1105/TPC.010087
http://dx.doi.org/10.1105/TPC.010087
http://www.ncbi.nlm.nih.gov/pubmed/11449057
http://dx.doi.org/10.1111/j.1365-2818.2008.02039.x
http://dx.doi.org/10.1111/j.1365-2818.2008.02039.x
http://www.ncbi.nlm.nih.gov/pubmed/18778421
http://dx.doi.org/10.1104/pp.105.069906
http://www.ncbi.nlm.nih.gov/pubmed/16286449
http://dx.doi.org/10.1016/j.pbi.2003.09.001
http://www.ncbi.nlm.nih.gov/pubmed/14611951
http://dx.doi.org/10.1016/S1369-5266(02)00301-1
http://www.ncbi.nlm.nih.gov/pubmed/12393009


34. de Jager SM, Menges M, Bauer UM, Murra JA. Arabidopsis E2F1 binds a sequence present in the
promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential
activities. Plant Mol Biol. 2001 11; 47(4):555–68. doi: 10.1023/A:1011848528377 PMID: 11669580

35. del Pozo JC, Boniotti MB, Gutierrez C. Arabidopsis E2Fc functions in cell division and is degraded by
the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell. 2002; 14(12):3057–71. doi: 10.
1105/tpc.006791 PMID: 12468727

36. Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mam-
malian cell division cycle. Cell Div. 2012; 7(1):10. doi: 10.1186/1747-1028-7-10 PMID: 22417103

37. del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The balance between cell division and endore-
plication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway
in Arabidopsis. Plant Cell. 2006; 18(9):2224–35. doi: 10.1105/tpc.105.039651 PMID: 16920782

38. Planchais S, Perennes C, Glab N, Mironov V, Inze D, Bergounioux C. Characterization of cis-acting
element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identi-
fication of putative regulatory proteins. Plant Mol Biol. 2002; 50(1):111–27. doi: 10.1023/
A:1016018711532 PMID: 12139003

39. ZhuW, Giangrande PH, Nevins JR. E2Fs link the control of G1/S and G2/M transcription. EMBO J.
2004 11; 23(23):4615–26. doi: 10.1038/sj.emboj.7600459 PMID: 15510213

40. Ito M. Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res.
2005; 118(1):61–9. doi: 10.1007/s10265-005-0192-8 PMID: 15703854

41. Nakata Y, Shetzline S, Sakashita C, Kalota A, Rallapalli R, Rudnick SI, et al. c-Myb contributes to G2/
M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Mol
Cell Biol. 2007; 27(6):2048–58. doi: 10.1128/MCB.01100-06 PMID: 17242210

42. Berckmans B, De Veylder L. Transcriptional control of the cell cycle. Curr Opin Plant Biol. 2009 10; 12
(5):599–605. doi: 10.1016/j.pbi.2009.07.005 PMID: 19700366

43. Haga N, Kobayashi K, Suzuki T, Maeo K, Kubo M, Ohtani M, et al. Mutations in MYB3R1 and
MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-
specific genes in Arabidopsis. Plant Physiol. 2011 10; 157(2):706–17. doi: 10.1104/pp.111.180836
PMID: 21862669

44. Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, et al. Atypical E2F
activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A.
2008 9; 105(38):14721–6. doi: 10.1073/pnas.0806510105 PMID: 18787127

45. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ. Integrative analysis of cell cycle
control in budding yeast. Mol Biol Cell. 2004 8; 15(8):3841–62. doi: 10.1091/mbc.E03-11-0794 PMID:
15169868

46. Fauré A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic Boolean model for the con-
trol of the mammalian cell cycle. Bioinformatics. 2006; 22(14):e124–31. doi: 10.1093/bioinformatics/
btl210 PMID: 16873462

47. Fauré A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D. Modular logical modelling of the bud-
ding yeast cell cycle. Mol Biosyst. 2009 12; 5(12):1787–96. doi: 10.1039/b910101m PMID: 19763337

48. Irons DJ. Logical analysis of the budding yeast cell cycle. J Theor Biol. 2009 4; 257(4):543–59. doi:
10.1016/j.jtbi.2008.12.028 PMID: 19185585

49. Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc
Natl Acad Sci U S A. 1991 10; 88(20):9107–11. doi: 10.1073/pnas.88.20.9107 PMID: 1833774

50. Novak B, Tyson JJ. Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci U S A.
1997 8; 94(17):9147–52. doi: 10.1073/pnas.94.17.9147 PMID: 9256450

51. Novak B, Csikasz-Nagy A, Gyorffy B, Chen K, Tyson JJ. Mathematical model of the fission yeast cell
cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys
Chem. 1998; 72:185–200. doi: 10.1016/S0301-4622(98)00133-1 PMID: 9652094

52. Novak B, Csikasz-Nagy A, Gyorffy B, Nasmyth K, Tyson JJ. Model scenarios for evolution of the
eukaryotic cell cycle. Philos Trans R Soc Lond B Biol Sci. 1998; 353(1378):2063–76. doi: 10.1098/
rstb.1998.0352 PMID: 10098216

53. Novak B, Pataki Z, Ciliberto A, Tyson JJ. Mathematical model of the cell division cycle of fission yeast.
Chaos. 2001; 11(1):277–286. doi: 10.1063/1.1345725 PMID: 12779461

54. Tyson JJ, Csikasz-Nagy A, Novak B. The dynamics of cell cycle regulation. Bioessays. 2002; 24
(12):1095–109. doi: 10.1002/bies.10191 PMID: 12447975

55. Li B, Shao B, Yu C, Ouyang Q, Wang H. A mathematical model for cell size control in fission yeast. J
Theor Biol. 2010 6; 264(3):771–81. doi: 10.1016/j.jtbi.2010.03.023 PMID: 20303984

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 23 / 28

http://dx.doi.org/10.1023/A:1011848528377
http://www.ncbi.nlm.nih.gov/pubmed/11669580
http://dx.doi.org/10.1105/tpc.006791
http://dx.doi.org/10.1105/tpc.006791
http://www.ncbi.nlm.nih.gov/pubmed/12468727
http://dx.doi.org/10.1186/1747-1028-7-10
http://www.ncbi.nlm.nih.gov/pubmed/22417103
http://dx.doi.org/10.1105/tpc.105.039651
http://www.ncbi.nlm.nih.gov/pubmed/16920782
http://dx.doi.org/10.1023/A:1016018711532
http://dx.doi.org/10.1023/A:1016018711532
http://www.ncbi.nlm.nih.gov/pubmed/12139003
http://dx.doi.org/10.1038/sj.emboj.7600459
http://www.ncbi.nlm.nih.gov/pubmed/15510213
http://dx.doi.org/10.1007/s10265-005-0192-8
http://www.ncbi.nlm.nih.gov/pubmed/15703854
http://dx.doi.org/10.1128/MCB.01100-06
http://www.ncbi.nlm.nih.gov/pubmed/17242210
http://dx.doi.org/10.1016/j.pbi.2009.07.005
http://www.ncbi.nlm.nih.gov/pubmed/19700366
http://dx.doi.org/10.1104/pp.111.180836
http://www.ncbi.nlm.nih.gov/pubmed/21862669
http://dx.doi.org/10.1073/pnas.0806510105
http://www.ncbi.nlm.nih.gov/pubmed/18787127
http://dx.doi.org/10.1091/mbc.E03-11-0794
http://www.ncbi.nlm.nih.gov/pubmed/15169868
http://dx.doi.org/10.1093/bioinformatics/btl210
http://dx.doi.org/10.1093/bioinformatics/btl210
http://www.ncbi.nlm.nih.gov/pubmed/16873462
http://dx.doi.org/10.1039/b910101m
http://www.ncbi.nlm.nih.gov/pubmed/19763337
http://dx.doi.org/10.1016/j.jtbi.2008.12.028
http://www.ncbi.nlm.nih.gov/pubmed/19185585
http://dx.doi.org/10.1073/pnas.88.20.9107
http://www.ncbi.nlm.nih.gov/pubmed/1833774
http://dx.doi.org/10.1073/pnas.94.17.9147
http://www.ncbi.nlm.nih.gov/pubmed/9256450
http://dx.doi.org/10.1016/S0301-4622(98)00133-1
http://www.ncbi.nlm.nih.gov/pubmed/9652094
http://dx.doi.org/10.1098/rstb.1998.0352
http://dx.doi.org/10.1098/rstb.1998.0352
http://www.ncbi.nlm.nih.gov/pubmed/10098216
http://dx.doi.org/10.1063/1.1345725
http://www.ncbi.nlm.nih.gov/pubmed/12779461
http://dx.doi.org/10.1002/bies.10191
http://www.ncbi.nlm.nih.gov/pubmed/12447975
http://dx.doi.org/10.1016/j.jtbi.2010.03.023
http://www.ncbi.nlm.nih.gov/pubmed/20303984


56. Qu Z, MacLellan WR, Weiss JN. Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophys
J. 2003 12; 85(6):3600–11. doi: 10.1016/S0006-3495(03)74778-X PMID: 14645053

57. Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ. Analysis of a generic model of eukary-
otic cell-cycle regulation. Biophys J. 2006 6; 90(12):4361–79. doi: 10.1529/biophysj.106.081240
PMID: 16581849

58. Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proc Natl
Acad Sci U S A. 2004; 101(14):4781–6. doi: 10.1073/pnas.0305937101 PMID: 15037758

59. Davidich MI, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS
One. 2008; 3(2):e1672. doi: 10.1371/journal.pone.0001672 PMID: 18301750

60. Hong C, Lee M, Kim D, Kim D, Cho KH, Shin I. A checkpoints capturing timing-robust Boolean model
of the budding yeast cell cycle regulatory network. BMC Syst Biol. 2012; 6:129. doi: 10.1186/1752-
0509-6-129 PMID: 23017186

61. Davidich MI, Bornholdt S. Boolean network model predicts knockout mutant phenotypes of fission
yeast. PLoS One. 2013; 8(9):e71786. doi: 10.1371/journal.pone.0071786 PMID: 24069138

62. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ. A hybrid model of mammalian cell cycle reg-
ulation. PLoS Comput Biol. 2011; 7(2):e1001077. doi: 10.1371/journal.pcbi.1001077 PMID:
21347318

63. Srividhya J, Gopinathan MS. A simple time delay model for eukaryotic cell cycle. J Theor Biol. 2006 8;
241(3):617–27. doi: 10.1016/j.jtbi.2005.12.020 PMID: 16473373

64. Li C, Wang J. Landscape and flux reveal a new global view and physical quantification of mammalian
cell cycle. Proc Natl Acad Sci U S A. 2014 9; 111(39):14130–5. doi: 10.1073/pnas.1408628111
PMID: 25228772

65. Li C, Wang J. Quantifying the underlying landscape and paths of cancer. J R Soc Interface. 2014 11;
11(100):20140774. doi: 10.1098/rsif.2014.0774 PMID: 25232051

66. Fauré A, Thieffry D. Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol
Biosyst. 2009 12; 5(12):1569–81. doi: 10.1039/b907562n PMID: 19763341

67. Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, et al. A General G1/S-Phase
Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana. PLoS Genetics. 2012 8; 8(8):
e1002847. doi: 10.1371/journal.pgen.1002847 PMID: 22879821

68. Adachi S, Nobusawa T, Umeda M. Quantitative and cell type-specific transcriptional regulation of A-
type cyclin-dependent kinase in Arabidopsis thaliana. Dev Biol. 2009; 329(2):306–14. doi: 10.1016/j.
ydbio.2009.03.002 PMID: 19285489

69. Mariconti L, Pellegrini B, Cantoni R, Stevens R, Bergounioux C, Cella R, et al. The E2F family of tran-
scription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/
E2F pathway in plants. J Biol Chem. 2002 3; 277(12):9911–9. doi: 10.1074/jbc.M110616200 PMID:
11786543

70. Zhang L, Wang C. F-box protein Skp2: a novel transcriptional target of E2F. Oncogene. 2006 4; 25
(18):2615–27. doi: 10.1038/sj.onc.1209286 PMID: 16331253

71. Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, et al. Periodic gene expression program of
the fission yeast cell cycle. Nat Genet. 2004; 36(8):809–17. doi: 10.1038/ng1377 PMID: 15195092

72. Menges M, Hennig L, GruissemW, Murray JAH. Cell cycle-regulated gene expression in Arabidopsis.
J Biol Chem. 2002 11; 277(44):41987–2002. doi: 10.1074/jbc.M207570200 PMID: 12169696

73. Menges M, Hennig L, GruissemW, Murray JAH. Genome-wide gene expression in an Arabidopsis
cell suspension. Plant Mol Biol. 2003 11; 53(4):423–42. doi: 10.1023/B:PLAN.0000019059.56489.ca
PMID: 15010610

74. Menges M, de Jager SM, GruissemW, Murray JA. Global analysis of the core cell cycle regulators of
Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and pro-
vides a coherent model for plant cell cycle control. Plant J. 2005; 41(4):546–66. doi: 10.1111/j.1365-
313X.2004.02319.x PMID: 15686519

75. Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J. More than 80R2R3-MYB regula-
tory genes in the genome of Arabidopsis thaliana. Plant J. 1998 5; 14(3):273–84. doi: 10.1046/j.1365-
313X.1998.00113.x PMID: 9628022

76. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, et al. The Arabidopsis transcrip-
tion factor MYB77 modulates auxin signal transduction. Plant Cell. 2007 8; 19(8):2440–53. doi: 10.
1105/tpc.107.050963 PMID: 17675404

77. Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites.
Biochim Biophys Acta. 2012 1; 1819(1):67–77. doi: 10.1016/j.bbagrm.2011.10.010 PMID: 22067744

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 24 / 28

http://dx.doi.org/10.1016/S0006-3495(03)74778-X
http://www.ncbi.nlm.nih.gov/pubmed/14645053
http://dx.doi.org/10.1529/biophysj.106.081240
http://www.ncbi.nlm.nih.gov/pubmed/16581849
http://dx.doi.org/10.1073/pnas.0305937101
http://www.ncbi.nlm.nih.gov/pubmed/15037758
http://dx.doi.org/10.1371/journal.pone.0001672
http://www.ncbi.nlm.nih.gov/pubmed/18301750
http://dx.doi.org/10.1186/1752-0509-6-129
http://dx.doi.org/10.1186/1752-0509-6-129
http://www.ncbi.nlm.nih.gov/pubmed/23017186
http://dx.doi.org/10.1371/journal.pone.0071786
http://www.ncbi.nlm.nih.gov/pubmed/24069138
http://dx.doi.org/10.1371/journal.pcbi.1001077
http://www.ncbi.nlm.nih.gov/pubmed/21347318
http://dx.doi.org/10.1016/j.jtbi.2005.12.020
http://www.ncbi.nlm.nih.gov/pubmed/16473373
http://dx.doi.org/10.1073/pnas.1408628111
http://www.ncbi.nlm.nih.gov/pubmed/25228772
http://dx.doi.org/10.1098/rsif.2014.0774
http://www.ncbi.nlm.nih.gov/pubmed/25232051
http://dx.doi.org/10.1039/b907562n
http://www.ncbi.nlm.nih.gov/pubmed/19763341
http://dx.doi.org/10.1371/journal.pgen.1002847
http://www.ncbi.nlm.nih.gov/pubmed/22879821
http://dx.doi.org/10.1016/j.ydbio.2009.03.002
http://dx.doi.org/10.1016/j.ydbio.2009.03.002
http://www.ncbi.nlm.nih.gov/pubmed/19285489
http://dx.doi.org/10.1074/jbc.M110616200
http://www.ncbi.nlm.nih.gov/pubmed/11786543
http://dx.doi.org/10.1038/sj.onc.1209286
http://www.ncbi.nlm.nih.gov/pubmed/16331253
http://dx.doi.org/10.1038/ng1377
http://www.ncbi.nlm.nih.gov/pubmed/15195092
http://dx.doi.org/10.1074/jbc.M207570200
http://www.ncbi.nlm.nih.gov/pubmed/12169696
http://dx.doi.org/10.1023/B:PLAN.0000019059.56489.ca
http://www.ncbi.nlm.nih.gov/pubmed/15010610
http://dx.doi.org/10.1111/j.1365-313X.2004.02319.x
http://dx.doi.org/10.1111/j.1365-313X.2004.02319.x
http://www.ncbi.nlm.nih.gov/pubmed/15686519
http://dx.doi.org/10.1046/j.1365-313X.1998.00113.x
http://dx.doi.org/10.1046/j.1365-313X.1998.00113.x
http://www.ncbi.nlm.nih.gov/pubmed/9628022
http://dx.doi.org/10.1105/tpc.107.050963
http://dx.doi.org/10.1105/tpc.107.050963
http://www.ncbi.nlm.nih.gov/pubmed/17675404
http://dx.doi.org/10.1016/j.bbagrm.2011.10.010
http://www.ncbi.nlm.nih.gov/pubmed/22067744


78. Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ, HülskampM, et al. Novel functions of plant
cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into
mitosis. Plant Cell. 2005 6; 17(6):1704–22. doi: 10.1105/tpc.104.030486 PMID: 15749764

79. Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB
transcription factor in regulating auxin-dependent cell division. Plant Cell. 2005 9; 17(9):2527–41. doi:
10.1105/tpc.105.033761 PMID: 16055635

80. Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, et al. Interplay between Arabi-
dopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol.
2006 4; 140(4):1355–66. doi: 10.1104/pp.106.077990 PMID: 16514015

81. Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS, et al. E2F3 activity is regulated during
the cell cycle and is required for the induction of S phase. Genes Dev. 1998 7; 12(14):2120–30. doi:
10.1101/gad.12.14.2120 PMID: 9679057

82. Peters JM. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol.
1998; 10(6):759–68. doi: 10.1016/S0955-0674(98)80119-1 PMID: 9914180

83. Vodermaier HC. APC/C and SCF: controlling each other and the cell cycle. Curr Biol. 2004 9; 14(18):
R787–96. doi: 10.1016/j.cub.2004.09.020 PMID: 15380093

84. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. Control of the SCF(Skp2-Cks1) ubi-
quitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature. 2004 3; 428(6979):190–3. doi: 10.1038/
nature02330 PMID: 15014502

85. Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P. Selective proteolysis sets the tempo of the
cell cycle. Curr Opin Plant Biol. 2010; 13(6):631–9. doi: 10.1016/j.pbi.2010.07.004 PMID: 20810305

86. Boniotti MB, Gutierrez C. A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma
protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J. 2001 11; 28(3):341–50. doi:
10.1046/j.1365-313X.2001.01160.x PMID: 11722776

87. Dewitte W, Murray JA. The plant cell cycle. Annu Rev Plant Biol. 2003; 54:235–64. doi: 10.1146/
annurev.arplant.54.031902.134836 PMID: 14502991

88. Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, et al. The RETINOBLAS-
TOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell. 2005 12; 123
(7):1337–49. doi: 10.1016/j.cell.2005.09.042 PMID: 16377572

89. Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer AK, et al. Genetic framework of
cyclin-dependent kinase function in Arabidopsis. Dev Cell. 2012 5; 22(5):1030–40. doi: 10.1016/j.
devcel.2012.02.015 PMID: 22595674

90. Magyar Z, Horvath B, Khan S, Mohammed B, Henriques R, De Veylder L, et al. Arabidopsis E2FA
stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes.
EMBO J. 2012; 31(6):1480–93. doi: 10.1038/emboj.2012.13 PMID: 22307083

91. Del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The E2FC-DPB Transcription Factor Controls
Cell Division, Endoreplication and Lateral Root Formation in a SCF-Dependent Manner. Plant Signal
Behav. 2007; 2(4):273–4. doi: 10.4161/psb.2.4.3897 PMID: 19704635

92. Planchais S, Samland AK, Murray JA. Differential stability of Arabidopsis D-type cyclins: CYCD3;1 is
a highly unstable protein degraded by a proteasome-dependent mechanism. Plant J. 2004; 38
(4):616–25. doi: 10.1111/j.0960-7412.2004.02071.x PMID: 15125768

93. Ren H, Santner A, del Pozo JC, Murray JA, Estelle M. Degradation of the cyclin-dependent kinase
inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J. 2008; 53(5):705–16. doi: 10.
1111/j.1365-313X.2007.03370.x PMID: 18005227

94. Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, GruissemW, et al. Genome-wide iden-
tification of potential plant E2F target genes. Plant Physiol. 2005; 139(1):316–28. doi: 10.1104/pp.
105.066290 PMID: 16126853

95. He SS, Liu J, Xie Z, O’Neill D, Dotson S. Arabidopsis E2Fa plays a bimodal role in regulating cell divi-
sion and cell growth. Plant Mol Biol. 2004; 56(2):171–84. doi: 10.1007/s11103-004-2748-8 PMID:
15604736

96. Berckmans B, Lammens T, Van Den Daele H, Magyar Z, Bögre L, De Veylder L. Light-dependent reg-
ulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 2011 11;
157(3):1440–51. doi: 10.1104/pp.111.183384 PMID: 21908689

97. López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, et al. Distinct light-initiated
gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell.
2008 4; 20(4):947–68. doi: 10.1105/tpc.107.057075 PMID: 18424613

98. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, et al. R1R2R3-Myb proteins positively regu-
late cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development.
2007 3; 134(6):1101–10. doi: 10.1242/dev.02801 PMID: 17287251

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 25 / 28

http://dx.doi.org/10.1105/tpc.104.030486
http://www.ncbi.nlm.nih.gov/pubmed/15749764
http://dx.doi.org/10.1105/tpc.105.033761
http://www.ncbi.nlm.nih.gov/pubmed/16055635
http://dx.doi.org/10.1104/pp.106.077990
http://www.ncbi.nlm.nih.gov/pubmed/16514015
http://dx.doi.org/10.1101/gad.12.14.2120
http://www.ncbi.nlm.nih.gov/pubmed/9679057
http://dx.doi.org/10.1016/S0955-0674(98)80119-1
http://www.ncbi.nlm.nih.gov/pubmed/9914180
http://dx.doi.org/10.1016/j.cub.2004.09.020
http://www.ncbi.nlm.nih.gov/pubmed/15380093
http://dx.doi.org/10.1038/nature02330
http://dx.doi.org/10.1038/nature02330
http://www.ncbi.nlm.nih.gov/pubmed/15014502
http://dx.doi.org/10.1016/j.pbi.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20810305
http://dx.doi.org/10.1046/j.1365-313X.2001.01160.x
http://www.ncbi.nlm.nih.gov/pubmed/11722776
http://dx.doi.org/10.1146/annurev.arplant.54.031902.134836
http://dx.doi.org/10.1146/annurev.arplant.54.031902.134836
http://www.ncbi.nlm.nih.gov/pubmed/14502991
http://dx.doi.org/10.1016/j.cell.2005.09.042
http://www.ncbi.nlm.nih.gov/pubmed/16377572
http://dx.doi.org/10.1016/j.devcel.2012.02.015
http://dx.doi.org/10.1016/j.devcel.2012.02.015
http://www.ncbi.nlm.nih.gov/pubmed/22595674
http://dx.doi.org/10.1038/emboj.2012.13
http://www.ncbi.nlm.nih.gov/pubmed/22307083
http://dx.doi.org/10.4161/psb.2.4.3897
http://www.ncbi.nlm.nih.gov/pubmed/19704635
http://dx.doi.org/10.1111/j.0960-7412.2004.02071.x
http://www.ncbi.nlm.nih.gov/pubmed/15125768
http://dx.doi.org/10.1111/j.1365-313X.2007.03370.x
http://dx.doi.org/10.1111/j.1365-313X.2007.03370.x
http://www.ncbi.nlm.nih.gov/pubmed/18005227
http://dx.doi.org/10.1104/pp.105.066290
http://dx.doi.org/10.1104/pp.105.066290
http://www.ncbi.nlm.nih.gov/pubmed/16126853
http://dx.doi.org/10.1007/s11103-004-2748-8
http://www.ncbi.nlm.nih.gov/pubmed/15604736
http://dx.doi.org/10.1104/pp.111.183384
http://www.ncbi.nlm.nih.gov/pubmed/21908689
http://dx.doi.org/10.1105/tpc.107.057075
http://www.ncbi.nlm.nih.gov/pubmed/18424613
http://dx.doi.org/10.1242/dev.02801
http://www.ncbi.nlm.nih.gov/pubmed/17287251


99. Araki S, Ito M, Soyano T, Nishihama R, Machida Y. Mitotic cyclins stimulate the activity of c-Myb-like
factors for transactivation of G2/M phase-specific genes in tobacco. J Biol Chem. 2004 7; 279
(31):32979–88. doi: 10.1074/jbc.M403171200 PMID: 15175336

100. Wang H, Fowke LC, CrosbyWL. A plant cyclin-dependent kinase inhibitor gene. Nature. 1997 4; 386
(6624):451–2. doi: 10.1038/386451a0 PMID: 9087400

101. Wang H, Qi Q, Schorr P, Cutler AJ, CrosbyWL, Fowke LC. ICK1, a cyclin-dependent protein kinase
inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is
induced by abscisic acid. Plant J. 1998 8; 15(4):501–10. doi: 10.1046/j.1365-313X.1998.00231.x
PMID: 9753775

102. Fulop K, Tarayre S, Kelemen Z, Horvath G, Kevei Z, Nikovics K, et al. Arabidopsis anaphase-promot-
ing complexes: multiple activators and wide range of substrates might keep APC perpetually busy.
Cell Cycle. 2005; 4(8):1084–92. doi: 10.4161/cc.4.8.1856 PMID: 15970679

103. Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, et al. The A-type cyclin CYCA2;3 is a key
regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell. 2006 2; 18(2):382–96. doi: 10.
1105/tpc.105.037309 PMID: 16415207

104. Müssel C, Hopfensitz M, Kestler HA. BoolNet–an R package for generation, reconstruction and analy-
sis of Boolean networks. Bioinformatics. 2010 5; 26(10):1378–80. doi: 10.1093/bioinformatics/btq124
PMID: 20378558

105. Team RC; R Foundation for Statistical Computing. R: A Language and Environment for Statistical
Computing. 2012;.

106. Sánchez-Corrales YE, Alvarez-Buylla ER, Mendoza L. The Arabidopsis thaliana flower organ specifi-
cation gene regulatory network determines a robust differentiation process. J Theor Biol. 2010 6; 264
(3):971–83. doi: 10.1016/j.jtbi.2010.03.006 PMID: 20303988

107. Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L. Dynamic simulation of regulatory networks
using SQUAD. BMC Bioinformatics. 2007; 8:462. doi: 10.1186/1471-2105-8-462 PMID: 18039375

108. Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, et al. Altered cell cycle
distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin
CYCD3. Plant Cell. 2003 1; 15(1):79–92. doi: 10.1105/tpc.004838 PMID: 12509523

109. Vanstraelen M, Baloban M, Da Ines O, Cultrone A, Lammens T, Boudolf V, et al. APC/C-CCS52A
complexes control meristemmaintenance in the Arabidopsis root. Proc Natl Acad Sci U S A. 2009;
106(28):11806–11. doi: 10.1073/pnas.0901193106 PMID: 19553203

110. Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant develop-
ment. Mol Plant. 2012 11; 5(6):1182–94. doi: 10.1093/mp/sss094 PMID: 23034505

111. De Veylder L, Beeckman T, Beemster GT, de Almeida Engler J, Ormenese S, Maes S, et al. Control
of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription fac-
tor. EMBO J. 2002 3; 21(6):1360–8. doi: 10.1093/emboj/21.6.1360 PMID: 11889041

112. Poznic M. Retinoblastoma protein: a central processing unit. J Biosci. 2009 6; 34(2):305–12. doi: 10.
1007/s12038-009-0034-2 PMID: 19550046

113. Rossignol P, Stevens R, Perennes C, Jasinski S, Cella R, Tremousaygue D, et al. AtE2F-a and AtDP-
a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S
phase. Mol Genet Genomics. 2002 2; 266(6):995–1003. doi: 10.1007/s00438-001-0624-7 PMID:
11862494

114. Cheng Y, Cao L, Wang S, Li Y, Shi X, Liu H, et al. Downregulation of multiple CDK inhibitor ICK/KRP
genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Ara-
bidopsis. Plant J. 2013 8; 75(4):642–55. doi: 10.1111/tpj.12228 PMID: 23647236

115. Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, et al. A Bistable Cir-
cuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell
Division. Cell. 2012 8;.

116. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER. A gene regulatory network model for cell-
fate determination during Arabidopsis thaliana flower development that is robust and recovers experi-
mental gene expression profiles. Plant Cell. 2004; 16(11):2923–39. doi: 10.1105/tpc.104.021725
PMID: 15486106

117. Benítez M, Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER. Interlinked nonlinear subnet-
works underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial
model. BMC Syst Biol. 2008; 2:98. doi: 10.1186/1752-0509-2-98 PMID: 19014692

118. Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ. Transforming
Boolean models to continuous models: methodology and application to T-cell receptor signaling.
BMC Syst Biol. 2009; 3:98. doi: 10.1186/1752-0509-3-98 PMID: 19785753

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 26 / 28

http://dx.doi.org/10.1074/jbc.M403171200
http://www.ncbi.nlm.nih.gov/pubmed/15175336
http://dx.doi.org/10.1038/386451a0
http://www.ncbi.nlm.nih.gov/pubmed/9087400
http://dx.doi.org/10.1046/j.1365-313X.1998.00231.x
http://www.ncbi.nlm.nih.gov/pubmed/9753775
http://dx.doi.org/10.4161/cc.4.8.1856
http://www.ncbi.nlm.nih.gov/pubmed/15970679
http://dx.doi.org/10.1105/tpc.105.037309
http://dx.doi.org/10.1105/tpc.105.037309
http://www.ncbi.nlm.nih.gov/pubmed/16415207
http://dx.doi.org/10.1093/bioinformatics/btq124
http://www.ncbi.nlm.nih.gov/pubmed/20378558
http://dx.doi.org/10.1016/j.jtbi.2010.03.006
http://www.ncbi.nlm.nih.gov/pubmed/20303988
http://dx.doi.org/10.1186/1471-2105-8-462
http://www.ncbi.nlm.nih.gov/pubmed/18039375
http://dx.doi.org/10.1105/tpc.004838
http://www.ncbi.nlm.nih.gov/pubmed/12509523
http://dx.doi.org/10.1073/pnas.0901193106
http://www.ncbi.nlm.nih.gov/pubmed/19553203
http://dx.doi.org/10.1093/mp/sss094
http://www.ncbi.nlm.nih.gov/pubmed/23034505
http://dx.doi.org/10.1093/emboj/21.6.1360
http://www.ncbi.nlm.nih.gov/pubmed/11889041
http://dx.doi.org/10.1007/s12038-009-0034-2
http://dx.doi.org/10.1007/s12038-009-0034-2
http://www.ncbi.nlm.nih.gov/pubmed/19550046
http://dx.doi.org/10.1007/s00438-001-0624-7
http://www.ncbi.nlm.nih.gov/pubmed/11862494
http://dx.doi.org/10.1111/tpj.12228
http://www.ncbi.nlm.nih.gov/pubmed/23647236
http://dx.doi.org/10.1105/tpc.104.021725
http://www.ncbi.nlm.nih.gov/pubmed/15486106
http://dx.doi.org/10.1186/1752-0509-2-98
http://www.ncbi.nlm.nih.gov/pubmed/19014692
http://dx.doi.org/10.1186/1752-0509-3-98
http://www.ncbi.nlm.nih.gov/pubmed/19785753


119. Krumsiek J, Pölsterl S, Wittmann DM, Theis FJ. Odefy–from discrete to continuous models. BMC Bio-
informatics. 2010; 11:233. doi: 10.1186/1471-2105-11-233 PMID: 20459647

120. López-Avilés S, Kapuy O, Novák B, Uhlmann F. Irreversibility of mitotic exit is the consequence of sys-
tems-level feedback. Nature. 2009 5; 459(7246):592–5. doi: 10.1038/nature07984 PMID: 19387440

121. Menges M, Samland AK, Planchais S, Murray JA. The D-type cyclin CYCD3;1 is limiting for the G1-to-
S-phase transition in Arabidopsis. Plant Cell. 2006; 18(4):893–906. doi: 10.1105/tpc.105.039636
PMID: 16517759

122. Jurado S, Diaz-Trivino S, Abraham Z, Manzano C, Gutierrez C, del Pozo C. SKP2A, an F-box protein
that regulates cell division, is degraded via the ubiquitin pathway. Plant J. 2008; 53(5):828–41. doi:
10.1111/j.1365-313X.2007.03378.x PMID: 18036202

123. Jurado S, Trivino SD, Abraham Z, Manzano C, Gutierrez C, Del Pozo C. SKP2A protein, an F-
box that regulates cell division, is degraded via the ubiquitin pathway. Plant Signal Behav. 2008; 3
(10):810–2. doi: 10.4161/psb.3.10.5888 PMID: 19704565

124. Doerner P, Jorgensen JE, You R, Steppuhn J, Lamb C. Control of root growth and development by
cyclin expression. Nature. 1996; 380(6574):520–3. doi: 10.1038/380520a0 PMID: 8606769

125. Boudolf V, Barrôco R, de Almeida Engler J, Verkest A, Beeckman T, Naudts M, et al. B1-type cyclin-
dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana.
Plant Cell. 2004 4; 16(4):945–55. doi: 10.1105/tpc.021774 PMID: 15031414

126. Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM. Cell cycle regulates cell type in the Arabidopsis
sepal. Development. 2012 10;.

127. Borghi L, Gutzat R, Fütterer J, Laizet Y, Hennig L, GruissemW. Arabidopsis RETINOBLASTOMA-
RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production.
Plant Cell. 2010 6; 22(6):1792–811. doi: 10.1105/tpc.110.074591 PMID: 20525851

128. Ferreira PC, Hemerly AS, Engler JD, van Montagu M, Engler G, Inzé D. Developmental expression of
the arabidopsis cyclin gene cyc1At. Plant Cell. 1994 12; 6(12):1763–74. doi: 10.1105/tpc.6.12.1763
PMID: 7866022

129. Boudolf V, Vlieghe K, Beemster GT, Magyar Z, Torres Acosta JA, Maes S, et al. The plant-specific
cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitoti-
cally dividing and endoreduplicating cells in Arabidopsis. Plant Cell. 2004; 16(10):2683–92. doi: 10.
1105/tpc.104.024398 PMID: 15377755

130. Li Z, Larson-Rabin Z, Masson PH, Day CD. FZR2/CCS52A1 mediated endoreduplication in Arabidop-
sis development. Plant Signal Behav. 2009 5; 4(5):451–3. doi: 10.4161/psb.4.5.8480 PMID:
19816101

131. Takahashi N, Kajihara T, Okamura C, Kim Y, Katagiri Y, Okushima Y, et al. Cytokinins Control Endo-
cycle Onset by Promoting the Expression of an APC/C Activator in Arabidopsis Roots. Curr Biol. 2013
September; 23(18):1812–1817. doi: 10.1016/j.cub.2013.07.051 PMID: 24035544

132. Menges M, Murray JAH. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene
activity. Plant J. 2002 4; 30(2):203–12. doi: 10.1046/j.1365-313X.2002.01274.x PMID: 12000456

133. Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER. Single-cell and coupled GRNmodels of
cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol. 2010; 4:134. doi: 10.
1186/1752-0509-4-134 PMID: 20920363

134. Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E, Hernández-Hernández V,
et al. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics:
the Arabidopsis thaliana root as a study system. PLoS Comput Biol. 2013 5; 9(5):e1003026. doi: 10.
1371/journal.pcbi.1003026 PMID: 23658505

135. Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, et al. Pause-and-stop: the
effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role
for ethylene signaling in cell cycle arrest. Plant Cell. 2011; 23(5):1876–88. doi: 10.1105/tpc.111.
084160 PMID: 21558544

136. Reyt G, Boudouf S, Boucherez J, Gaymard F, Briat JF. Iron- and Ferritin-Dependent Reactive Oxygen
Species Distribution: Impact on Arabidopsis Root System Architecture. Mol Plant. 2015; 8(3):439–
453. doi: 10.1016/j.molp.2014.11.014 PMID: 25624148

137. Sevim V, Gong X, Socolar JES. Reliability of transcriptional cycles and the yeast cell-cycle oscillator.
PLoS Comput Biol. 2010; 6(7):e1000842. doi: 10.1371/journal.pcbi.1000842 PMID: 20628620

138. Mu RL, Cao YR, Liu YF, Lei G, Zou HF, Liao Y, et al. An R2R3-type transcription factor gene
AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res. 2009 11; 19
(11):1291–304. doi: 10.1038/cr.2009.83 PMID: 19581938

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 27 / 28

http://dx.doi.org/10.1186/1471-2105-11-233
http://www.ncbi.nlm.nih.gov/pubmed/20459647
http://dx.doi.org/10.1038/nature07984
http://www.ncbi.nlm.nih.gov/pubmed/19387440
http://dx.doi.org/10.1105/tpc.105.039636
http://www.ncbi.nlm.nih.gov/pubmed/16517759
http://dx.doi.org/10.1111/j.1365-313X.2007.03378.x
http://www.ncbi.nlm.nih.gov/pubmed/18036202
http://dx.doi.org/10.4161/psb.3.10.5888
http://www.ncbi.nlm.nih.gov/pubmed/19704565
http://dx.doi.org/10.1038/380520a0
http://www.ncbi.nlm.nih.gov/pubmed/8606769
http://dx.doi.org/10.1105/tpc.021774
http://www.ncbi.nlm.nih.gov/pubmed/15031414
http://dx.doi.org/10.1105/tpc.110.074591
http://www.ncbi.nlm.nih.gov/pubmed/20525851
http://dx.doi.org/10.1105/tpc.6.12.1763
http://www.ncbi.nlm.nih.gov/pubmed/7866022
http://dx.doi.org/10.1105/tpc.104.024398
http://dx.doi.org/10.1105/tpc.104.024398
http://www.ncbi.nlm.nih.gov/pubmed/15377755
http://dx.doi.org/10.4161/psb.4.5.8480
http://www.ncbi.nlm.nih.gov/pubmed/19816101
http://dx.doi.org/10.1016/j.cub.2013.07.051
http://www.ncbi.nlm.nih.gov/pubmed/24035544
http://dx.doi.org/10.1046/j.1365-313X.2002.01274.x
http://www.ncbi.nlm.nih.gov/pubmed/12000456
http://dx.doi.org/10.1186/1752-0509-4-134
http://dx.doi.org/10.1186/1752-0509-4-134
http://www.ncbi.nlm.nih.gov/pubmed/20920363
http://dx.doi.org/10.1371/journal.pcbi.1003026
http://dx.doi.org/10.1371/journal.pcbi.1003026
http://www.ncbi.nlm.nih.gov/pubmed/23658505
http://dx.doi.org/10.1105/tpc.111.084160
http://dx.doi.org/10.1105/tpc.111.084160
http://www.ncbi.nlm.nih.gov/pubmed/21558544
http://dx.doi.org/10.1016/j.molp.2014.11.014
http://www.ncbi.nlm.nih.gov/pubmed/25624148
http://dx.doi.org/10.1371/journal.pcbi.1000842
http://www.ncbi.nlm.nih.gov/pubmed/20628620
http://dx.doi.org/10.1038/cr.2009.83
http://www.ncbi.nlm.nih.gov/pubmed/19581938


139. Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D. Genome-wide analysis of core
cell cycle genes in Arabidopsis. Plant Cell. 2002; 14(4):903–16. doi: 10.1105/tpc.010445 PMID:
11971144

140. Gutierrez C. The Arabidopsis cell division cycle. Arabidopsis Book. 2009; 7:e0120. doi: 10.1199/tab.
0120 PMID: 22303246

141. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer.
2009; 9(3):153–66. doi: 10.1038/nrc2602 PMID: 19238148

142. Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors,
and transcriptomes. Oncogene. 2005 4; 24(17):2746–55. doi: 10.1038/sj.onc.1208606 PMID:
15838511

143. Bertoli C, Skotheim JM, de Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat
Rev Mol Cell Biol. 2013 8; 14(8):518–28. doi: 10.1038/nrm3629 PMID: 23877564

144. Breeden LL. Periodic transcription: a cycle within a cycle. Curr Biol. 2003 1; 13(1):R31–8. doi: 10.
1016/S0960-9822(02)01386-6 PMID: 12526763

145. Cokus S, Rose S, Haynor D, Grønbech-Jensen N, Pellegrini M. Modelling the network of cell cycle
transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinformatics. 2006; 7:381. doi:
10.1186/1471-2105-7-381 PMID: 16914048

146. Francis D. A commentary on the G2/M transition of the plant cell cycle. Ann Bot. 2011 5; 107(7):1065–
70. doi: 10.1093/aob/mcr055 PMID: 21558458

147. Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, et al. Diverse phosphoregulatory
mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J. 2006; 47
(5):701–10. doi: 10.1111/j.1365-313X.2006.02820.x PMID: 16856985

148. Cook GS, Grønlund AL, Siciliano I, Spadafora N, Amini M, Herbert RJ, et al. Plant WEE1 kinase is cell
cycle regulated and removed at mitosis via the 26S proteasomemachinery. J Exp Bot. 2013; 64
(7):2093–2106. doi: 10.1093/jxb/ert066 PMID: 23536609

149. Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK, et al. Control of cell
proliferation, organ growth, and DNA damage response operate independently of dephosphorylation
of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell. 2009; 21(11):3641–54. doi: 10.1105/tpc.109.
070417 PMID: 19948791

150. Dissmeyer N, Weimer AK, De Veylder L, Novak B, Schnittger A. The regulatory network of cell-cycle
progression is fundamentally different in plants versus yeast or metazoans. Plant Signal Behav. 2010;
5(12):1613–8. doi: 10.4161/psb.5.12.13969 PMID: 21139435

Dynamic Gene Regulatory Network Model of A. thalianaCell Cycle

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004486 September 4, 2015 28 / 28

http://dx.doi.org/10.1105/tpc.010445
http://www.ncbi.nlm.nih.gov/pubmed/11971144
http://dx.doi.org/10.1199/tab.0120
http://dx.doi.org/10.1199/tab.0120
http://www.ncbi.nlm.nih.gov/pubmed/22303246
http://dx.doi.org/10.1038/nrc2602
http://www.ncbi.nlm.nih.gov/pubmed/19238148
http://dx.doi.org/10.1038/sj.onc.1208606
http://www.ncbi.nlm.nih.gov/pubmed/15838511
http://dx.doi.org/10.1038/nrm3629
http://www.ncbi.nlm.nih.gov/pubmed/23877564
http://dx.doi.org/10.1016/S0960-9822(02)01386-6
http://dx.doi.org/10.1016/S0960-9822(02)01386-6
http://www.ncbi.nlm.nih.gov/pubmed/12526763
http://dx.doi.org/10.1186/1471-2105-7-381
http://www.ncbi.nlm.nih.gov/pubmed/16914048
http://dx.doi.org/10.1093/aob/mcr055
http://www.ncbi.nlm.nih.gov/pubmed/21558458
http://dx.doi.org/10.1111/j.1365-313X.2006.02820.x
http://www.ncbi.nlm.nih.gov/pubmed/16856985
http://dx.doi.org/10.1093/jxb/ert066
http://www.ncbi.nlm.nih.gov/pubmed/23536609
http://dx.doi.org/10.1105/tpc.109.070417
http://dx.doi.org/10.1105/tpc.109.070417
http://www.ncbi.nlm.nih.gov/pubmed/19948791
http://dx.doi.org/10.4161/psb.5.12.13969
http://www.ncbi.nlm.nih.gov/pubmed/21139435

