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Abstract: To clarify the diversity of plant-parasitic Alternaria species in Japan, diseased samples were collected, and
fungal isolates established in culture. We examined 85 isolates representing 23 species distributed in 14 known
sections based on conidial morphology and DNA phylogeny. Three species were found to be new, A. cylindrica, A.
paragomphrenae and A. triangularis. Furthermore, a lectotype was designated for A. gomphrenae, and epitypes for A.
cinerariae, A. gomphrenae, A. iridicola, and A. japonica. Species boundaries of isolates were also clarified by studying
phenotypes and determining host ranges. Alternaria gomphrenae and related species in sect. Alternantherae were
recognized as distinct species owing to their host specificity. Among the species infecting Apiaceae, the pathogenicity
of A. cumini and a novel species, A. triangularis ex Bupleurum, were confirmed as host specific. Another novel species,
A. cylindrica, proved to be host specific to Petunia. Alternaria iridicola was recognized as a large-spored species in sect.
Alternaria, being host specific to Iris spp. On the other hand, the experimental host ranges of three morphologically
and phylogenetically distinct species infecting Brassicaceae (A. brassicae, A. brassicicola, and A. japonica) showed
almost no differences. Alternaria brassicicola and A. porri were even found on non-host plants. In general, host ranges
of Alternaria species correlated with morphology and molecular phylogeny, and combining these datasets resulted in

clearer species boundaries.

Effectively published online: 10 January 2020.

INTRODUCTION

Alternaria is a genus in the phylum Ascomycota (Pleosporaceae,
Pleosporales)  characterized by phaeodictyospores or
phaeophragmospores (Seifert et al. 2011), and is one of the most
ubiquitous fungal genera, inhabiting nearly every environmental
substrate (atmosphere, soil, litter, and living plants) (Guo et
al. 2004, Kirk et al. 2008). They are often allergenic, and can
cause mycoses in humans and insects (Rossmann et al. 1996,
Christias et al. 2001, Downs et al. 2001), but most species are
plant pathogenic (Yu 2001). Alternaria species usually cause leaf
spot diseases, especially on vegetables and ornamental flowers.
However, it is their seed-borne phase that carries the greatest
economic importance (Groves & Skolko 1944, Neergaard 1945,
Richardson 1990, Tohyama 1993, Rathod 2012).

Alternaria was established and originally typified by Alternaria
tenuis, and was redefined as a genus related to Stemphylium
and Ulocladium based on its mode of conidiogenesis (Simmons
1967). Two additional genera, Embellisia and Nimbya, were
subsequently established by Simmons (1971, 1989). The
taxonomy of Alternaria and allied genera was previously based
on conidial morphology, sporulation patterns, and differences
in their host plants (mostly at the rank of genus) or substrates
(Simmons 2007). However, their morphological variation and
fundamental pleomorphism complicated species recognition,
and thus host plants played a key role in identification. Due to
their ubiquitous nature, this approach led to a false inflation of
species numbers, resulting in the genus containing more than

400 species (Nishikawa & Nakashima 2015, Lawrence et al.
2016). The introduction of a molecular phylogenetic approach
has again helped to clarify their taxonomy, reducing many allied
genera into one large genus, Alternaria (Woudenberg et al.
2013).

Despite the application of molecular phylogenetic analyses,
the relationship between taxonomy and plant parasitism
remain insufficient to aid the practical recognition of species
boundaries, and additional characterization is needed. Many
of the phylogenetic species described by Woudenberg et al.
(2013) were defined without morphological and pathological
features able to distinguish closely related species. Therefore,
we proposed an integrated species recognition based on
morphology, molecular phylogeny, and pathogenicity (Nishikawa
& Nakashima 2013). In our previous studies, it was suggested
that phenotyping combined with a clarification of the host range
via inoculation studies was helpful to resolve species boundaries
(Nishikawa & Nakashima 2013, 2015).

During the survey of Japanese species of Alternaria, we
collected and examined 85 isolates, and applied the integrated
species recognition method to all Japanese species. The present
study focused on biodiversity and the utility of phenotyping
based on systematic experimental host range determination
by inoculation tests. In addition, morphological observations
and phylogenetic analyses were conducted to distinguish
closely related species infecting Amaranthaceae, Apiaceae,
Brassicaceae, Iridaceae, and Solanaceae.
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MATERIALS AND METHODS
Fungal collection and isolation

The 85 isolates examined in the present study were obtained
from diseased leaves, stems, buds, rhizomes, and seeds of
various plants on the basis of field surveys in Japan from 2002
to 2018 (Table 1). Some of the isolates and specimens were
obtained from the culture collection at the Genetic Resources
Center of the National Agriculture and Food Research
Organization (NARO; MAFF), Tsukuba, Japan, and several
collaborators who assisted in the acquisition of these specimens
are mentioned in the acknowledgements. To establish axenic
cultures originating from single conidia, alternarioid conidia
from lesions were suspended in sterilized distilled water and
spread on 2 % water agar (WA) medium using a flame-sterilized
microspatula. After incubation at 20 °C for 24 h, individual
germinating conidia were transferred to potato-carrot agar
(PCA; Simmons 2007) using a flame-sterilized microtube under
a dissecting microscope at x100 magnification (Nakashima
et al. 2011). Deposits of the representative isolates from the
present study were made in NARO and Mie University (MUCC),
Tsu, Mie, Japan. Specimens, including holotype and epitype
specimens were deposited in TNS (National Museum of Nature
and Science), Tsukuba, Ibaraki, Japan, and/or in TSU (Mie
University).

Morphological observation and culture characteristics

For microscopic observations of diagnostic morphology
comparable to those of Simmons’s standard conditions
(2007), sporulation was induced according to methods
reported by Nishikawa & Nakashima (2013). After incubation
of the isolates at 25 °C in the dark for 7 d on PCA and V8
juice agar (V8; Simmons 2007), the growing colonies were
scratched with a flame-sterilized microspatula and the aerial
mycelia were removed to observe sporulation. Treated
colonies in unsealed Petri dishes were incubated for 12—24 h
at 25 °C under blacklight blue fluorescent lamps to induce
sporulation, and then the plates were transferred to 20 °C
in the dark. Caespituli that formed on the medium 7 d after
incubation were mounted with Shear’s mounting fluid [300
mL aqueous potassium acetate (2 %), 120 mL glycerin, and
180 mL ethanol (95 %)]. The morphology of 100 conidia and
other structures, such as conidiophores and chlamydospores,
were examined at x400 magnification, and sporulation
patterns were also observed under a compound microscope.
Morphological descriptions were made for examined isolates
based on both media; however small-spored species (mostly
in sect. Alternaria) were based on PCA, and large-spored
species (mostly in sect. Porri) were based on V8 according to
their comparable descriptions in Simmons (2007).

Mycelial discs of 85 isolates were plated onto potato-
dextrose agar (PDA; 200 g potato, 20 g dextrose, and 20 g agar in
1.0 L distilled water) plates. The diameter of each of five colonies
was measured after incubation in the dark for 7 d at 25 °C, and
the mean diameters for a species were calculated with 95 %
confidence intervals. Culture characteristics were also rated
using the charts of Rayner (1970).

To induce sexual reproduction in our collected species, we
applied the rice straw agar (RSA) method reported by Tanaka &
Harada (2003). Rice straws 4-5 cm long were soaked in distilled

water in a glass vial, autoclaved, and then three pieces of each
straw were placed on WA. Mycelial discs of each isolate were
plated and pre-incubated at 20 °C in the dark for 2 wk. To induce
the production of ascomata, the plates were transferred and
incubated under blacklight blue fluorescent lamp irradiation for
3 mo.

DNA extraction and phylogenetic analyses

An UltraClean Microbial DNA isolation kit (MoBio Laboratories,
Carlsbad) was used to conduct DNA extraction according
with manufacturer’s instructions. PCR amplification and
sequencing of the rDNA internal transcribed spacer (ITS)
region, glyceraldehyde-3-phosphate dehydrogenase (gapdh),
RNA polymerase second largest subunit (rpb2), translation
elongation factor 1-alpha (tef1), actin (act), Alternaria major
allergen (Alt a 1), and endopolygalacturonase (endoPG) genes
were conducted at the Mie University Advanced Science
Research Promotion Center, according to the procedure
described in previous studies (Nishikawa & Nakashima 2013,
2015, 2019). All the newly determined sequences were
deposited in the DNA Data Bank of Japan (DDBJ) (Table 2).
Complementary strands of the sequences were assembled
and concatenated in MEGA v. 7 (Kumar et al. 2016) and were
aligned using MAFFT v. 7 (Katoh et al. 2017; http://mafft.cbrc.
jp/alignment/server/index.html). Sequence alignments were
deposited in TreeBASE under number S24554.

To analyze the relationships between Japanese isolates and
existing species, and to correctly classify them in Alternaria
sections following Woudenberg et al. (2013), maximum
parsimony (MP), maximum likelihood (ML), and Bayesian
inference (Bl) analyses were conducted using a combined
dataset composed of 80 gapdh, rpb2, and tefl sequences
generated from our collected Japanese isolates and other
sequences from GenBank (Table 2). Maximum parsimony
analyses were performed in PAUP v. 4.0b10 (Swofford 2003)
using heuristic searches, each of which consisted of 100
random sequence additions and a tree-bisection-reconnection
(TBR) algorithm for branch swapping. All the characters were
unordered and unweighted, with alignment gaps treated
as missing data. Clade robustness of the obtained trees was
assessed using 1 000 bootstrap (BS) replications (Felsenstein
1985). Tree scores, including tree length (TL), consistency index
(Cl), retention index (RI), rescaled consistency index (RC), and
homoplasy index (HI), were calculated. Maximum likelihood
analyses were performed in RAXML-NG v. 0.6.0 BETA (Kozlov
et al. 2018) using the GTR+FO+G model as the nucleotide
substitution model and 100 BS replicates. Bayesian inference
analyses were performed in BEAST v. 2.5.1 (Bouckaert et al.
2014). A nucleotide substitution model TN93 was selected by
Kakusan4 software (Tanabe 2011). To estimate the posterior
probabilities (PPs) of tree topologies, Metropolis-Coupled
Markov Chain Monte Carlo searches (MCMCMC) were run
for 30 M generations with trees sampled and saved every
1 000 generations until the average standard deviation of split
frequencies reached 0.01 (stop value), which generated 18 001
trees from which the initial 12 000 trees were discarded as
burn-in based on the effective sample size (ESS) calculated by
Tracer v. 1.7.1 software package (Rambaut et al. 2018). After
discarding, PPs were determined from the remaining trees.
Sequences of Paradendryphiella salina (= E. annulata) (CBS
302.84) were used as the outgroup.
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To evaluate the validity of ITS as the fungal barcoding gene
for Alternaria, and to find phylogenetic species boundaries via
multi-locus phylogeny, MP, ML, and Bl analyses were conducted
separately with the ITS dataset, which was composed of 74
sequences generated from our collected Japanese isolates and
other sequences from GenBank (Table 2). Maximum parsimony
analyses were performed in PAUP v. 4.0b10, with the same
procedure and settings. Maximum likelihood analyses were
performed in RAXML v. 8.1.17 (Stamatakis 2014), using the
GTR+GAMMA model as the nucleotide substitution model and
100 BS replicates. Bayesian inference analyses were performed
in BEAST v. 2.5.1, with the HKY+GAMMA model selected by
Kakusan4. To estimate the PPs of tree topologies, MCMCMC
were run for 20 M generations with trees sampled and saved
every 1 000 generations. After discarding the initial 10 000 trees
as burn-in, PPs were determined from the remaining trees.
Sequences of P. salina were used as the outgroup.

To analyze the detailed relationships between Japanese
isolates within sect. Alternaria, MP, ML, and Bl analyses were
conducted using a combined dataset of act, Alt a 1, endoPG,
gapdh, rpb2, and tefl sequences, which was composed of nine
sequences generated from our collected Japanese isolates
and other sequences from GenBank (Table 2). Maximum
parsimony and ML analyses were performed in PAUP v. 4.0b10
and RAxXML v. 8.1.17, respectively, using the same procedure
and settings used for ITS analyses. Bayesian inference analyses
were performed in BEAST v. 2.5.1 with the GTR+GAMMA model
selected by Kakusan4. To estimate the PPs of tree topologies,
MCMCMC were run for 10 M generations with trees sampled
and saved every 1 000 generations, which generated 9 001 trees
from which the initial 1 000 trees were discarded as burn-in.
After discarding, PPs were determined from the remaining trees.
Sequences of the Japanese isolate of A. nobilis (AC1) were also
used as the outgroup. The generated trees were printed with
FigTree v. 1.4.2 (Institute of Evolutionary Biology, University of
Edinburgh, http://tree.bio.ed.ac.uk/software/figtree).

Inoculation tests

To determine the experimental host range of the obtained
isolates, conidia produced on V8 medium as described above
were washed with sterile distilled water containing 0.02 %
polyoxyethylene (20) sorbitan monolaurate (Wako Pure
Chemicals, Osaka), and used as inocula (Nishikawa & Nakashima
2013). The concentration of each conidial suspension was
adjusted using a hemocytometer, and then each inoculum was
sprayed onto mature leaves of potted plants (at least three
replicates) until run-off. Closely related plant species from the
same family as the original host source of each Alternaria species
were also inoculated. Furthermore, the unrelated plant species
recorded as hosts were also inoculated to confirm potential
host species, and to define host range boundaries of Alternaria
species. Control plants were prepared and sprayed with sterile
distilled water. All the inoculated plants were maintained in an
incubator under moist conditions at 20 °C.

Virulent phenotypes were evaluated 7 d post-inoculation
(dpi) using the index described by Chaerani et al. (2007) (0: no
visible leaf lesions; 1: up to 10 % of leaf area affected; 2: 11-25 %
of leaf area affected; 3: 26-50 % of leaf area affected; 4: 51-75 %
of leaf area affected; and 5: more than 75 % of leaf area affected
or the leaf abscised), and the means for each inoculated plant
species were calculated as disease severity with 95 % confidence

intervals. Given the importance of epidemiology to the obtained
results, we also focused on whether sporulation was present
or absent on the host lesions. Consequently, pathogenicity of
examined isolates was determined by the disease severity,
symptom, and sporulation on lesions to evaluate host ranges
more accurately. Inoculated plants showing no symptoms within
7 dpi were observed continuously until 30 dpi.

Among sect. Alternantherae, two species on Gomphrena,
namely A. gomphrenae and MAFF 246768 (A. paragomphrenae),
were examined to determine host preference within
Amaranthaceae, and differential plants for both species
compared with those of allied taxa in this section. Three species
on Brassicaceae, which were known to be polyphyletic and
morphologically distinguishable from each other (Simmons 2007,
Woudenberg et al. 2013), were inoculated onto 13 species of
Brassicaceae (with two varieties of Brassica oleracea and four
subspecies of B. rapa) to compare their host range. Moreover,
previously recorded non-Brassicaceae host plants, e.g. Cucumis
and Beta for A. brassicae (Simmons 2007), including that of
closely related species, namely Solanum for A. mimicula, were
also used to verify their validity as true hosts. Alternaria cumini
and MAFF 246776 (A. triangularis) were inoculated onto 13
host species of Apiaceae, including Bupleurum, comparing the
host range of the other pathogenic species on this family. MAFF
246770 (A. cylindrica) was inoculated onto Petunia and six species
of Solanaceae to determine its host range compared to those of
A. crassa and A. solani. Vigna and Zea, which are recorded as host
species of Prathoda longissima (= A. longissima) (Deighton et al.
1698), were also used to examine conspecificity with the previously
reported pathogen identified as A. longissima in Japan (Takano
2005). Two isolates of A. iridicola were examined to reveal their
host range within Iridaceae, including Gladiolus and Iris ensata,
which are additional natural hosts recorded in Korea (Yu 2001),
and one of the original host species of A. iridiaustralis recorded
in China (Luo et al. 2018), respectively. Two non-Iridaceae species
were additionally inoculated because one of these, Allium, was
regarded as susceptible by Elliot (1917). In addition, A. porri-like
large-spored isolates obtained from Calibrachoa (AC6), Eustoma
(MUCC 1702), and Viola (AC2) were inoculated on each original
host and related plant species as well as Allium to identify these
miscellaneous isolates. Koch'’s postulates were also tested for the
three novel species described in this study.

RESULTS
Molecular phylogeny

The combined alignment of the gapdh, rpb2, and tef1 datasets
contained 189 sequences with a total of 1 567 characters.
PCR amplification and sequencing from six Japanese isolates,
e.g. the gapdh sequence of A. petroselini MAFF 243057, were
unsuccessful. The topologies of the resulting trees from MP,
ML, and Bl analyses were congruent, and Fig. 1 shows the ML
tree with BS values (MP and ML) and Bayesian PP. The Japanese
Alternaria isolates examined were divided into 14 sections
and two monotypic lineages as strongly supported clades;
The Japanese isolate of A. petroselini clustered with species
of sect. Radicina based on ITS, tefl, rpb2, Alt a 1, and act,
respectively (data not shown). Five Japanese species clustered
respectively in sect. Alternaria and Porri, and three species in
sect. Alternantherae.
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A. gaisen f. sp. fragariae MAFF 731005
A. gaisen f. sp. fragariae MAFF 731007
A. gaisen f. sp. fragariae MAFF 731004
A. gaisen f. sp. fragariae MAFF 731002
A. gaisen f. sp. pyri CBS 632.93 R
A. gaisen f. sp. pyri CBS 118488 ET
88/96/1 A. gaisen f. sp. pyri MUCC 2151
A. gaisen f. sp. pyri MUCC 2153
A. gaisen f. sp. pyri MUCC 2152
92/98/1 A. gaisen f. sp. fragariae MAFF 242310
™= A.gaisen f. sp. fragariae MAFF 731003
A. gaisen f. sp. fraganae MAFF 731001

91/100/0.95 4+— 4 A. arborescens CBS 1026
A. aff. arborescens CBS 119544 éTofA cerealis)
A. aff. arborescens CPC 25

A. aff. arborescens CBS 124283

100710071 A. iridicola MUCC 2148
A. iridicola MAFF 246890 ET
100/100/1 A. alstroemeriae MAFF 241374

A. alstro(emerlae CBSC11SS 09T

A. alternata (as A. iridis) CBS101.26
B3/7410-99 1, ™ A Jongipes CBS 540.94 R :
99/100/1 — A. longipes CBS 121332 R sect. Alternaria
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A. alternata AC82
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A. cylindrica* MAFF 246770 T
65/82/1 A. alternata f. sp. citri pathotype tangerine CBS 102600
A. alternata MAFF 410775
A. alternata f. sp. citri pathotype rough lemon CBS 102595
S A. alternata MAFF 24377

A. alternata CBS 121348 (T of A. platycodonis)
A. alternata MUCC 1616
A. alternata MUCC 1617
A. alternata MUCC 1611
A. alternata MAFF 305014

A. alternata CBS 916.96 ET

66/94/0.82

84/80/1

98/100/1

RV A. betae-kenyensis CBS 118810 T
A. eichhorniae CBS 489.92 T
A. iridiaustralis CBS 118486 T
A. tomato CBS 114.35 T
100/100/1 A. burnsii CBS 107.38 T
98/100/1 A. jacinthicola CBS 133751 T
90/100/1| A. alternantherae CBS 124392
97/100/1 A. perpunctulata CBS 115267 T
A. alternantherae EGS52.039
99/100/1 A. gomphrenae MAFF 246769 ET sect. Alternantherae
7461 A. celosiicola MAFF 243058
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Fig. 1. Maximum likelihood (ML) tree based on the combined dataset of gapdh, rpb2, and tefl sequences from Japanese Alternaria isolates. The tree
was rooted to Paradendryphiella salina (CBS 302.84). Maximum parsimony (MP) and ML bootstrap values and Bayesian posterior probabilities (PP)
are given near branches (MP/ML/PP). Thickened nodes indicate significant support by MP/ML/PP (> 70/70/0.95). The scale bar indicates the number
of nucleotide substitutions per site. Japanese isolates examined are indicated in bold, and the statuses of reference isolates are indicated in bold and
italic. T: ex-type, NT: ex-neotype, ET: ex-epitype, R: representative strain assigned by Simmons (2007). Names of sections and monotypic lineages
(MTL) for each taxon are given in the right column, and the Japanese isolates examined in the study are also indicated in bold. Resolved novel taxa
with an asterisk were indicated as red shadings.
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Fig. 1. (Continued).
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Table 1. Isolates of Japanese species of Alternaria obtained in this study.
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Fungal name

Alternaria section

Strain number®?

Host plant

Location; year

Alternaria alstroemeriae

Alternaria alternata

Alternaria atra

Alternaria botrytis

Alternaria brassicae

Alternaria brassicicola

Alternaria celosiicola

Alternaria chartarum

Alternaria cinerariae

Alternaria crassa

Alternaria

Alternaria

Ulocladioides

Ulocladium

Brassicicola

Alternantherae

Pseudoulocladium

Sonchi

Porri

MAFF 241374

MAFF 239887
MUCC 1610
MUCC 1611
MUCC 1616
MUCC 1617
AC82

MAFF 243775
MAFF 305014
MAFF 410775

AC86
AC87
AC88
MAFF 246889

MAFF 246887

AC29
MAFF 240791
MUCC 1615

MAFF 246772 =
MUCC 1694

MAFF 246773

MUCC 1612 = AC56
MUCC 1619 = AC70

AC71
AC72

MAFF 243058

MAFF 246888

MAFF 243059 =
MUCC 1701

MAFF 241266 =
MUCC 1613

MAFF 241267 =
MUCC 1614

MUCC 2504

MAFF 243056

Alstroemeria sp.

Vigna radiata
Impatiens hawkeri
Antirrhinum majus
Pelargonium hortorum
Primula x polyantha
Solanum lycopersicum
Vigna radiata

Pyrus aromatica

Unknown (Pyrus?)

Raphanus sativus
Brassica oleracea var. capitata
Brassica rapa subsp. pekinensis

Allium fistulosum

Asparagus officinalis

Brassica rapa
Raphanus sativus

Raphanus sativus

Brassica oleracea var. sabellica

Spinacia oleracea
Brassica rapa subsp. pekinensis
Raphanus sativus
Raphanus sativus

Brassica oleracea var. italica

Celosia argentea var. plumosa

Capsicum annuum

Pericallis cruenta

Farfugium japonicum

Gynura bicolor

Jacobaea maritima

Datura stramonium

Nagano Pref., Matsumoto; 2008

unknown (Japan); 1998
Nagano Pref., Azumino; 2006
Shizuoka Pref., Kakegawa; 2008
Kanagawa Pref. Nakai; 2004
Shizuoka Pref., Kakegawa; 2004
Shizuoka Pref., Kakegawa; 2011
Tokyo, Chiyoda; 2012
Kanagawa Pref.; 1958

Unknown (Japan)

Tokyo, Setagaya; 2000
Tokyo, Setagaya; 2001
Tokyo, Setagaya; 2001
Tokyo, Setagaya; 2001

Shizuoka Pref., Kakegawa; 2008

Shizuoka Pref., Kakegawa; 2006
Ibaraki Pref., Tsukuba; 2007
Chiba Pref. Narita; 2009

Shizuoka Pref., Kakegawa; 2003

Tokyo, Setagaya; 2002
Shizuoka Pref., Kakegawa; 2008
Tokyo, Setagaya; 2000
Tokyo, Setagaya; 2000
Tokyo, Setagaya; 2001

Kanagawa Pref., Fujisawa; 2006

Tokyo, Setagaya; 2000

Chiba Pref., Narita; 2002

Ibaraki Pref., Tsukuba; 2008

Ibaraki Pref., Tsukuba; 2008

Kanagawa Pref., Atsugi; 2017

Tokyo, Kodaira; 2000
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Table 1. (Continued).

Fungal name Alternaria section  Strain number®2 Host plant Location; year
MUCC 2502 = 12- Datura fastuosa Tokyo, Kodaira; 2012
M0180
MUCC 2503 = Datura inoxia Tokyo, Kodaira; 2012
12-M0099
Alternaria cucumerina Porri
AC105 Cucurbita maxima Niigata Pref., Sado; 2010
AC106 Cucurbita maxima Niigata Pref., Sado; 2010
Alternaria cumini Eureka
MAFF 246774 Cuminum cyminum Shizuoka Pref., Kakegawa; 2012
AC115 Cuminum cyminum Shizuoka Pref., Kakegawa; 2013
Alternaria cyrindrica* Alternaria
MAFF 2467707 Petunia x atkinsiana Shizuoka Pref., Kakegawa; 2006
Alternaria dauci Porri
MUCC 1684 Daucus carota Shizuoka Pref., Kakegawa; 1998
AC9 Daucus carota Shizuoka Pref., Kakegawa; 1998
Alternaria gaisen f. sp. Alternaria
fragariae
MAFF 242310 = Fragaria x ananassa ‘HS-138’ Hokkaido, Esashi; 2007
MUCC 1609
MAFF 731001 Fragaria x ananassa ‘Morioka-16"  lwate Pref., Morioka; 1975
MAFF 731002 Fragaria x ananassa ‘Morioka-16"  Iwate Pref., Morioka; 1975
MAFF 731003 Fragaria x ananassa ‘Morioka-16"  Iwate Pref., Morioka; 1975
MAFF 731004 Fragaria x ananassa ‘Morioka-16"  lwate Pref., Morioka; 1975
MAFF 731005 Fragaria x ananassa ‘Morioka-16"  Iwate Pref., Morioka; 1975
MAFF 731006 Fragaria x ananassa ‘Morioka-16"  lwate Pref., Morioka; 1975
MAFF 731007 Fragaria x ananassa ‘Morioka-16"  Iwate Pref., Morioka; 1975

Alternaria gaisen f. sp. pyri Alternaria
MUCC 2151 =9901A  Pyrus pyrifolia var. culta ‘Nijisseiki’  Tottori Pref., Tohaku; 1999
MUCC 2152 =9903A  Pyrus pyrifolia var. culta ‘Nijisseiki’  Tottori Pref., Tohaku; 1999
MUCC 2153 =9904C  Pyrus pyrifolia var. culta ‘Nijisseiki’  Tottori Pref., Tohaku; 1999

Alternaria gomphrenae Alternantherae
MAFF 246769 = Gomphrena globosa Shizuoka Pref., Kakegawa; 2011
MUCC 16237
Alternaria iridicola Alternaria
MUCC 2148 Iris japonica Tokyo, Kodaira; 2010
MAFF 246890 = Iris japonica Kanagawa Pref., Kamakura;
MUCC 21497 2013
MAFF 246771 = Iris japonica Shizuoka Pref., Fukuroi; 2018
MUCC 2501
Alternaria japonica Japonicae
AC73 Raphanus sativus Tokyo, Setagaya; 2000
MAFF 246775 = Raphanus sativus Tokyo, Setagaya; 2000
MUCC 1622F"
AC96 Brassica oleracea var. italica Shizuoka Pref., Kakegawa; 2010
AC97 Brassica oleracea var. italica Shizuoka Pref., Kakegawa; 2010
Alternaria nobilis Gypsophilae
AC1 Dianthus barbatus Shizuoka Pref., Kakegawa; 2003
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Table 1. (Continued).

Nishikawa & Nakashima

Fungal name

Alternaria section

Strain number®2

Host plant

Location; year

Alternaria panax

Alternaria paragomphrenae*

Alternaria penicillata

Alternaria petroselini

Alternaria porri

Alternaria triangularis*

Alternaria zinniae

Alternaria sp.

Panax

Alternantherae

Crivellia

Radicina

Porri

Porri

Alternaria

AC25

MUCC 1692 =
PFAIt1-1

AC19 = PGAIt1

MAFF 243161 =
MUCC 1625

MAFF 243162 =
MUCC 1626

MAFF 246768 =
MUCC 1683"

MUCC 1657

MAFF 243057

AC2

AC6

MUCC 1688
AC15

AC16

AC17
MUCC 1698
AC32
MUCC 1702

AC68

MAFF 2467767
AC95

MUCC 1704
AC107
AC108
AC109

MAFF 305015

Dianthus caryophyllus

Polyscias fruticosa

Polyscias guilfoylei

Polyscias fruticosa

Polyscias fruticosa

Gomphrena haageana

Papaver nudicaule

Petroselinum crispum

Viola x wittrockiana
Calibrachoa sp.
Allium fistulosum
Allium fistulosum
Allium fistulosum
Allium fistulosum
Allium fistulosum
Allium fistulosum

Eustoma exaltatum subsp.
russellianum

Allium fistulosum

Bupleurum rotundifolium

Bupleurum rotundifolium

Zinnia hybrida
Zinnia hybrida
Zinnia elegans

Zinnia elegans

Pyrus aromatica

Miyagi Pref., Sendai; 2002

Tokyo, Ogasawara (Bonin Is.);
2003

Tokyo, Ogasawara (Bonin Is.);
2003

Tokyo, Ogasawara (Bonin Is.);
2011

Tokyo, Ogasawara (Bonin Is.);
2011

Shizuoka Pref., Hamamatsu;
2004

Tokyo, Tachikawa; 2005

Shizuoka Pref., Kakegawa; 2007

Shizuoka Pref., Kakegawa; 2003
Shizuoka Pref., Kakegawa; 2004
Shizuoka Pref., Kakegawa; 2004
Saitama Pref.; 2004

Gunma Pref., Takasaki; 2005
Gunma Pref., Takasaki; 2005
Gunma Pref., Tomioka; 2006
Chiba Pref., Mobara; 2006
Shizuoka Pref., Kakegawa; 2007

Tokyo, Setagaya; 2001

Kochi Pref., Konan; 2004
Shizuoka Pref., Kakegawa; 2004

Nagano Pref., Tomi; 2007
Nagano Pref., Azumino; 2010
Shizuoka Pref., Kakegawa; 2011
Nagano Pref., Azumino; 2011

Chiba Pref.; 1959

L AC: Personal collection of JN; MAFF: Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Japan; MUCC
(Japan): Culture Collection, Laboratory of Plant Pathology, Mie University, Tsu, Japan.

2 Ex-type and -epitype strain indicated with T and ET, respectively.

* Novel taxa proposed in the taxonomy section.
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Japanese species of Alternaria

Among the three novel species identified based on their
distinct morphological characteristics, MAFF 246768 ex G.
haageana (A. paragomphrenae) was clearly distinguishable
from A. gomphrenae and A. celosiicola in sect. Alternantherae,
and two isolates (MAFF 246776 and AC95) ex Bupleurum (A.
triangularis) were also well-resolved as a new monotypic
sister lineage to sect. Sonchi. However, MAFF 246770 ex
Petunia (A. cylindrica) had a unique sequence with strong
BS support in ML but with weak support in MP and BI. The
remaining other morphologically distinguishable species were
assigned to each valid clade, whereas Japanese isolates of A.
botrytis, A. brassicicola, A. chartarum, and A. japonica were
indistinguishable from closely related taxa, including the ex-type
and ex-epitype isolates in each section.

The ITS datasets containing 178 sequences were aligned for
a total of 586 characters. The topologies of the resulting trees
from MP, ML, and Bl analyses were congruent, and Fig. 2 shows
one of the MP trees (TL = 600, Cl =0.433, Rl =0.881, RC = 0.382,
HI = 0.567) with BS values (MP and ML), and Bayesian PP. Almost
all of the examined Japanese species, together with their closely
related taxa in phylogenetic trees that were indistinguishable
based on the combined gapdh, rpb2, and tefl sequence
datasets, were each recognized as separate species. Two isolates
(MAFF 246776 and AC95) ex Bupleurum (A. triangularis) were
well-resolved as a distinct new species. However, species in sect.
Alternaria, and two large-spored species in sect. Porri having
colored filamentous beaks (A. cucumerina and A. zinniae),
were not recognized as independent species. PCR amplification
and sequencing of seven Japanese isolates, i.e. MAFF 246768
(A. paragomphrenae) and A. iridicola MAFF 246771, were
unsuccessful.

The combined alignment of act, Alt a 1, endoPG, gapdh,
rpb2, and tef1 datasets contained 18 sequences with a total of
2 473 characters. PCR amplification and sequencing of the act
sequence of A. iridicola MAFF 246890 was unsuccessful. The
topologies of the resulting trees from MP, ML, and Bl analyses
were congruent, and Fig. 3 shows one of the MP trees (TL
= 383, Cl = 0.859, Rl = 0.783, RC = 0.673, HI = 0.141) with BS
values (MP and ML) and Bayesian PP. MAFF 246770 ex Petunia
(A. cylindrica) was identified as a new sister lineage to the A.
arborescens species complex in this section.

Morphology and growth rate on potato-dextrose agar

Based on their conidial morphology on PCA and V8 media, the
Japanese Alternaria isolates examined in the present study
were recognized as either one of 23 existing species, or one of
three novel species. One of the novel taxa, MAFF 246768 (A.
paragomphrenae) ex Gomphrena haageana, produced very
similar conidia to those of A. gomphrenae and other species in
sect. Alternantherae; however, they differed in the length and
width of their conidial bodies (Table 3). Among their various
features, conidiophore width was a defining characteristic
of each Alternaria section: those of sect. Alternaria [A.
alstroemeriae, A. alternata, A. gaisen, and MAFF 246770 (A.
cylindrica)), Brassicicola, Crivellia, Japonica, Pseudoulocladium,
Ulocladioides, Ulocladium, and MAFF 246776 (A. triangularis)
for the most part did not exceed an average of 5 um (narrow
conidiophores); those of sect. Alternantherae [A. celosiicola, A.
gomphrenae, and MAFF 246768 (A. paragomphrenae)], Eureka,
Gypsophilae, Panax, Porri (A. crassa, A. cucumerina, A. dauci,

A. porri, A. zinniae), Sonchi, and A. brassicae usually reached
6—7 um (thick conidiophores); those of sect. Radicina were of
an intermediate width, ranging around 5-6 pm; and A. iridicola
produced mostly narrow, but often thickened, conidiophores.
In addition, species in sect. Porri were characterized by the
morphology of their beaks, especially in color. Those of A.
porri and A. dauci were typically hyaline, whereas those of A.
cucumerina and A. zinniae were always colored. Moreover,
A. crassa grown on V8 medium commonly also formed
colored beaks as cylindrical secondary conidiophores, but not
filamentous true beaks. A detailed morphology of each Japanese
species examined in the present study follows in the taxonomy
section.

Colony diameters of the examined species ranged from 24—
87 mm after 7 d incubation at 25 °C, and the mean with 95 %
confidence intervals was 61.6 + 6.3 mm (Fig. 4). Based on the
mean colony diameters, the examined species were classified
into groups; fast-growing: A. alstroemeriae, A. alternata, A.
celosiicola, A. crassa, A. cucumerina, A. gaisen, A. petroselini, and
A. porri; moderate-growing: A. atra, A. botrytis, A. brassicicola,
A. chartarum, A. cinerariae, A. cumini, A. iridicola, A. japonica,
A. zinniae, MAFF 246768 ex Gomphrena (A. paragomphrenae),
and MAFF 246770 ex Petunia (A. cylindrica); slow to moderate-
growing: A. dauci, A. gomphrenae, and A. panax; slow-growing:
A. brassicae, A. nobilis, A. penicillata, and MAFF 246776 ex
Bupleurum (A. triangularis).

Experimental host range

Inoculation tests conducted in this study determined host ranges
of each species, as well as species boundaries between closely
related species. Moreover, “false” hosts, which were previously
recorded as if true hosts or susceptible host plants, were also
revealed. Detailed results are described for each host family as
follows.

Alternaria gomphrenae and a novel species infecting
Amaranthaceae

Two Alternaria isolates, A. gomphrenae MAFF 246769 and MAFF
246768 ex G. haageana (A. paragomphrenae), were inoculated
onto Amaranthaceae plants by spraying a conidial suspension
concentrated at an average of 2.2 x 10* conidia/mL; both isolates
had similar aggressiveness toward these hosts, but differed on
Alternanthera (Table 4).

Distinct reddish spots appeared on Gomphrena after 7
dpi with A. gomphrenae, leading to defoliation, with poor
sporulation on lesions even after 30 dpi (Fig. 5A, B). Almost no
distinct symptoms caused by A. gomphrenae were observed on
the inoculated leaves of Alternanthera or the other examined
plants — Amaranthus, Celosia, Beta, and Spinacia — until 30 dpi
(Fig. 5C).

Distinct spots caused by MAFF 246768 similar to those
of A. gomphrenae were also observed, but were more severe
on Gomphrena by 10 dpi (Fig. 5D), while no symptoms were
observed on control plants. Indistinct spots frequently appeared
on the leaves of Alternanthera inoculated with MAFF 246768
by 2 dpi, and then the leaves were severely defoliated with
sporulation by 10 dpi (Fig. 5E, F). Almost no distinct symptoms
were observed on the inoculated leaves of the other examined
plants until 30 dpi, though they often showed small necrotic
spots without sporulation (Fig. 5G, H).
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Fig. 2. Phylogenetic tree generated from maximum parsimony (MP) analysis based on the ITS sequences from Japanese Alternaria isolates. The tree
was rooted to Paradendryphiella salina (CBS 302.84). MP and RAXML maximum likelihood (ML) bootstrap values and Bayesian posterior probabilities
(PP) are given near branches (MP/ML/PP). Thickened nodes indicate significant support by MP/ML/PP (> 60/60/0.96). Tree length = 600, consistency
index = 0.433, homoplasy index = 0.567, retention index = 0.881, and rescaled consistency index = 0.382. The scale bar indicates the number of
nucleotide substitutions. Japanese Alternaria isolates examined are indicated in bold, and the statuses of reference isolates are indicated in bold and
italic. T: ex-type, NT: ex-neotype, ET: ex-epitype, R: representative strain assigned by Simmons (2007). Asterisks indicate novel taxa proposed in the

taxonomy section.

80/86/0.97

-/56/1

. br MUCC 1615
A. brassicae MAFF 240791
A. helianthiinficiens CBS 208.86 T

L A. peucedani CNU 111485 T

A. concatenata CBS 120006 T
A. aspera CBS 115269 T

A. septospora CBS 109.38
A. chartarum CBS 200.67 ET
A. chartarum MAFF 246888
heterospora CBS 123376 T
atra MAFF 246889
atra AC88
atra AC86
multiformis CBS 102060 T
cucurbitae CBS 483.81 R

A. atra CBS 195.67 ET

A. cantlous CBS 123007 T
A. dianthicola CBS 116491 R

A. cheiranthi CBS 109384 R
A. saponariae CBS 116492
A. nobilis CBS 116490 R
A. ellipsoidea CBS 119674 T
A. nobilis AC25
A. nobilis AC1
A. gypsophilae CBS 107.41 T
A. vaccariicola CBS 118714 T
A. petroselini CBS 112.41 T
A. selini CBS 109382 T
A. petroselini CBS 109383 R
A. petroselini MAFF 243057

A.
A.
A.
A.
A.
A.

A. smyrnii CBS 109380 R
A. radicina CBS 245.67 NT

A. cetera CBS 121340 T

A. hyacinthi CBS 416.71 T

A. kulundii CBS 137525 T
A. infectoria CBS 210.86 T
A.rosae CBS 121341 T

_::4. dennisii CBS 476.90 T

A. bornmuelleri DAOM 231361
soliaridae CBS 118387 T
A. embellisia CBS 339.71 R

A. eureka CBS 193.86 T

A. penicillata

A. japonica

A. cinerariae

A. atra complex

A. petroselini

216

© 2020 Westerdijk Fungal Biodiversity Institute



Japanese species of Alternaria

. tomato CBS 114.35 T
. jacinthicola CBS 133751 T
. burnsii CBS 107.38 T
. gaisen f. sp. fragariae MAFF 731003
. cylindrica* MAFF 246770 T
. longipes CBS 121332 R
. longipes CBS 540.94 R
iridicola MAFF 246890 ET
iridicola MUCC 2148
gaisen f. sp. fragariae MAFF 242310
gaisen f. sp. pyri MUCC 2153
gaisen f. sp. pyri MUCC 2152
gaisen f. sp. pyri MUCC 2151
gaisen f. sp. fragariae MAFF 731001
gaisen f. sp. fragariae MAFF 731002
gaisen f. sp. fragariae MAFF 731004
gaisen f. sp. fragariae MAFF 731005
gaisen f. sp. fragariae MAFF 731006
alternata MAFF 305014
gossypina CBS 104.32 T
gaisen f. sp. pyri CBS 118488 ET
aff. arborescens CPC 25266
aff. arborescens CBS 124283
aff. arborescens CBS 119544 (T of A. cerealis)
alstroemeriae CBS 118809 T
gaisen f. sp. pyri CBS 632.93 R
arborescens CBS 102605 T
alstroemeriae MAFF 241374
alternata MUCC 1616
alternata MUCC 1610
alternata MAFF 243775
alternata CBS 121348 (T of A. platycodonis)
alternata f. sp. citri pathotype tangerine CBS 102600
alternata f. sp. mali CBS 106.24
alternata f. sp. citri pathotype rough lemon CBS 102595
alternata CBS 918.96 (R of A. tenuissima)
alternata CBS 916.96 ET
alternata AC82
alternata MUCC 1611
alternata MAFF 239887
- A. alternata MUCC 1617

A. gaisen f. sp. fragariae MAFF 731007

A. alternata MAFF 410775

A. betae-kenyensis CBS 118810 T
- A. eichhorniae CBS 489.92 T
~ A. iridiaustralis CBS 118486 T
. zinniae CBS 117223 R
. zinniae AC109
. zinniae AC108
. zinniae AC107
. zinniae MUCC 1704
cucumerina CBS 117225 R
cucumerina AC106
cucumerina AC105
. cucumerina CBS 116114 (T of A. loofahae)
. macrospora CBS 117228 T
A. tagetica CBS 479.81 R
A. crassa CBS 109160 (T of A. capsici)
A. crassa CBS 110.38 ET A. crassa
A. crassa MUCC 2502
A. crassa MAFF 243056
porri CBS 116699 ET
alli CBS 116701 R
alli CBS 107.28 T
porri CBS 116698 R
porri AC68
porri on Eustoma MUCC 1702 A. porri
porri AC32
porri MUCC 1698
porri AC16
porri MUCC 1688
porri on Calibrachoa AC6
porri on Viola AC2
A. solani CBS 109157 R
~- A. pseudorostrata CBS 119411 T
A. dauci CBS 111.38 NT
| = A.dauci MUCC 1684 A. dauci
A. dauci AC9
A. euphorbiicola CBS 119410 R

95/88/1| A- perpunctulata CBS 115267 T
A. alternantherae CBS 124392

59/56/0.97 —

1
_|
_|

sect. Alternaria

94/-/1

SDDDEEEIEEDDDOEEEEEEEEDDELDDEDDIEDDD L Ly ey

51/74/0.93

58/78/0.98

>>DD>DDDID>
Colored beak species

in sect. Porri

78/86/1

51/70/0.49 ~

!

70/68/0.84

N S T

81/96/1

81/94/17

A. alternantherae EGS52.039
A. gomphrenae MAFF 246769 ET A. gomphrenae

|— A. celosiicola EGS42.013 T ™
100/100/1 | A. celosiicola MAFF 243058 A. celosiicola

A. cumini CBS 121329 T -

M'_ A. cumini AC115 A. cumini
A. cumini MAFF 246774
Paradendryphiella salina CBS 302.84 T

10.0
Fig. 2. (Continued).

99/98/1

© 2020 Westerdijk Fungal Biodiversity Institute 217



FUSE
Nishikawa & Nakashima

100r100/1 [ A arborescens CBS 102605 T
65/78/0.9 A aﬁ arborescens CBS 119544 (T of A. cerealis)

62/77/099), A. alternata AC82
L2 | A. alternata MAFF 239887
f A. alternata MUCC 1610
A. alternata CBS 918.96 (R of A. tenuissima)

/

A. alternata MUCC 1611
A. alternata CBS916.96 ET

-/73/0.99 | A. gaisen f. sp. fragariae MAFF 242310
A. alstroemeriae MAFF 241374
1001001 [ A. burnsii CBS107.38 T
L A tomato CBS114.35

A gossypina CBS 104.32 T
100/1 °°/ 'L A longipes CBS540.94 R

69/92/1 | A. alternata MUCC 1616
A. alternata f. sp. citri pathotype rough lemon CBS 102595
69/62/1

/

A. nobilis AC1

Fig. 3. Phylogenetic tree of sect. Alternaria generated from maximum parsimony (MP) analysis based on the combined dataset of act, Alt a 1, endoPG,
gapdh, rpb2, and tef1 sequences from 17 isolates. The tree was rooted to Alternaria nobilis (sect. Gypsophilae). MP and RAXML maximum likelihood
(ML) bootstrap values and Bayesian posterior probabilities (PP) are given near branches (MP/ML/PP). Thickened nodes indicate significant support by
MP/ML/PP (> 60/60/0.96). Tree length = 383, consistency index = 0.859, homoplasy index = 0.141, retention index = 0.783, and rescaled consistency
index = 0.673. The scale bar indicates the number of nucleotide substitutions. Japanese isolates examined are indicated in bold, and statuses of
reference isolates are indicated in bold and italic. T: ex-type, ET: ex-epitype, R: representative strain assigned by Simmons (2007). Resolved novel

taxon with asterisk was indicated as red shadings.
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Fig. 4. Mean colony diameters (mm) on potato-dextrose agar medium. The mean for the entire examined species is indicated as a red line at 61.6 mm.
Bars indicate the 95 % confidence intervals. Asterisks indicate novel taxa proposed in the taxonomy section.
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Fig. 5. Pathogenicity of two Alternaria species of sect. Alternantherae. A-C. Alternaria gomphrenae (MAFF 246769); A, B. On Gomphrena at 30 d post-

inoculation (dpi). C. On Alternanthera at 8 dpi. D-H. Alternaria paragomphrenae (MAFF 246768); D. On Gomphrena at 10 dpi. E, F. On Alternanthera

at 4-6 dpi. G. On Amaranthus at 11 dpi. H. Celosia at 4 dpi.

Species infecting Brassicaceae

Three isolates of A. brassicae, MAFF 240791, AC29, and MUCC
1615, were applied by spraying a conidial suspension at an
average of 8.4 x 10* conidia/mL (Table 5). Distinct black lesions
appeared on the inoculated leaves of all Brassiceae plants,
Nasturtium, and Iberis within 2 dpi, and inoculated leaves
showed severe rot or defoliation with rich sporulation at 7-10
dpi (Fig. 6A—H). Distinct black spots also appeared on Eutrema
at 7 dpi, although these differed in disease severity between
applied isolates (Fig. 6l). Lesions on Lobularia and Matthiola
were usually indistinct; however, severe leaf blight or rot were
observed with rich sporulation at 9-10 dpi (Fig. 6J, K). No distinct
symptoms were observed on Aubrieta and Capsella until 30 dpi
as on the non-Brassicaceae plants, although poor sporulation
was sometimes seen on lower, older leaves (Fig. 6L).

Three isolates of A. brassicicola (MAFF 246772, MAFF 246773,
and MUCC 1619) were applied at an average of 3.2 x 10° conidia/
mL (Table 5). Results were similar to those of A. brassicae, with
three isolates of A. brassicicola being highly aggressive toward
Brassiceae plants, Nasturtium, Iberis, and Matthiola (Fig. 7A-G).
On the inoculated leaves of Lobularia, small spots resulting in
indistinct leaf blight were observed but with rich sporulation at
10 dpi (Fig. 7H). On the other hand, inoculated Eutrema leaves
mostly showed only indistinct tip burn with no to rare sporulation
by 18 dpi (Fig. 71), and the inoculated leaves of Aubrieta and
Capsella showed no distinct symptoms. However, sporulation was
often observed on suberized stem surfaces of the former species
at 7 dpi, and rarely produced necrotic spots on leaves of the latter
without sporulation by 7 dpi (Fig. 7J, K). No distinct symptoms
appeared on the non-Brassicaceae plants, even on Spinacia,
which was the original source of MAFF 246773 (Fig. 7L).

Two isolates of A. japonica (MAFF 246775 and AC96) were
applied at an average of 1.7 x 10° conidia/mL (Table 5). Similar
results as those observed on the former two species were
obtained on Brassiceae plants, Nasturtium, lberis, Lobularia,
and Matthiola (Fig. 8A—H). The inoculated leaves of Eutrema,
Aubrieta, and Capsella showed no distinct symptoms, although
necrotic spots without sporulation were rarely produced at 14
dpi (Fig. 81-K). No distinct symptoms appeared on the non-
Brassicaceae plants (Fig. 8L).

Alternaria cumini and a novel species infecting Apiaceae
Anisolate of A. cumini (MAFF 246774) was applied at an average
of 5.0 x 10* conidia/mL (Table 6). Leaf spots on Cuminum, which
was the original source of the fungus used for inoculation,
appeared at 2 dpi; leaves became severely blighted and rotten
with rich sporulation within 6 dpi (Fig. 9A). On the inoculated
leaves of Petroselinum and Anthriscus, mostly small spots or
tip burn appeared at 7 dpi, with rare sporulation within 30 dpi
(Fig. 9B). No distinct symptoms were observed on the other
seven Apiaceae plants, including Coriandrum and Daucus at 30
dpi.

A conidial suspension of MAFF 246776 ex Bupleurum (A.
triangularis) was applied at an average of 6.4 x 10* conidia/mL
(Table 6). The inoculated leaves of Bupleurum showed distinct
black spots within 5 dpi, and sporulation was abundant on
lesions at 7 dpi (Fig. 9C—F); no symptoms were observed on
control plants. Small necrotic spots without sporulation were
sometimes observed within 30 dpi on the inoculated leaves of
Angelica (Fig. 9G). No distinct symptoms were observed on the
inoculated leaves of the other seven plants at 30 dpi (Fig. 9H).
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Fig. 6. Pathogenicity of Alternaria brassicae (MAFF 240791). A. On Raphanus at 5 d post-inoculation (dpi). B. On Brassica oleracea var. capitata at 5
dpi. C. On B. rapa subsp. pekinensis at 7 dpi. D. On B. rapa subsp. nipposinica at 5 dpi. E. On B. juncea at 5 dpi. F. On Eruca at 7 dpi. G. On Nasturtium
at 2 dpi. H. On Iberis at 7 dpi. I. On Eutrema at 10 dpi. J. On Lobularia at 9 dpi. K. On Matthiola at 13 dpi. L. On Aubrieta at 7 dpi.

A novel species ex Petunia infecting Solanaceae

A conidial suspension of MAFF 246770 (A. cylindrica) was applied
at an average of 8.2 x 10° conidia/mL (Table 7). Irregular-shaped
lesions appeared abundantly on the inoculated Petunia leaves
at 2 dpi, and then lesions quickly expanded and caused severe
rot of the whole plant with rich sporulation (Fig. 10A—C), but no
symptoms were observed on control plants. Small necrotic spots
were observed on the inoculated leaves of Solanum lycopersicum
and S. melongena at 2 dpi, and were slightly expanded with little
sporulation within 7 dpi (Fig. 10D, E). No distinct symptoms were
observed on the other three Solanoideae plants, Nicotiana, and
two non-solanaceous plants (Fig. 10F).

Alternaria iridicola infecting Iridaceae

Two isolates of A. iridicola (MAFF 246890 and MAFF 246771)
were applied at an average of 3.2 x 10° conidia/mL, and both
isolates showed similar results (Table 8). Distinct leaf spots
appeared on Iris spp., except for I. ensata, at 7 dpi, and then the
inoculated leaves became severely blighted with rich sporulation
(Fig. 11A, B). As for I. ensata, neither distinct symptoms nor
sporulation were observed within 14 dpi (Fig. 11C). Small yellow
spots and slightly yellowing spots with no or poor sporulation

were observed at 7 dpi on Gladiolus and Crocus, respectively
(Fig. 11D, E). No distinct symptoms were observed on Freesia
and Asparagus, while yellow spots and tip burn without
sporulation were sometimes observed on leaves of Allium at 14
dpi (Fig. 11F-H).

Alternaria porri on non-host plants

Obtained A. porri isolates from non-host plants, such as isolates
AC2 ex Viola (Violaceae), AC6 ex Calibrachoa (Solanaceae), and
MUCC 1702 ex Eustoma (Gentianaceae), were used to inoculate
each original host and related plants by spraying with a conidial
suspension concentrated at an average of 2.0 x 10° conidia/mL.
No isolates showing pathogenicity toward non-alliaceous plants
including each source host plant were found.

Taxonomy

Eighty-five Japanese Alternaria isolates were collected, and
found to represent 26 species, of which three were new to
science. Each species is described for each Alternaria section in
alphabetical order below.
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Table 8. Experimental host range of Alternaria iridicola.

Inoculated plants
inoculation with:

Disease severity' and pathogenicity? by

Notes

MAFF 246890 MAFF 246771
Amaryllidaceae Small yellow spots and tip burn without sporulation were rarely
Allium fistulosum 0.740.7 * 0.3%0.3 * observed at 14 dpi.
Asparagaceae No distinct symptoms observed by 14 dpi.
Asparagus officinalis 0.1+0.3 -
Iridaceae
Crocoideae Slightly yellowing on tips with occasional sporulation were observed.
Crocus sp. 1.0+0.8 * 1.7+0.7 *
Iridoideae Leaf spots and sever blight with rich sporulation on I. laevigata and
Iris ensata var. spontanea  0.6£0.5 0.3:0.3 : fV: f’fﬁfﬂ‘i’ﬁ‘; r‘:‘;esr:n?;’:sa’:g\/a:r7lips'p?“t I. ensata var. spontanea
1. laevigata 3.541.3 *** 4.0%+0.8 ***
Iris x hollandica 4.1+0.6 *** 4.410.5 ***
Ixioideae Small yellow spots were often produced on Gladiolus by 14 dpi,
Freesia refracta 0 0 gzzetszzroix;i:;dbin& Zpl)aci).rulated. No distinct symptoms were
Gladiolus sp. 0.3+0.5 0.3+0.3

! Mean disease severity at 7 d post-inoculation (dpi) rated on a 0-5 scale (0: no visible lesions, 1: <10 % leaf area affected, 2: 11-25 %, 3: 26-50 %,
4:51-75 %, and 5: >75 % or defoliated). 95 % confidence intervals also indicated. —: not tested. Results of the original source plant genus of each

Alternaria species are indicated in bold.

2 Pathogenicity was evaluated by presence or absence of distinct lesion and sporulation on lesion, and indicated asterisks (***: strongly aggressive,
showing distinct lesions with rich sporulation, **: weakly aggressive, showing indistinct or fewer distinct lesions with sporulation, *: weakly
aggressive to opportunistic, showing fewer indistinct lesions with no to rare sporulation, blank: non-pathogenic, showing distinct lesions nor

sporulation).

Section Alternantherae D.P. Lawr. et al., Mycologia 105:
540. 2013.

Four species were recognized in this section (Lawrence et al.
2013, Woudenberg et al. 2013), and Gannibal (2018) added
two additional species. All taxa and phylogenetically unresolved
species (A. crassoides and A. pimpriana) were former members
of the genus Nimbya, and parasitic toward Amaranthaceae plant
hosts (Simmons 1989, 1995b, 2004). In this section, two known
species and one novel species were found.

Alternaria celosiicola Jun. Nishikawa & C. Nakash., J.
Phytopathol. 161: 606. 2013. Fig. 12.

Synonyms: Nimbya celosiae E.G. Simmons & Holcomb,
Mycotaxon 55: 144. 1995.

Alternaria celosiae (E.G. Simmons & Holcomb) Lawrence, Park &
Pryor, Mycol. Progr. 11: 811. 2012, nom. illeg. (later homonym;
ICN Art. 53.1). non Alternaria celosiae (Tassi) O. Savul., Herb.
Mycol. Rom.: fasc. 30, no. 1489. 1950.

Alternaria cristata D.P. Lawr., M.S. Park & B.M. Pryor, Mycol.
Progr. 13 (2): 259. 2014, nom. nud., ICN Art. 52.1.

Typus: USA, Louisiana, on Celosia cristata, Jul. 1993, G.E.
Holcomb, holotype BPI 803020, isotype IMI 369150 and IMI
369153, culture ex-type EGS42.013.

Specimens and isolates examined: Japan, Kanagawa Prefecture,
Fujisawa, on leaves of Celosia argentea var. plumosa, 26 Jun. 2006, S.
Masugi & Y. Makizumi, MUMH 11676 and MUMH 11701, living culture
MAFF 243058.

Morphological characters on V8 medium: Previously reported in
Nishikawa & Nakashima (2013). Morphology observed on PCA
medium similar to that observed on V8 medium (Table 3).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching 71.2 £ 0.9 mm diam; aerial hypha cottony, pale green to
grayish green, with white margins; reverse center black to dark
green; sporulation sparse; diffusible pigment absent (Nishikawa
& Nakashima 2013).

Sexual morph: Not observed.
Natural hosts: Celosia (Amaranthaceae).

Symptoms: Leaf spots on Celosia are circular to subcircular, 2-10
mm diam, brown to dark brown with distinct reddish margin,
and often surrounded by a yellowish halo, becoming confluent
(Nishikawa & Nakashima 2013).

Experimental host range: Pathogenic to Celosia, Amaranthus,
Alternanthera, and Gomphrena, but not to Beta and Spinacia
(Nishikawa & Nakashima 2013).

Distribution: USA (Simmons 1995b), China (Zhao & Zhang 2005),
and Japan (Nishikawa & Nakashima 2013).

Distinctive features: Conidia are larger than those of other related
species in sect. Alternantherae; conidial bodies usually exceeded
100 x 20 um, and beaks exceed 200 um long. Conidial bodies
commonly consist of a distosepta-like internal wall structure
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Fig. 7. Pathogenicity of Alternaria brassicicola (MAFF 246772). A. On Brassica oleracea var. capitata at 7 d post-inoculation (dpi). B. On B. rapa subsp.
chinensis at 7 dpi. C. On Raphanus at 7 dpi. D. On Eruca at 7 dpi. E. On Nasturtium at 7 dpi. F. On Iberis at 7 dpi. G. On Matthiola at 7 dpi. H. On
Lobularia at 18 dpi. I. On Eutrema at 18 dpi. J. On Aubrieta at 18 dpi. K. On Capsella at 7 dpi. L. On Spinacia at 7 dpi.

with octagonal lumina. This species is widely pathogenic not
only to Celosia, but also to Amaranthus, Alternanthera, and
Gomphrena (Table 4), and is phylogenetically recognizable via
its ITS (Fig. 2), gapdh, and act sequence data (data not shown).

Notes: Lawrence et al. (2012) transferred this species from the
genus Nimbya to Alternaria based on phylogenetic analysis, but
the proposed name — A. celosiae (E.G. Simmons & Holcomb)
Lawrence, Park & Pryor — resulted in a later homonym of A.
celosiae (Tassi) O.Savul. Although Lawrence et al. (2014) renamed
the epithet of A. celosiae to Alternaria cristata Lawrence, Park &
Pryor (MB 803181), this name is a later synonym of A. celosiicola
described by Nishikawa & Nakashima (2013).

Alternaria gomphrenae Togashi, Bull. Imp. Coll. Agric. Forest.
Morioka, Japan 9: 6. 1926. Figs 13, 14.

Synonyms: Nimbya gomphrenae (Togashi) E.G. Simmons,
Sydowia 41: 324. 1989.

Pseudocercospora gomphrenicola Chidd., Sci. Cult. (Calcutta) 22:
511.1957.

Typus: Japan, Kyoto Prefecture, Kitashirakawa, on leaves of
Gomphrena globosa (not specified; syntype specimens are

assigned as lectotype and paralectotype, respectively, in this
study). Lectotype designated here: Japan, Kyoto Prefecture,
Kitashirakawa, on leaves of G. globosa, 24 Aug. 1924, K.
Togashi, TNS-F-243868 [MBT 385025]; Paralectotype: Japan,
Kyoto Prefecture, Kitashirakawa, on leaves of G. globosa, 5 Aug.
1925, K. Togashi, TNS-F-243861; ibid., 10 Aug. 1925, K. Togashi,
TNS-F-243862; ibid., 4 Dec. 1925, K. Togashi, TNS-F-243866;
ibid., 19 Aug. 1924, K. Togashi, TNS-F-243867; ibid., 22 Jun.
1925, K. Togashi, TNS-F-243872; ibid., 7 Aug. 1924, T. Hemmi
& K. Togashi, TNS-F-243873; ibid., 17 Aug. 1924, K. Togashi,
TNS-F-243875. Epitype designated here: Japan, Shizuoka
Prefecture, Kakegawa, on leaves of G. globosa, 16 Oct. 2011,
J. Nishikawa, TNS-F-85451 (dried culture of MAFF 246769)
[MBT 385026], isoepitype MUMH 11685, culture ex-isoepitype
MAFF 246769.

Additional materials examined: Japan, Kyoto Prefecture, Kitashirakawa,
on leaves of G. globosa, 5 Aug. 1925, K. Togashi, TNS-F-243861; ibid.,
10 Aug. 1925, K. Togashi, TNS-F-243862; ibid., 4 Dec. 1925, K. Togashi,
TNS-F-243866; ibid., 22 Jun. 1925, K. Togashi, TNS-F-243872; ibid., 7
Aug. 1924, T. Hemmi & K. Togashi, TNS-F-243873; ibid., 17 Aug. 1924, K.
Togashi, TNS-F-243875.
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Fig. 8. Pathogenicity of Alternaria japonica (MAFF 246775). A. On Brassica oleracea var. capitata at 9 d post-inoculation (dpi). B. On B. rapa subsp.
rapa at 10 dpi. C. On Raphanus at 10 dpi. D. On Eruca at 4 dpi. E. On Nasturtium at 4 dpi. F. On Iberis at 4 dpi. G. On Lobularia at 9 dpi. H. On Matthiola
at 9 dpi. I. On Eutrema at 7 dpi. J. On Aubrieta at 7 dpi. K. On Capsella at 10 dpi. L. On Lactuca at 9 dpi.

Morphological characters on V8 medium: Conidiophores short
and broad, 25-65 x 5-8 um. Conidia usually solitary, brown
to dark brown, subcylindrical to long obclavate, 50-287 pum in
total length, surface smooth; conidial bodies 35-77 x 10-17
pum, with 3-9 transverse and 0-1 longitudinal septa consisting
of distosepta. The lumina usually distinct, octagonal to round;
filamentous beaks usually straight, subhyaline to pale brown,
sometimes multiseptated, unbranched, conspicuously border
the conidial body, often knobbed at the apex, 13-216 x 2-4
pm. Conidial bodies on lectotype specimens (TNS-F-243868)
46-94 x 10-16 um, with 4-10 transverse and no longitudinal
septa. Morphology on PCA medium and lesions similar to those
observed on V8 medium (Table 3).

Colony characteristics on PDA after 7d at 25 °C: Slow to moderate-
growing, reaching an average of 48 + 1.8 mm diam; aerial hypha
cottony, grayish green to white, with inconspicuous margins;
reverse center pale brown to reddish orange; sporulation sparse.

Sexual morph: Not observed.

Natural hosts: Gomphrena (Amaranthaceae).

Symptoms: Leaf and stem spots on G. globosa are circular to
elliptical, 2-10 mm diam, pale brown with reddish margins, and
become enlarged and confluent, resulting in leaf blighting.

Experimental host range: Selectively pathogenic to Gomphrena;
weakly pathogenic or opportunistic to Alternanthera; non-
pathogenic to Celosia and the other examined Amaranthaceae
plants (Table 4).

Distribution: In Asia (Cambodia, China, India, Indonesia, Japan,
Malaysia, Myanmar, and Sri Lanka), as well as North and Latin
America (Cuba, Jamaica, Trinidad and Tobago, and USA) (Yoshii
1933, Ellis 1976, Simmons 1989, Zhao & Zhang 2005).

Distinctive features: Conidia are long obclavate, shorter, and
narrower (usually not exceeding 100 x 20 pm) than other
species infecting Amaranthaceae. They rarely have longitudinal
septa, with octagonal lumina and colored beaks. This species
is selectively pathogenic to Gomphrena, and recognizable
phylogenetically via its ITS (Fig. 2), gapdh, rpb2, and act
sequences (data not shown).
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Fig. 9. Pathogenicity of two Alternaria species on Apiaceae. A, B. Alternaria cumini (MAFF 246774); A. On Cuminum at 7 d post-inoculation (dpi). B.
On Anthriscus at 7 dpi. C-H. Alternaria triangularis (MAFF 246776); C, D. On Bupleurum at 8 dpi. E. On stem of Bupleurum at 8 dpi. F. On Bupleurum
at 11 dpi. G. On Angelica at 10 dpi. H. On Ammi at 11 dpi.

Fig. 10. Pathogenicity of Alternaria cylindrica (MAFF 246770). A—C. On Petunia; A, B. At 3 d post-inoculation (dpi). C. At 7 dpi. D. On Solanum
lycopersicum at 6 dpi. E. On S. melongena at 7 dpi. F. On Brugmansia at 9 dpi.
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Fig. 11. Pathogenicity of Alternaria iridicola (MAFF 246890). A. On Iris laevigata at 6 d post-inoculation (dpi). B. On Iris x hollandica at 14 dpi. C. On /.
ensata at 14 dpi. D. On Gladiolus at 14 dpi. E. On Crocus at 6 dpi. F. On Freesia at 14 dpi. G. On Asparagus at 14 dpi. H. On Allium at 14 dpi.

Notes: This species is the causal pathogen of leaf spot on
Gomphrena, and was first described by Togashi (1926) in Japan.
In this description, Togashi also described 10 specimens, but did
not specify the holotype. Fortunately, eight of these specimens
were preserved as “TYPUS” in TNS; therefore, we re-examined
these syntype specimens and selected TNS-F-243868 as a
lectotype in the present study. However, we confirmed rich
sporulation of A. gomphrenae, often together with those of a
small-spored Alternaria species, and found that Togashi, in fact,
failed to establish pure cultures, much less complete inoculation
testing (Togashi 1926, Yoshii 1933, Simmons 1989, 1995b).
Therefore, we also designated an epitype specimen.

Alternaria paragomphrenae Jun. Nishikawa & C. Nakash., sp.
nov. MycoBank MB829109. Figs 15, 16.

Etymology: Named because of its close resemblance to
Alternaria gomphrenae, both in conidial morphology and host
range.

Diagnosis: Conidial bodies are cylindrical, commonly less than
100 um in length and exceeded 20 um in width, sometimes
with longitudinal septa forming octagonal lumina, with colored

beaks. Pathogenicity of the species is selective to Gomphrena
and Alternanthera. It is phylogenetically recognizable among
sect. Alternantherae via act, Alt a 1, gapdh, rpb2, and tefl
sequences.

Leaf and stem spots appear on G. haageana (Amaranthaceae),
and are pale brown with a small, grayish eye in the center
surrounded by reddish margins. They are circular to elliptical,
2—6 mm diam, scattered, show water-soaked enlargement, and
become confluent resulting in leaf blighting. On V8 medium,
conidiophores are short and thick, 27-81 x 5-7 um. Conidia
usually solitary, pale to brown, ellipsoid to cylindrical, 58—409
um in total length, with a smooth surface; conidial bodies
48-98 x 17-33 um, with 3—7 transverse and 0—-4 longitudinal
septa consisting of distosepta, constricted at each transverse
septa. The lumina distinct to indistinct, octagonal to round;
filamentous beaks straight to curved, subhyaline to pale
brown, sometimes multiseptated, unbranched, conspicuously
border the conidial body, 25-316 x 3-5 um, elongated on
cultures rather than on lesions. Morphology on PCA similar
to that observed on V8 medium; conidiophores 43—-125 x 6-9
um, conidia 60-294 um in total length, conidial bodies 60-111
x 15-25 um, with 2-9 transverse and 0-3 longitudinal septa,

232 © 2020 Westerdijk Fungal Biodiversity Institute



Japanese species of Alternaria

Fig. 12. Morphological features of Japanese isolates of Alternaria celosiicola (MAFF 243058) on potato-carrot agar medium. A—E. Conidia and lumina.
F. Colored beak. G. Conidiophores. H. Natural symptoms on Celosia. Scale bars = 25 um.

beaks 14-208 x 2—5 um. On lesions, conidiophores 26—99 x Typus: Japan, Shizuoka Prefecture, Hamamatsu, Hamakita, on
5-7 um, conidia 35-173 um in total length, conidial bodies 25— leaves of Gomphrena haageana, 14 Sep. 2004, J. Nishikawa,
99 x 8-26 um, with 1-9 transverse and 0-2 longitudinal septa, holotype TNS-F-85449 (a dried culture specimen ex MAFF
beaks 14-87 x 3—4 um. 246768), culture ex-holotype MAFF 246768 = MUCC 1683,
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Fig. 13. lllustrations of Alternaria gomphrenae (MAFF 246769). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on V8

juice agar medium. Scale bar = 25 um.

isotype MUMH 242310, GenBank accession number gapdh:
LC482000, rpb2: LCA76783, tefl: LC480207, Alt a 1: LC481610,
act: LC481858.

Experimental host range: Selectively pathogenic to subfamily
Gomphrenoideae (Gomphrena and Alternanthera), but
sometimes weakly to Celosia and the other examined
Amaranthaceae plants (Table 4).

Distribution: Only known from the type collection.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 59 + 2.4 mm diam; aerial hypha
cottony, pale gray to white, with inconspicuous margins; reverse
center yellowish to reddish orange; sporulation sparse.

Sexual morph: Not observed.

Notes: This species demonstrates specific pathogenicity to
Gomphrena in common with A. gomphrenae, and is also more
aggressive to Alternanthera than A. gomphrenae (Table 4). This
species is phylogenetically supported by DNA sequence data
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Fig. 14. Morphological features of Japanese isolates of Alternaria gomphrenae (MAFF 246769) on V8 juice agar medium. A—-H. Conidia and lumina.
I. Colored beak. J. Conidiophores. K. Dried culture specimen ex MAFF 246769 (epitype: TNS-F-85451). L. Natural symptoms on the specimen of
Gomphrena globosa (isoepitype: MUMH 11685). M. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). N, O. Lectotype
specimen, TNS-F-243868. P, Q. Conidia on lectotype. Scale bars (A-J, P, Q) = 25 um.

combined with gapdh, tef1, and rpb2, but close to A. celosiicola
rather than A. gomphrenae (Fig. 1). Based on its shorter and
wider bodies, this species is morphologically distinct from these
two relevant species (Table 3).

Section Alternaria D.P. Lawr. et al., Mycologia 105: 538.
2013.

This section was morphologically characterized by catenate,
small spores, which were typified by those of A. alternata
(Lawrence et al. 2013, Woudenberg et al. 2015). Eleven species
with three formae speciales of A. alternata and one species
complex (A. arborescens) were recognized by Woudenberg et
al. (2015). This section also includes important host-selective
toxin producers, and they were recognized as distinct species

or formae speciales of A. alternata (Woudenberg et al. 2015).
Four species with two formae speciales and a novel species
from Japan are described in the present study. Additionally, A.
iridicola is newly assigned to this section.

Alternaria alstroemeriae E.G. Simmons & C.F. Hill, in Simmons,
CBS Biodiversity Ser. (Utrecht) 6: 444. 2007. Fig. 17.

Typus: Australia, on leaves of Alstroemeria sp., Jul. 2005, C.F.
Hill, holotype BPI 877375 (dried culture ex EGS 52.068), culture
ex-type CBS 118809 = EGS 52.068.

Additional material examined: Japan, Nagano Prefecture, Matsumoto,
on leaves of Alstroemeria sp., Jan. 2008, N. Yamagishi, living culture
MAFF 241374.
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Fig. 15. lllustrations of Alternaria paragomphrenae (MAFF 246768). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on

V8 juice agar medium. Scale bar = 25 um.
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Fig. 16. Morphological features of Alternaria paragomphrenae (ex-holotype culture MAFF 246768) on V8 juice agar medium. A-H. Conidia and

lumina. I. Conidiophores. J. Colored beak. K. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). L. Natural symptoms on
Gomphrena haageana. M. Dried culture specimen ex MAFF 246768 (holotype: TSN-F-85449). N. Isotype specimen, MUMH 242310. Scale bars (A-J)

=25 pum.

Morphological characters on PCA medium: Previously reported
in Yamagishi et al. (2009).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching 74.6 + 1.6 mm diam (Nishikawa & Nakashima 2013);
aerial hypha sparse, olive brown to black, with indistinct
margins; reverse center black to dark green; sporulation
abundant on conidiophores arising from aerial and submerged
hypha; diffusible pigment absent.

Sexual morph: Not observed.
Natural host: Alstroemeria (Alstroemeriaceae).

Symptoms: Leaf spots are circular to subcircular, 3-12 mm diam,
and are dark brown to black. The same spots also form on stems,
followed by defoliation.

Experimental host range: The Japanese isolate shows a restricted
host range; it is pathogenic to Alstroemeria, but not to the other
plants formerly classified as Liliaceae, including Lilium, Tulipa,
Allium, Asparagus, and Hyacinthus (Nishikawa & Nakashima
2013).

Distribution: Limited to Australia (Simmons 2007), and Japan
(Yamagishi et al. 2009, Nishikawa & Nakashima 2013).

Distinctive features: Mature and basal conidia are often
subcylindrical, rarely with longitudinal septa; conidia appear in
short chains (never exceeding 10) in 7 d; sporulation occurs in
part when submerged in agar substrate. It is phylogenetically
distinguishable from the other species of this section via its
gapdh, rpb2, tefl, Alt a 1, and endoPG sequences (Figs 1, 3), but
not via ITS (Fig. 2) and act sequences (data not shown).

Alternaria alternata (Fr.) Keissl., Beih. Bot. Centralbl., Abt. 2,
29:434. 1912. Fig. 18.

Synonyms: Torula alternata Fr., Syst. Mycol. (Lundae) 3: 500.
1832, nom. sanct.

Alternaria tenuis Nees, Syst. Pilze (Wiirzburg): 72. 1817.
Additional synonyms fully provided in Woudenberg et al. (2015)
although A. viniferae was doubtful as described below.

Typus: Neotype, on fragments of a pithy stem, C.G.D. Nees
von Esenbeck, L 910, 262-129 (designated in Simmons 1967);
Epitype, India, on Arachis hypogaea, 1 Dec. 1980, E.G. Simmons,
IMI 254138 (designated in de Hoog & Horré 2002), culture ex-
epitype CBS 916.96 = ATCC 66981 = EGS 34.016.

Additional materials examined: Japan, from seeds of Vigna radiata,
1998, T. Sato, MUMH 11693, living culture MAFF 239887; Nagano
Prefecture, Azumino, on leaves of Impatiens hawkeri, 28 Aug. 2006, J.
Nishikawa, living culture MUCC 1610; Shizuoka Prefecture, Kakegawa,

© 2020 Westerdijk Fungal Biodiversity Institute 237



Nishikawa & Nakashima

Fig. 17. Morphological features of Japanese isolates of Alternaria alstroemeriae (MAFF 241374) on potato-carrot agar medium. A-G. Conidia. H.

Submerged sporulation in media. I. Conidiophores. Scale bars = 25 pm.

on leaves of Antirrhinum majus, 28 May 2008, J. Nishikawa, MUMH
11682, living culture MUCC 1611; Kanagawa Prefecture, Nakai, on
leaves of Pelargonium hortorum, 29 Sep. 2004, J. Nishikawa, MUMH
11672, living culture MUCC 1616; Shizuoka Prefecture, Kakegawa, on
leaves of Primula x polyantha, 6 Nov. 2004, J. Nishikawa, MUMH 11674,
living culture MUCC 1617; Shizuoka Prefecture, Kakegawa, on leaves
of Solanum lycopersicum, 28 Jun. 2011, J. Nishikawa, living culture
AC82; Tokyo, Chiyoda, from seeds of V. radiata, Dec. 2012, T. Sato,
living culture MAFF 243775; Kanagawa Prefecture, on leaves of Pyrus
aromatica, 1958, S. Toyota, living culture MAFF 305014; on leaves of
Pyrus sp.?, M. Kusunoki, living culture MAFF 410775.

Morphological characters on PCA medium: Conidiophores
solitary, subcylindrical, unbranched, straight or geniculate, thin,
15-93 x 3-5 um, sometimes proliferating sympodially. Conidia
form as complex, long chains of 10-22, commonly with lateral
branches, highly varied, ovoid to ellipsoid, pyriform or obclavate,
pale brown to brown, usually smooth; conidial bodies 11-50 x
7-18 pum and 25 x 12 um on average, commonly not exceeded

50 um long, with 1-7 transverse and 0-5 longitudinal septa,
slightly constricted at the median and some transverse septa.
Secondary conidiophores (false beaks) appear at the apical end
of conidia, short and mostly single-celled, but often unstable in
length (some in isolate MAFF 239887 elongated, reaching 19—
110 um).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching an average of 77.3 + 1.3 mm diam; aerial hypha cottony,
sometimes sparse, variable in color, pale gray, grayish green to
dark green, with white margins; reverse center black to dark
green; sporulation abundant; diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Multiple genera in multiple families serve as
hosts, and it is often saprophytic; 692 host records were found in
USDA Fungal databases (Farr & Rossman 2018), and 32 diseases
in the database of plant diseases in Japan, including three
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Fig. 18. Japanese isolates of Alternaria alternata. A-K. Conidia and conidiophores on potato-carrot agar medium ex MUCC 1610 (A, B), MUCC 1611
(C, D), MUCC 1616 (E, F), and MAFF 239887 (G—K). L—0O. Culture on potato-dextrose agar medium (upper = surface, lower = reverse) of MUCC 1610
(L), MUCC 1611 (M), MUCC 1616 (N), and MAFF 239887 (0). P-R. Natural symptoms on Impatiens (P), Antirrhinum (Q), and Pelargonium (R). Scale
bars (A-J) = 25 um.

pathotype strains (http://www.gene.affrc.go.jp/databases-
micro_pl_diseases_en.php).

Symptoms: Necrotic spots on Impatiens are sometimes circular
and often irregular, measuring 1-8 mm diam. Leaf spots on
Antirrhinum are usually fairly circular, measuring 5-10 mm
diam, developing into coalesced lesions that are gray with pale
brown margins. Leaf and stem spots on Pelargonium seedlings
are irregular, then represented as leaf blight. As for isolates
MAFF 239887 and MAFF 243775 obtained from Vigna, lesions
appearing from the roots to the hypocotyls of sprouts appear
black and rotten (Sato et al. 2014, Sato 2015), and angular to
irregular spots are produced on inoculated true leaves (Sato,
pers. comm.).

Distribution: Ubiquitous.

Distinctive features: Small conidia, conidial bodies rarely
exceed 50 pum long, and are formed in long chains (mostly

over 20 conidia), frequently with lateral branches. Secondary
conidiophores are commonly short, consisting of 1-2 cells.

Notes: Woudenberg et al. (2015) synonymized 35 names
under this species based on their multi-locus phylogeny. Those
synonyms include important host selective species, such as
A. mali, A. limoniasperae, and A. toxicogenica, which were
newly assigned as formae speciales (with pathotypes) of the
species: f. sp. mali, f. sp. citri pathotype rough lemon, and f.
sp. citri pathotype tangerine, respectively. Alternaria viniferae
was synonymized by Woudenberg et al. (2015); however, this
classification is problematic because of the original description
using a gapdh and Alt a 1-based phylogeny, as well as A.
alstroemeriae-like morphology (Tao et al. 2014), which are
highly distinguishable from those of A. alternata.

Alternaria cylindrica Jun. Nishikawa & C. Nakash., sp. nov.
MycoBank MB829136. Figs 19, 20.
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Fig. 20. Morphological features of Japanese isolates of Alternaria cylindrica (ex-holotype culture MAFF 246770). A-l. Conidia and conidiophores on
potato-carrot agar medium. J. Conidia on V8 juice agar medium. K. Conidia on lesion. L. Culture on potato-dextrose agar medium (upper = surface,
lower = reverse). M, N. Natural symptoms on Petunia. O. Dried culture specimen ex MAFF 246770 (holotype: TNS-F-85450). P. Isotype specimen.

Scale bars (A-K) = 25 pm.

Etymology: Named after the Latin “cylindricus”, referring to the
shape of the conidia, which are cylindrical.

Diagnosis: Long and narrow, cylindrical conidia with few
longitudinal septa, which are produced abundantly in long
chains and are quite distinctive among members of the genus.
Obclavate conidia such as typically seen in sect. Alternaria are

often produced at the apex and sides of chains. Pathogenicity
is selective to Petunia among members of the Solanaceae. It is
phylogenetically close to A. alternata and the A. arborescens
species complex.

Leaf spots appear on Petunia, which are dark brown to black
with a pale brown eye in the center. They are circular to irregular,
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measuring 4—7 mm diam, are scattered, and become enlarged
and confluent, resulting in blighting of leaves. On V8 medium,
conidiophores narrow and short to moderately long, 28-90 x
4—6 um. Conidia mostly in chains of 5-9 conidia (moderately
long chain), lateral branches frequently present in 5-7 d. Conidia
subhyaline to pale brown, obclavate and cylindrical to long
and narrow ovoid, 11-214 um in total length, with 0-21(-33)
transverse and 0-7 (relatively uncommon) longitudinal septa.
Conidial bodies 11-156 x 5-20 um with 0-13(-25) transverse
and 0-7 (relatively uncommon) longitudinal septa, usually
smooth surface but very occasionally faintly rough. Secondary
conidiophores (false beaks) elongated up to 120 x 3—6 um. On
lesions, conidiophores 30—79 x 5—-7 um. Conidia typically 21-192
pm in total length; conidial bodies 11-89 x 6-18 um with 1-14
transverse and 0—7 longitudinal septa; secondary conidiophores
up to 121 x 3—6 um. Morphology grown on PCA medium similar
to that observed on V8 medium: conidiophores 29-98 x 3-6
um; conidia 18-270(—340) um in total length, with 0-30(—43)
transverse and 0-4 longitudinal septa; conidial bodies 10-115
x 5-14 um, with 0-19 transverse and 0—4 longitudinal septa;
secondary conidiophores up to 225 x 3—5 um.

Typus: Japan, Shizuoka Prefecture, Kakegawa, on leaves of
Petunia x atkinsiana, 16 Dec. 2006, J. Nishikawa, holotype
TNS-F-85450 (a dried culture specimen ex MAFF 246770),
isotype MUMH 11678 and MUMH 11703, culture ex-holotype
MAFF 246770, GenBank accession number ITS: LC440584,
gapdh: LC482006, rpb2: LCA76791, tefl: LC480211, Alt a 1:
LC481616, endoPG: LC480951, act: LC481867.

Experimental host range: Selectively pathogenic to Petunia
among members of the examined Solanaceae plants, but
remarkable lesions with no sporulation were frequently
observed on the inoculated leaves of Solanum (Table 7).

Distribution: Only known from Japan.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching 58.4 + 0.7 mm diam; aerial hypha cottony,
pale gray to grayish or bluish green, with white margins; reverse
center dark green to black; sporulation sparse; diffusible
pigment absent.

Sexual morph: Not observed.

Notes: Takano (2005) reported a similar disease on Petunia in
Japan, and heidentified the pathogen as A. longissima, which was
commonly known as a saprophytic fungus of numerous plants
and was characterized as having cercosporoid scolecospores
with few longitudinal septa (Deighton & MacGarvie 1968, Ellis
1971). Alternaria longissima has since been transferred to the
genus Prathoda by Simmons (2007), which was supported by
molecular phylogenetic analysis indicating that the species
should not be treated as an Alternaria species (Pryor & Gilbertson
2000). Both our examined isolate and those in Takano (2005)
were nearly morphologically identical to each other; however,
our examined isolate obviously belongs to a species in the sect.
Alternaria based on phylogenetic analysis (Figs 1-3). Although
these isolates need to be re-examined, they were probably
previously misidentified.

Alternaria gaisen Bokura, J. Pl. Protect. (Tokyo) 11: 490. 1924.
Fig. 21.

Synonyms: Alternaria gaisen Nagano, J. Jpn. Hort. Soc. (Nihon
Engei Zasshi) 32 (3): 16. 1920, nom. inval. (provisional name; ICN
Art. 36.1).

Alternaria gaisen Nagano, in Hara, Jitsuyo Sakumotsu Byorigaku:
263.1925.

Alternaria gaisen Nagano ex Hara, Sakumotsu Byorigaku, Edn 4:
263. 1928, in Woudenberg et al., Stud. Mycol. 82: 15. 2015, nom.
superfl.

Alternaria kikuchiana S. Tanaka, Mem. Coll. Agric. Kyoto Imp.
Univ. 28 (Phytopathol. Ser. 6): 27. 1933.

Typus: Japan, Nara Prefecture, on leaves of Pyrus pyrifolia var.
culta ‘Nijisseiki’ (details unknown; not preserved). Lectotype,
Nagano K., J. Jpn. Hort. Soc. (Nihon Engei Zasshi) 32 (3): 17,
figures (iconotype, selected by Simmons 2007). Epitype, Japan,
Tottori Prefecture, on P. pyrifolia var. culta, Jul. 1990, E.G.
Simmons, dried culture specimen CBS H-22842 (designated in
Nishikawa & Nakashima 2019), culture ex-epitype CBS 118488
= EGS 90.0391.

Additional materials examined: Japan, Iwate Prefecture, Morioka, on
leaves of Fragaria x ananassa ‘Morioka-16’, 1975, Y. Watanabe, living
cultures M-11 (MAFF 731001), M-14 (MAFF 731002), M-15 (MAFF
731003), M-17 (MAFF 731004), M-20 (MAFF 731005), M-22 (MAFF
731006), M-23 (MAFF 731007); Tottori Prefecture, Tohaku, Hokuei,
Horticultural Research Center, on leaves of P. pyrifolia var. culta ‘Nijisseiki’,
Jul. 1999, F. Yasuda, living cultures 9901A (MUCC 2151), 9903A (MUCC
2152), 9904C (MUCC 2153); Hokkaido, Esashi, on leaves of Fragaria x
ananassa ‘HS-138’, Aug. 2007, T. Misawa, dried culture specimen MUMH
11698, living culture E-11 (MAFF 242310 = MUCC 1609); Hokkaido,
Hokuto, on leaves of Fragaria x ananassa ‘HS-138’, 22 May 2008, T.
Misawa, MUMH 11681 (inoculated leaves with MAFF 242310).

Morphological characters on PCA medium: Previously reported
in Nishikawa & Nakashima (2019).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching an average of 82.1 £ 0.7 mm diam; aerial hypha cottony,
grayish green to dark green, with white margins; reverse center
dark green to black; sporulation abundant; diffusible pigment
absent.

Sexual morph: Not observed.

Natural hosts: Fragaria x ananassa ‘Morioka-16’, P. pyrifolia var.
culta ‘Nijisseiki’, and their related cultivars (Rosaceae).

Symptoms: Leaf spots on strawberries are circular, 3-12 mm
diam, brown to black with a reddish-brown border and a
yellowish halo that is grayish brown at the center, which may be
extend by the fungal toxin.

Host range: It is known as a host-selective toxin producer, which
is pathogenic to strawberry cultivar ‘Morioka-16" and Japanese
pear cultivar ‘Nijisseiki’, and a few of their related lines (Hayashi
et al. 1992).

Distribution: Limited to Japan (Nagano 1920, Watanabe &
Umekawa 1977), New Zealand (Dingley 1970), Korea (Cho &
Moon 1980), and Italy (Wada et al. 1996).

242 © 2020 Westerdijk Fungal Biodiversity Institute



Japanese species of Alternaria F| ! S! Ei

y
. I |

Fig. 21. Morphological features of Japanese isolates of Alternaria gaisen f. sp. fragariae (MAFF 242310) on potato-carrot agar medium. A-D. Conidia.
E. Conidiophore. F. Culture on potato-dextrose agar medium (left = surface, right = reverse). Scale bars (A—E) = 25 um.

Distinctive features: Conidia form in short, unbranched chains. It
is pathogenictoonlyafew cultivars of strawberry (cv. Morioka-16)
and Japanese pear (cv. Nijisseiki) owing to its production of AF-
toxin. Phylogenetically, it is clearly distinguishable from the
other species of this section via gapdh, rpb2, Alt a 1 and endoPG
sequences (Figs 1, 3).

Notes: Within the species, A. gaisen includes two formae
speciales, A. gaisen f. sp. pyri producing the AK-toxin (toxic to
Japanese pear), and f. sp. fragariae producing the AF-toxin (toxic
to strawberry) (Nishikawa & Nakashima 2019).

Alternaria iridicola (Ellis & Everh.) J.A. Elliott, Am. J. Bot. 4: 450.
1917. Figs 22, 23.

Basionym: Macrosporium iridicolum Ellis & Everh., Proc. Acad.
Nat. Sci. Philad. 46(3): 382. 1894.

Typus: USA, Idaho, Moscow, on Iris missouriensis, 27 May
1894, Henderson, holotype NY 2640. Epitype designated
here, Japan, Kanagawa Prefecture, Kamakura, on leaves of Iris
japonica, 17 Apr. 2013, H. Horie, TNS-F-85452 (dried culture

specimen of MAFF 246890) [MBT385027], isoepitypes MUMH
11687and MUMH 11739, culture ex-epitype MAFF 246890 =
MUCC 2149.

Additional materials examined: Japan, Tokyo, Kodaira, on I. japonica,
2010, H. Horie, living culture MUCC 2148; Shizuoka Prefecture, Fukuroi,
Ugari, on . japonica, 24 Mar. 2018, J. Nishikawa, MUMH 11690 and
MUMH 11697, living culture MAFF 246771 = MUCC 2501.

Morphological characters on PCA medium: Conidiophores
solitary to fascicular, subcylindrical, unbranched, straight or
sometimes geniculate, thin, 23-128 x 4—6 um. Conidia either
solitary, or in short chains of 3-4 conidia without lateral
branches. Conidia vary in size and appear as distorted, ovoid,
ellipsoid to broadly obclavate, or sometimes beakless small
oval, pale brown to yellowish brown, 28-311 x 7-38 pum in total.
Conidial bodies 21-127 x 7-38 um, with 2—-16 transverse and
0-11 longitudinal septa, constricted at some transverse septa,
commonly with distosepta-like internal wall structure. Secondary
conidiophores appear at the apical end of conidia, short to long,
usually unbranched, often with swollen cells inserted, 6-200
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x 2—7 um. Conidia of ex-epitype culture MAFF 246890 on PCA Colony characteristics on PDA after 7 d at 25 °C: Moderate-
medium 25-114 x 11-38 um, with 2—16 transverse and 1-11 growing, reaching an average of 67.2 + 3 mm diam, variable
longitudinal septa; secondary conidiophores 6—200 x 2—7 um. among strains; aerial hypha cottony, gray to pale grayish-green,

Fig. 22. lllustrations of Alternaria iridicola (MAFF 246771). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on potato-
carrot agar medium. Scale bar = 25 um.
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Fig. 23. Morphological features of Japanese isolates of Alternaria iridicola (MAFF 246890) on potato-carrot agar medium. A-J. Conidia. K.
Conidiophores. L. Culture on potato-dextrose agar medium (left = surface, right = reverse). M. Dried culture specimen ex MAFF 246890 (epitype:
TNS-F-85452). N. Specimens of diseased leaves of Iris japonica (isoepitype: MUMH 11687). Scale bars (A-K) = 25 um.

with white margins; reverse center grayish green to dark green;
sporulation sparse; diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Iris (including Belamcanda chinensis) and
Gladiolus (Iridaceae) (Yu 2001).

Symptoms: Leaf spots on I. japonica appear grayish brown
surrounded by a yellowish halo. They are distinctly circular, and
become enlarged and confluent, with caespituli abundantly
formed at the center, and measuring 5-40 mm diam.

Experimental host range: Restricted to Iris excluding /. ensata,
and weakly or non-pathogenic to the other examined plants

including Gladiolus and Allium (Table 8). Similar results on Allium
were also obtained by Elliot (1917).

Distribution: China, Japan, Korea, and USA (Shimazaki 1930,
Tohyama 1993, Yu 2001, Zhang 2003, Simmons 2007).

Distinctive features: Notably large spores among sect. Alternaria
commonly arising from narrow conidiophores. Conidia often
have a long secondary conidiophore with cellular swellings.
The pathogenicity of this species is restricted to certain Iris
spp. with some species-selectivity. Phylogenetically, it is clearly
distinguishable from the other species of this section in gapdh,
rpb2, tefl, Alt a 1, and endoPG sequences (Figs 1, 3).

Notes: Based on conidial morphology of the holotype material,
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Simmons (2007) suggested that previous morphological
descriptions of the species by Elliott (1917), Joly (1964), and
Zhang (2003), which described conidial chains and long beaked
conidia, could be misidentifications of other A. tenuissima-like
species. However, conidial morphology obtained from fresh
Japanese materials was identical with those in the original
descriptions (Ellis & Everhart 1894, Elliott 1917), and also
contained the unrepresentative beakless conidia illustrated
by Simmons (2007) (Fig. 23F—J). Because diagnostic conidia
of the species are scarcely present on the holotype, and no
reliable living isolates exist in public culture collections, one of
the Japanese specimens, TNS-F-85452, was newly designated
as epitype in the present study. Although Yu (2001) has added
Gladiolus as a natural host in Korea, without photos and details,
no distinct symptoms and sporulation were observed on the
inoculated leaves in this study.

Section Brassicicola D.P. Lawr. et al., Mycologia 105: 541.
2013.

Five species were recognized in this section based on the multi-
locus phylogeny reported by Woudenberg et al. (2013), excluding
A. japonica. This section was morphologically characterized by
ellipsoidal to ovoid conidia formed in long chains, with apical
conidiogenous cells and no or a few longitudinal septa (emending
the description of sect. Brassicicola sensu Lawrence et al. 2013).
However, neither the morphological nor the pathological
differences among these species have been defined.

Alternaria brassicicola (Schwein.) Wiltshire, Mycol. Pap. 20: 8.
1947. Figs 24, 25.

Basionym:  Helminthosporium  brassicicola  Schwein. (as
‘brassicola’), Trans. Amer. Philos. Soc. 4(2): 279. 1832.
Synonyms: Sporidesmium septorioides Westend., Bull. Acad.
Roy. Sci. Belgique., Cl. Sci., Sér. 2, 21: 236. 1854.
Alternaria septorioides (Westend.) E.G.
Biodiversity Ser. (Utrecht) 6: 570. 2007.
Sporidesmium exitiosum f. alternarioides J.G. Kihn, Hedwigia 1:
91. 1855.

Polydesmus exitiosus f. alternarioides (J.G. Kihn) J.G. Kuhn,
Hedwigia 1: 165. 1858.

Sporidesmium exitiosum f. luxuriosum J.G. Kiihn, Hedwigia 1: 91.
1855.

Polydesmus exitiosus f. luxuriosum (J.G. Kiihn) J.G. Kihn, Die
Krankheiten der Kulturgewdichse, ihre Ursachen und Verbreitung:
165. 1858.

Macrosporium circinans Berk. & M.A. Curtis, in Curtis, N. Carol.
Geol. Nat. Hist. Surv. 3: 128. 1867, nom. nud.

Macrosporium cheiranthi var. circinans Berk. & M.A. Curtis, in
Berkeley, Grevillea 3 (27): 105. 1875.

Macrosporium commune var. circinans (Berk. & M.A. Curtis)
Sacc., Syll. Fung. 4: 524. 1886.

Alternaria circinans (Berk. & M.A. Curtis) P.C. Bolle, Meded.
Phytopath. Labor. ‘WCS’ 7: 26. 1924.

Alternaria brassicae var. minor Sacc., Michelia 2(6): 172. 1880.
Helminthosporium brassicae Henn., Hedwigia 41: 117. 1902.
Alternaria oleracea Milbr., Bot. Gaz. 74(3): 321. 1922.
Alternaria brassicae var. microspora J.A. Elliott, in Neergaard,
Danish species of Alternaria and Stemphylium: 129. 1945.
Alternaria mimicula E.G. Simmons, Mycotaxon 55: 129. 1995.
Alternaria solidaccana E.G. Simmons, CBS Biodiversity Ser.
(Utrecht) 6: 572. 2007.

Simmons, CBS

Typus: on petioles of Brassica oleracea var. capitata (details
unknown; not preserved). Lectotype EGS 05.167, slide glass
preparation “Helminthosporium brassicola S [sic] / valde
memoria Beth. in cella nostra”, in the Schweinitz herbarium at
PH (designated in Simmons 1995a).

Ex-type culture: Unknown.

Additional materials examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of Brassica oleracea var. sabellica, 13 Mar. 2003, J. Nishikawa,
MUMH 11667, living culture MAFF 246772 = MUCC 1694; Tokyo,
Setagaya, from seeds of Spinacia oleracea, 13 Feb. 2002, J. Nishikawa,
living culture MAFF 246773; Shizuoka Prefecture, Kakegawa, on leaves
of Brassica rapa subsp. pekinensis, 5 Nov. 2008, J. Nishikawa, MUMH
11683, living culture MUCC 1612 = AC56; Tokyo, Setagaya, from seeds
of Raphanus sativus, Jul. 2000, J. Nishikawa, living culture MUCC 1619
= AC70 and AC71; ibid., from seeds of B. oleracea var. italica, 2001, J.
Nishikawa, living culture AC72.

Morphological characters on PCA medium: Conidiophores
solitary, often branched, straight, intermediately broad, 6-60
x 3—6 um. Conidia in chains 7-10 more conidia with frequent
lateral branches, resulted in 30 more conidial units from one
conidiophore. Conidial bodies, ovoid to ellipsoid, subcylindrical
at maturity, brown to dark brown, 8-60 x 6—-16 um, with 0—8
transverse and few longitudinal thicken septa, mostly smooth
to occasionally roughened; conidiogenous cell at terminal
conidia (secondary conidiophores) short, mostly single-celled.
Conidia on lesions also similar but somewhat larger than those
on PCA.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 59.5 + 1.4 mm diam; aerial hypha
sparse, dark green to black; reverse center gray; sporulation
abundant; diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Brassicaceae. Simmons (2007) and Farr &
Rossman (2018) also recorded on Digitalis (Plantaginaceae) and
non-brassicaceous plants.

Symptoms: Leaf spots on B. oleracea, gray to brown, circular to
zonate, 8-12 mm diam, enlarged and confluent; head rot (pin
rot) of broccoli and cauliflower, water-soaked to discolored on
buds. Caespituli were frequently observed on lesions.

Experimental host range: Strongly pathogenic to Brassicaceae
including Diplotaxis, Matthiola, Iberis, and Nasturtium; weakly
pathogenic Lobularia, to Eutrema and Aubrieta; non-pathogenic
to Capsella and non-Brassicaceae plants (Table 5).

Distribution: Worldwide, including Asia (Bangladesh, Brunei,
China, India, Indonesia, Japan, Korea, Malaysia, Mongolia,
Myanmar, Nepal, Pakistan, Saudi Arabia, Sri Lanka, Taiwan,
Thailand, and Uzbekistan), Europe (Bulgaria, Cyprus, Denmark,
France, Greece, Italy, Netherlands, Poland, Romania, Russia,
Turkey, and UK), North and Latin America (Barbados, Brazil,
Canada, Chile, Cuba, Jamaica, Panama, USA, and Venezuela),
Africa (Ethiopia, Ghana, Guinea, Libya, Malawi, Mauritius,
Nigeria, Rhodesia, Sierra Leone, South Africa, Sudan, Tanzania,
Tunisia, Uganda, Zambia, and Zimbabwe), and the Pacific
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Fig. 24. lllustrations of Alternaria brassicicola (MAFF 246772). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on

potato-carrot agar medium. Scale bar = 25 um.

(Australia, Cook Islands, New Caledonia, New Zealand, Papua
New Guinea, Samoa, and Tonga) (Yoshii 1941, Ellis 1971, Yu
2001, Zhang 2003, Farr & Rossman 2018).

Distinctive features: Small conidia form in long chains, frequently
with lateral branches and rarely with longitudinal septa. Basal
conidia form in subcylindrical to oblong. This species was widely
pathogenic to Brassicaceae, but non- or weakly to Eutrema,
Aubrieta and Capsella. It is phylogenetically recognizable via its
ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act sequences (data
not shown).

Notes: Alternaria septorioides, A. mimicula, and A. solidaccana
were synonymized in the present study based on their phylogeny
using each ex-type isolate, morphological similarity, restricted

host range within Brassicaceae plants, and the ubiquitousness
and saprophytic habit of the species. Likewise, A. conoidea is a
possible synonym of the species (CBS 132.89 is not authentic),
and, therefore, sect. Brassicicola may be a monotypic lineage as
supported by the ITS phylogeny (Fig. 2).

Section Crivellia (Shoemaker & Inderb.) Woudenb. &
Crous, Stud. Mycol. 75: 189. 2013.

Basionym: Crivellia Shoemaker & Inderb., Canad. J. Bot. 84:
1308. 2006.

Two species are assigned in this section, which is morphologically
characterized by cylindrical conidia forming in chains of
geniculate conidiophores and microsclerotial formation
(Woudenberg et al. 2013). Both of the species are known as
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Fig. 25. Morphological features of Japanese isolates of Alternaria brassicicola on potato-carrot agar medium. A-D. Conidia and conidiophores (MAFF
246772). E. Conidia ex MAFF 246773. F. Culture on potato-dextrose agar medium (MAFF 246772; left = surface, right = reverse). G. Natural symptoms
on Brassica oleracea var. sabellica. Scale bars (A—E) = 25 um.

pathogenic to Papaver spp., having a sexual morph formerly
known as Crivellia (Inderbitzin et al. 2006).

Alternaria penicillata (Corda) Woudenb. & Crous, Stud. Mycol.
75: 190. 2013. Fig. 26.

Basionym: Brachycladium penicillatum Corda, Icon. Fung. 2: 14.
1838.

Synonyms: Dendryphion penicillatum (Corda) Fr., Summa Veg.
Scand., Sect. Post. (Stockholm): 504. 1849.

Cucurbitaria papaveracea De Not., Sferiacei Italici: 62. 1863.
Pleospora papaveracea (De Not.) Sacc., Syll. Fung. 2: 243. 1883.
Crivellia papaveracea (De Not.) Shoemaker & Inderb., Canad. J.
Bot. 84: 1308. 2006.

Dendryphion penicillatum var. sclerotiale M.-E. Meffert, Z.
ParasitKde 14 (5): 462. 1950, nom. nud. (ICN Art. 39.1).

Typus: Czech, Praha, on Papaver sp., 6 Dec. 1837, holotype
DAOM 49356 in PR. Epitype, Austria, Vienna, on stems of
Papaver rhoeas, DAOM 230456 (P354) (designated in Inderbitzin
et al. 2006), culture ex-epitype P354.8 = CBS 116608.

Additional material examined: Japan, Tokyo, Tachikawa, on leaves of
Papaver nudicaule, 13 Jun. 2005, Y. Makizumi, living culture MUCC 1657.

Morphological characters on V8 medium: Globose knotted cells
(microsclerotia), brown to dark reddish brown, 30-65 x 25-45

um. Conidiophores arising from stroma (macroconidiophores),
brown to reddish brown, straight and long, 128-225 x 8-11
um, with short and sub-hyaline conidiogenous cells at the apex.
Conidiophores arising from aerial mycelia (microconidiophores),
geniculate with sympodial proliferation, branches often
arboroid, short and narrow, 19-98 x 3—6 um. Conidia commonly
in short chains of 2-5, ellipsoid to cylindrical, subhyaline to
pale brown, 8-38 x 4—6 pum in total, with 0-6 transverse and
no longitudinal septa, remaining as distosepta-like, smooth
structures. Intercalary chlamydospore-like cells, dark brown and
roughened, in knots or chains, 11-29 x 10-24 um.

Colony characteristics on PDA after 7 d at 25 °C: Slow-growing,
reaching 28.7 + 4.5 mm diam; aerial hypha cottony, olive
brown, with white margins; reverse center dark green to black;
sporulation abundant; diffusible pigment absent.

Sexual morph: Known formerly as the genus Crivellia, but not
observed in the present study.

Natural host: Papaver (Papaveraceae).

Distribution: Worldwide, including Asia (Afghanistan, India, Iran,
Japan, and Korea), Europe (Austria, Azerbaijan, Czech, Germany,
Hungary, Netherlands, Poland, Romania, Russia, Spain, Sweden,
Switzerland, Turkey, UK, and Ukraine), North and Latin America
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Fig. 26. Morphological features of Japanese isolates of Alternaria penicillata (MUCC 1657) on V8 juice agar medium. A-E. Conidia. F. Conidiophore
arising from aerial mycelium (microconidiophores). G-Il. Conidiophores arising from stroma (macroconidiophores). J, K. Globose knotted cells
(microsclerotia). L. Intercalary chlamydospore-like cells. M. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). Scale bars
(A-L) = 25 um.

(USA, Colombia, and Venezuela), Australia, and South Africa
(Hirayama & Imura 1941, Richardson 1990, Farr et al. 2000,
Inderbitzin et al. 2006, Hyun et al. 2012, Gasich et al. 2013,
Woudenberg et al. 2013, Farr & Rossman 2018).

Distinctive features: Subhyaline to pale brown conidia appearing
in chains, and macroconidiophores, microconidiophores,
and microsclerotia are also present. It is phylogenetically
distinguishable via its ITS (Fig. 2), gapdh, tef1, rpb2, Alt a 1, and
act sequences (data not shown).

Section Eureka Woudenb. & Crous, Stud. Mycol. 75: 193.
2013.

Six species are assigned to this section, which are characterized
by simple, short, and broad conidiophores, and ellipsoidal to
cylindrical conidia that are either solitary or appear in short
chains (Woudenberg et al. 2013). As to A. eureka, the type
species of this section, a sexual morph has been reported
(Simmons 1986).

Alternaria cumini E.G. Simmons, CBS Biodiversity Ser. (Utrecht)
6: 664. 2007. Figs 27, 28.

Typus: India, Gujarat, Karli, on Cuminum cyminum, Jan. 1954,
M.K. Patel, holotype BPI 877406 (dried culture specimen ex CBS
121329), culture ex-holotype CBS 121329 = EGS 04.1581.

Additional materials examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of C. cyminum, 17 May 2012, J. Nishikawa, living culture
MAFF 246774; ibid., 18 May 2013, J. Nishikawa, living culture AC115.

Morphological characters on V8 medium: Conidiophores erect,
short and narrow, 18-60 x 5-7 um. Conidia solitary, rarely
in chains, brown to dark brown, obclavate to long ellipsoid,
subcylindrical, smooth, 23-76 x 8-26 um, with 1-9 transverse
and 0-5 longitudinal septa, slightly constricted at each
transverse segment, beakless, but most with a conical cell at
the apex. Morphology on PCA medium similar to that on V8
medium: conidiophores 25-93 x 5-6 um; conidia 24—61 x 13-25
pum, with 2—7 transverse and 1-5 longitudinal septa.
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Fig. 27. lllustrations of Alternaria cumini (MAFF 246774). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on V8 juice
agar medium. Scale bar = 25 um.
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Fig. 28. Morphological features of Japanese isolates of Alternaria cumini (MAFF 246774). A—C. Conidia and conidiophores on V8 juice agar medium.
D. Culture on potato-dextrose agar medium (left = surface, right = reverse). E. Natural symptoms (damping-off of seedlings and leaf blight) on seedling
of Cuminum. Scale bars (A—C) = 25 um.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 62.7 + 1.1 mm diam; aerial
hypha cottony, pale gray to grayish green, with white to pale
gray margins; reverse center brownish green to dark green;
sporulation sparse; diffusible pigment absent.

Sexual morph: Not observed.
Natural hosts: Cuminum (Apiaceae).

Symptoms: Damping-off of Cuminum

experimentally-caused leaf blight.

seedlings, and

Experimental host range: Strongly pathogenic to Cuminum;
weakly pathogenic or opportunistic to Anthriscus and
Petroselinum; but non-pathogenic to other Apiaceae plants,
including Daucus (Table 6).

Distribution: Japan and India (Simmons 2007).

Distinctive features: Beakless, solitary conidia with a conical
apical cell. Conidiophores are long and broad. Host range of the
species is highly selective to Cuminum, and it is phylogenetically
recognizable via its ITS, gapdh, tefl, rpb2, Alt a 1, and act
sequences based on the DDBJ BLASTn results (data not shown).

Note: This is the first record other than the type locality.

Section Gypsophilae D.P. Lawr. et al., Mycologia 105: 541.
2013.

Eight species were assigned to this section (Woudenberg et al.
2013). This section is morphologically characterized by large
conidia formed in short chains, with a short, blunt-tapered
false beak and multiple septa (Lawrence et al. 2013). In Russia,
Gannibal (2019) proposed an additional species on Dianthus,
A. kamtschatica, based on multi-locus phylogeny using gapdh,
calmodulin, and Alt a 1 sequences. All the recognized species in
this section occur on Caryophyllaceae.
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Alternaria nobilis (Vize) E.G. Simmons, Mycotaxon 82: 7. 2002.
Fig. 29.

Basionym: Macrosporium nobile Vize, in Cooke, Grevillea 5(35):
119. 1877.

Synonyms: Alternaria dianthi F. Stevens & J.G. Hall, Bot. Gaz.
47(5): 413. 1909.

Macrosporium dianthi F. Stevens & J.G. Hall, in Bewley, Diseases
of Glasshouse Plants: 106. 1923, nom. illeg. (later homonym;
ICN Art. 53.1). non Macrosporium dianthi J.V. Aimeida & Sousa
da Camara, Revista Agron. 1: 59. 1903.

Typus: UK, Forden, on stems and leaves of Dianthus caryophyllus,
1877, J.E. Vize (holotype not specified). Lectotype, K, EGS 11.014
(designated in Simmons 2002), isolectotype (probable) IMI
57062 (J.E. Vize, Micro-Fungi Britannici no. 63, Macrosporium
nobile Vize 1878).

Ex-type culture: Unknown.

Additional materials examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of Dianthus barbatus, 5 Jun. 2003, J. Nishikawa, living culture
AC1; Miyagi Prefecture, Sendai, on leaves of D. caryophyllus, 12 Nov.
2002, Y. Makizumi, living culture AC25.

Morphological characters on V8 medium: Conidiophores erect,
broad, pale brown to brown, unbranched, 16—-60 x 5-9 um.
Conidia solitary to commonly in chains of 2—5 conidia, without or
rarely with lateral branches, yellowish brown to brown, oblong to

long obclavate, with a blunt-tapered false beak, almost straight,
not swollen, smooth, clearly constricted at each transverse
septa, 14-141 pm in total length. Conidial bodies 14-100 x 6-30
pum, with up to 16 transverse septa and 13 longitudinal septa.
False beaks not filamentous, usually unbranched and short,
consist of 2—3 cells, 3-52 x 3—6 um.

Colony characteristics on PDA after 7 d at 25 °C: Slow-growing,
reaching an average of 39.2 + 1.4 mm diam; aerial hypha cottony,
dense, grayish green, with white margins; reverse center dark
green to black; sporulation sparse; diffusible pigment absent.

Sexual morph: Sexual form not observed.

Natural hosts: Primarily Dianthus, Gypsophila, Lychnis, and
Saponaria (Caryophyllaceae), and also recorded on Calendula
(Asteraceae), Hibiscus (Malvaceae), Jasminum (Oleaceae),
Lolium (Poaceae), and Sesamum (Pedaliaceae) (Rao 1969,
Richardson 1990, Garibaldi et al. 2013, Farr & Rossman 2018).

Symptom: Leaf spots on Dianthus are circular to zonate, grayish
brown to brown, and become enlarged and confluent, reaching
4-7 mm with a necrotic eye at the center, and sometimes with a
chlorotic halo around the primary lesion.

Distribution: Worldwide, including Asia (China, India, Japan, Korea,
Malaysia, Myanmar, Pakistan, and Thailand), Europe (Armenia,
Austria, Bulgaria, Croatia, Cyprus, Denmark, France, Germany,

Fig. 29. Morphological features of Japanese isolates of Alternaria nobilis (AC1) on V8 juice agar medium. A—E. Conidia. F. Conidiophores. G. Culture
on potato-dextrose agar medium (upper = surface, lower = reverse). H. Natural symptoms on Dianthus. Scale bars (A—F) = 25 um.
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Greece, lItaly, Latvia, Poland, Romania, Russia, Spain, Sweden,
Turkey, and UK), North and Latin America (Argentina, Brazil,
Canada, Jamaica, Mexico, Puerto Rico, Uruguay, USA, Venezuela,
and Virgin Islands), Africa (Malawi, Morocco, Mozambique,
South Africa, Tanzania, Zambia, and Zimbabwe), and the Pacific
(Australia and New Zealand) (Imai 1914, Rao 1969, Ellis 1971,
Richardson 1990, Cho et al. 2001, Yu 2001, Garibaldi et al. 2013,
Woudenberg et al. 2013, Farr & Rossman 2018).

Distinctive features: Large conidia, solitary to in short chain with
a blunt-tapered false beak and multiple septa. Conidiophores
long and broad. This species is pathogenic to Dianthus.

Notes: Morphological characteristics of the examined Japanese
isolates were identical to those of A. nobilis described in Simmons
(2002). However, these were also similar to those of the other
members in sect. Gypsophilae: shorter than the conidial length
of A. saponariae; larger than the conidial width of A. ellipsoidea
and A. kamtschatica according to the criteria in Simmons (2002)
and Gannibal (2019). The multi-locus phylogeny conducted in
this study showed that examined isolates of this section were
divided into five subclades, and Japanese isolates formed a
distinct subclade (Fig. 1), while ITS (Fig. 2) as well as tefl and
act phylogeny proposed that Japanese isolates are identical with
the representative isolate of A. nobilis (data not shown). It is still
unclear which trait can practically determine species boundaries
among them, and therefore, we provisionally identified Japanese
isolates as A. nobilis based on their morphological similarity and
original source host, Dianthus.

Section Japonicae Woudenb. & Crous, Stud. Mycol. 75:
197. 2013.

Woudenberg et al. (2013) assigned two species to this section,
which is morphologically characterized by short- to long-ovoidal
conidia formed in short chains, with constrictions at the septa.
However, neither the morphological nor the pathological
differences between these two species have been well defined.

Alternaria japonica Yoshii, J. Pl. Protect. (Tokyo) 28: 17. 1941.
Figs 30, 31.

Synonyms: Alternaria brassicae (Berk.) Sacc. var. macrospora
[non Sacc.] sensu Yoshii, Bult. Sci. Fak. Terk. Kjusu Imp. Univ. 5
(3): 224. 1933.

Alternaria raphani J.W. Groves & Skolko, Canad. J. Res., Sect. C
22 (5): 227. 1944,

Alternaria matthiolae Neerg., Danish species of Alternaria and
Stemphylium: 184. 1945.

Alternaria nepalensis E.G. Simmons, CBS Biodiversity Ser.
(Utrecht) 6: 480. 2007.

Typus: Japan, on leaves of Brassica rapa and Raphanus sativus
(details unknown, not specified, not preserved). Lectotype, IMI
876 (designated in Tohyama & Tsuda 1990; the same specimen
was designated as a neotype in Simmons 1995a). Epitype
designated here, Japan, Tokyo, Setagaya, from seeds of R.
sativus, 24 Jul. 2000, J. Nishikawa, TNS-F-85453 (dried culture
specimen of MAFF 246775) (MBT385028), isoepitype MUMH
11696, culture ex-epitype MAFF 246775 = MUCC 1622.

Additional materials examined: Japan, Tokyo, Setagaya, from seeds of
R. sativus, 24 Jul. 2000, J. Nishikawa, living cultures AC73; Shizuoka

Prefecture, Kakegawa, on buds of Brassica oleracea var. italica, 7 Jun.
2010, K. Takebayashi, living culture AC96; ibid., on stem of B. oleracea
var. italica, 7 Jun. 2010, K. Takebayashi, living culture AC97.

Morphological characters on PCA medium: Conidiophores
solitary, short and narrow, 18—-80 x 4—6 um. Conidia of ex-epitype
solitary or in short chains of 1-2, without lateral branches, 20-84
um in total length. Conidial bodies ovoid to obclavate, ellipsoid,
pale brown to brown and smooth, 2068 x 8-25 um, with 2-7
transverse septa and 0—4 longitudinal septa, constricted at some
transverse septa. Secondary conidiophores (false beaks) usually
short, 1-3 celled, unbranched, 5-20 x 4-10 um. Intercalary
chlamydospores frequently both in air and submerged in agar
substrate, either as single spores or in knots or chains, brown to
dark brown, 10-21 x 8-16 um.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 59.1 + 2.9 mm diam, variable
among strains; aerial hypha cottony, white or pale gray to grayish
green, with white margins; reverse center dark green to black;
sporulation sparse; diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Brassicaceae. There are also reported exceptions
of Carya (Juglandaceae), Kalanchoe (Crassulaceae), Oryza
(Poaceae), Sesamum (Pedaliaceae), and Vigna (Fabaceae)
serving as hosts (Huang & Hanlin 1975, Farr & Rossman 2018).

Symptoms: Head rot and leaf spot like those caused by A.
brassicicola, but caespituli appear sparsely on lesions.

Experimental host range: Strongly pathogenic to Brassicaceae,
including Diplotaxis, Matthiola, and Nasturtium; weakly
pathogenic or opportunistic to Lobularia, Eutrema, Iberis,
and Aubrieta; almost non-pathogenic to Capsella and non-
Brassicaceae plants (Table 5).

Distribution: Worldwide, including Asia (China, India, Japan,
Korea, Myanmar, Nepal, Pakistan, Taiwan, and Saudi Arabia),
Europe (Austria, Denmark, Finland, Germany, Greece, Italy,
Netherlands, Poland, Russia, and Spain), North and Latin America
(Barbados, Brazil, Canada, Cuba, and USA), Africa (Egypt, South
Africa, Tunisia, and Zimbabwe), and the Pacific (Australia, New
Caledonia, New Zealand, and Papua New Guinea) (Yoshii 1941,
Rao 1969, Ellis 1971, Richardson 1990, Tohyama & Tsuda 1990,
Jasalavich et al. 1995, Sharma & Tewari 1998, Yu 2001, Zhang
2003, Su et al. 2005, Simmons 2007, Gannibal & Gasich 2009,
Ren et al. 2012, Bassimba et al. 2013, Woudenberg et al. 2013,
Siciliano et al. 2017, Farr & Rossman 2018).

Distinctive features: Small conidia are either solitary or appear in
short chains. Intercalary chlamydospores frequently form both
in air and submerged in agar substrate. This species is widely
pathogenic to Brassicaceae, but non- or weakly to Eutrema,
Aubrieta and Capsella. 1t is phylogenetically recognizable via its
ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act sequences (data
not shown).

Notes: This speciesis often confused under the names, A. raphani
and A. matthiolae. However, A. japonica has nomenclatural
priority to these two epithets. As for A. nepalensis described
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by Simmons (2007), it was clearly appropriate to synonymize it There are no ex-type living cultures and therefore we designated
with A. japonica based on its conidial morphology, phylogenetic an epitype herein to provide reference for further molecular
analysis, and its original source (from seeds of Brassica sp.). studies.

Fig. 30. Illustrations of Alternaria japonica (MAFF 246775). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on potato-
carrot agar medium. Scale bar = 25 um.
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Fig. 31. Morphological features of Japanese isolates of Alternaria japonica (MAFF 246775) on potato-carrot agar medium. A-E. Conidia. F. Conidiophore.
G-1. Chlamydospores. J. Culture on potato-dextrose agar medium (left = surface, right = reverse). K. Dried culture specimen ex MAFF 246775 (epitype:
TNS-F-85453). Scale bars (A—I) = 25 pm.

Section Panax D.P. Lawr. et al., Mycologia 105: 541. 2013.

Woudenberg et al. (2013) assigned five species to this section.
This was morphologically characterized by small to large conidia
with blunt-tapered false beaks and broad conidiophores. Two
species, A. avenicola and A. photistica, have a sexual morph
(Simmons 1986, 2007). Only one species, A. panax, is distributed
in Japan, and was described in the present study.

Alternaria panax Whetzel, in Whetzel & Rosenbaum, Bull.
U.S.D.A. Bur. Pl. Industr. 250: 11. 1912. Fig. 32.

Synonyms: Alternaria panax Whetzel, in Cowles, Science n. s. 29:
912. 1909, nom. nud.

Alternaria panacis Whetzel, in Saccardo, Syll. Fung. 25: 864.
1931, citing Rosenbaum & Zinnsmeister, J. Agric. Res. 5: 181.
1915, nom. illeg. (orthographic variant; ICN Art. 60.1).
Macrosporium araliae Dearn. & House, Circ. N.Y. St. Mus. 24: 58.
1940, nom. inval. (no Latin; ICN Art. 39.1).

Alternaria araliae H.C. Greene, Trans. Wisc. Acad. Sci. 42: 80.
1953. non Alternaria araliae sensu Deng et al., Mycol. Progr.
14(31): 4. 2015.

Alternaria actinophylla J.W. Mille, Fl. Dep. Agr., Div. Pl. Ind., PI.
Pathol. Circ. 80: 1969, nom. nud. (no Latin and type; ICN Art.
39.1, 40.1).

Typus: USA, New York, Fulton, on Panax quinquefolius, 15 Jun.
1909, H.H. Whetzel, BP1 446440 (isotype: fide Simmons 2007) ex

CUP 4852; EGS 07.074.
Ex-type culture: Unknown.

Additional materials examined: Japan, Tokyo, Ogasawara (Bonin Is.),
Chichijima, on leaves of Polyscias fruticosa, Jan. 2003, T. Ono, living
culture PFAIt1-1 (MUCC 1692); ibid., on leaves of Polyscias guilfoylei,
Apr. 2003, T. Ono, living culture PGAItl (AC19); Tokyo, Ogasawara
(Bonin Is.), Hahajima, on leaves of P. fruticosa, 28 Oct. 2011, T. Sato,
MUMH 11686, living cultures MAFF 243161 = MUCC 1625 and MAFF
243162 = MUCC 1626.

Morphological characters on V8 medium: Conidiophores
broad, brown and unbranched, 55-145 x 7-10 um. Conidia
commonly in chains of 2-7, without or rarely with lateral
branches, yellowish brown to brown, smooth, oblong to long
obclavate, with a blunt-tapered false beak, mostly straight
and laterally symmetrical but occasionally excessively swollen,
often constricted at each transverse segment, 51-208 um in
total length. Conidial bodies 28-118 x 13-38 um, with 4-13
transverse septa and up to 9 (often complicated) longitudinal
septa; false beaks unbranched and not filamentous, 9-110 x
3—-9 um, pale brown to brown.

Colony characteristics on PDA after 7 d at 25 °C: Slow to
moderate-growing, reaching an average of 46.5 + 2.2 mm diam;
aerial hypha cottony, white to pale gray; reverse center dark
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Fig. 32. Morphological features of Japanese isolates of Alternaria panax (MAFF 243161) on V8 juice agar medium. A-D. Conidia. E. Conidiophores. F.
Culture on potato-dextrose agar medium (upper = surface, lower = reverse). G. Specimens of diseased leaves of Polyscias (MUMH 11686). Scale bars

(A—E) = 25 um.

green to black; sporulation sparse; diffusible pigment absent or
bright yellow to reddish orange.

Sexual morph: Not observed.

Natural hosts: Araliaceae (Acanthopanax, Aralia, Brassaia,
Dendropanax, Echinopanax, Fatsia, Kalopanax, Meryta, Panax,
Plerandra, Polyscias, Pseudopanax, Schefflera, and Tupidanthus)
(Uchida et al. 1984, Yu 2001, Simmons 2007, Deng et al. 2010,
2013).

Symptoms: Leaf and petiole spots on Polyscias, appearing water-
soaked to circular, brown, becoming enlarged and confluent,
measuring 2—5 mm diam.

Distribution: Canada, China, Italy, Japan, Korea, New Zealand,
and USA (Bokura 1915, Atilano 1983, Uchida et al. 1984, Yu
2001, Zhang 2003, Garibaldi et al. 2004, Ono 2004, Zhang et al.
2009, Deng et al. 2010, 2013, Woudenberg et al. 2013, Farr &
Rossman 2018).

Distinctive features: Small and large conidia develop in short
chains, with blunt-tapered false beaks. Colonies grown on PDA
release either no pigment or a bright yellow to reddish orange
pigment into the medium. This species is widely pathogenic

to Araliaceae, and is phylogenetically recognizable via its ITS
(Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act sequences (data not
shown).

Notes: Deng et al. (2015) split A. panax into three species,
A. araliae, A. dendropanacis, and A. panax (as A. panacis,
orthographic variant), based on their culture characteristics,
phylogeny (Alt a 1, B-tubulin, tefl, gapdh, and rpb2), and
hosts. However, among these, A. araliae sensu Deng et al. was
unrelated to the type material of A. araliae H.C. Greene (BPI
445904). Japanese isolates examined in the present study could
not accommodate the definitions of these three species, which
focused on pigment production and conidial morphology, as
established by Deng et al. (2015).

Section Porri D.P. Lawr. et al., Mycologia 105: 541. 2013.

This section is the largest and, morphologically, the most confusable
section. It was morphologically characterized by large spores that
were usually non-catenate with filamentous beaks and broad
conidiophores, consisting of 63 species as defined by Woudenberg
et al. (2014). Among these, only 12 species are distributed in Japan
(NIAS Genebank database of plant diseases in Japan: https://www.
gene.affrc.go.jp/databases-micro_pl_ diseases_en.php), and five
species are described in the present study.
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Alternaria crassa (Sacc.) Rands, Phytopathology 7: 337. 1917.
Fig. 33.

Basionym: Cercospora crassa Sacc., Michelia 1(1): 88. 1877.
Synonyms: Cercospora daturae Peck, Rep. (Annual) New York
State Mus. Nat. Hist. 35: 140. 1884.

Macrosporium cookei Sacc., Syll. Fung. 4: 530. 1886.
Macrosporium solani Cooke, Grevillea 12: 32. 1883. non M.
solani Ellis & G. Martin, 1882.

Alternaria cookei (Sacc.) Bremer, Ismen, Karel & Ozkan & M.
Ozkan, Istanbul Univ. Fak. Mecm., B 13: 42. 1948.
Macrosporium daturae Fautrey, in Lambottle & Fautrey, Rev.
Mycol. (Toulouse) 16: 76. 1894.

Alternaria daturae (Fautrey) Bubak & Ranoj., in Kobat & Bubak,
Fungi Imperf. Exsicc. 14: 694. 1911.

Alternaria capsici E.G. Simmons, Mycotaxon 75: 84. 2000.

Typus: on leaves of Datura stramonium (details unknown; two
specimens in PAD). Lectotype, PAD, D. stramonium, S. [elva] '76.

10. (designated in Simmons 2000). Epitype, Cyprus, Famagusta,
on leaves of D. stramonium, Jan. 1936, R.M. Nattrass, CBS
H-21744 (designated in Woudenberg et al. 2014), culture ex-
epitype CBS 110.38.

Additional materials examined: Japan, Tokyo, Kodaira, on leaves of D.
stramonium, Jul. 2000, J. Nishikawa, living culture MAFF 243056; ibid.,
on leaves of Datura fastuosa, 20 Oct. 2012, Ichinose et al., MUMH 11689,
living culture MUCC 2502 (12-M0180); on leaves of Datura inoxia, 15 Sep.
2012, Ichinose et al., MUMH 11688, living culture MUCC 2503 (12-M0099).

Morphological characters on V8 medium: Previously reported in
Nishikawa & Nakashima (2013) and Ichinose et al. (2015).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching an average of 80 + 1.8 mm diam; aerial hypha cottony,
grayish green to black, with white margins; reverse center dark
green to black; sporulation sparse; diffusible pigment absent.

Fig. 33. Morphological features of Japanese isolates of Alternaria crassa (MAFF 243056) on V8 juice agar medium. A-H. Conidia with colored beaks. I.
Conidiophores. J. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). K. Symptoms on specimens of Datura (MUMH 11688).
Scale bars (A1) = 25 um.
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Sexual morph: Not observed.

Natural hosts: Datura (including Brugmansia), Capsicum,
Nicandra, Petunia, and Solanum nigrum (Solanaceae) (Rao 1969,
Zhang 2003, Simmons 2007, Nishikawa & Nakashima 2013).

Symptoms: Leaf spots appear on Datura, and are vein-limited
circular to irregular, straw-yellow to pale brown with a gray
center, distinct at their borders, and are scattered, but become
enlarged and confluent (Nishikawa & Nakashima 2013).

Experimental host range: Pathogenic to Datura (tribe Datureae,
Solanoideae) and Capsicum (tribe Capsiceae, Solanoideae), and
occasionally weakly or opportunistic to Petunia and Solanum
(Nishikawa & Nakashima 2013).

Distribution: Worldwide, including Asia (China, India, Israel,
Japan, Myanmar, Nepal, Pakistan, and Taiwan), Europe (Bulgaria,
Croatia, Cyprus, Germany, lItaly, Latvia, Macedonia, Poland,
Portugal, Romania, Serbia, Spain, and Switzerland), North and
Latin America (Cuba, El Salvador, USA, and Venezuela), Africa
(Ethiopia, Ghana, Kenya, Mozambique, Nigeria, Rhodesia, South
Africa, Sudan, Tanzania, Uganda, Zambia, and Zimbabwe), and
the Pacific (Australia and New Zealand) (Sawada 1944, Rao
1969, Ellis 1971, Richardson 1990, Crous et al. 2000, Zhang 2003,
Woudenberg et al. 2014, Ichinose et al. 2015, Farr & Rossman
2018).

Distinctive features: Large-spored species with filamentous
but clear false beaks, which are usually unbranched, colored,
significantly elongated, and often exceed 4 um in width. Conidial
bodies are pale brown, with longitudinal septa in common.
Colonies on PDA medium released no pigment, which is unique
to the species among related species in sect. Porri. This species
is pathogenic to Datura and Capsicum, and is phylogenetically
recognizable via its ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act
sequences (data not shown).

Notes: Woudenberg et al. (2014) synonymized A. capsici based
on the combined phylogeny of its ITS, gapdh, tef1, rpb2, and
Alt a 1 sequences, and then inoculation tests conducted by
Nishikawa & Nakashima (2013) also supported this taxonomic
classification. In addition, Nishikawa & Nakashima (2013)
suggested that A. daturicola was also a probable synonym.

Alternaria cucumerina (Ellis & Everh.) J.A. Elliott, Amer. J. Bot.
4:472. 1917. Fig. 34.

Basionym: Macrosporium cucumerinum Ellis & Everh., Proc.
Acad. Nat. Sci. Philadelphia 47: 440. 1895.

Synonym: Alternaria loofahae E.G. Simmons & Aragaki, CBS
Biodiversity Ser. (Utrecht) 6: 316. 2007.

Typus: USA, New Mexico, Las Cruces, on leaves of Cucumis
melo, Aug. 1895, E.O. Wooton. (not specified). Lectotype, USA,
New Mexico, Las Cruces, on leaves of C. melo, Aug. 1895, E.O.
Wooton, PH (designated in Simmons 2007).

Ex-type culture: Unknown.
Additional materials examined: Japan, Niigata Prefecture, Sado, on

leaves of Cucurbita maxima, 27 Jul. 2010, Y. Makizumi, living culture
AC105; ibid., 30 Jul. 2010, Y. Makizumi, living culture AC106.

Morphological characters on V8 medium: Conidiophores
moderately long and broad, 69-109 x 5-7 um. Conidia usually
solitary, but occasionally in chains of two, 56-411 um in total
length. Conidial bodies subcylindrical to broadly obclavate and
oblong, 36-106 x 13—28 um, with 4-15 transverse and 2-12
(often complicated) longitudinal septa, brown to dark brown
with a smooth surface. Filamentous beaks almost straight,
unbranched, 16-305 x 1-2 um, pale brown and conspicuously
distinguishable, bordering the conidial body.

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching an average of 87 + 0.7 mm diam; aerial hypha cottony,
white to pale gray; reverse center dark green to black; sporulation
sparse; diffusible pigment absent to occasionally bright yellow
to pale orange.

Sexual morph: Not observed.

Natural hosts: Cucurbitaceae (Benincasa, Citrullus, Cucumis,
Cucurbita, Lagenaria, Luffa, and Sicyos), as well as occasionally
reported on Asimina (Annonaceae), Cyamopsis and Phaseolus
(Fabaceae) (Ellis 1971, Woudenberg et al. 2014, Farr & Rossman
2018).

Symptoms: Leaf spots appear on Cucurbita, and are dark brown
to black with grayish eye at center, subcircular to angular with a
distinct border, 1-5 mm diam, becoming confluent.

Distribution: Worldwide, including Asia (China, India, Japan, Korea,
Nepal, Pakistan, and Thailand), Europe (Bulgaria, Cyprus, France,
Germany, Norway, Romania, Russia, Spain, Switzerland, Turkey, and
UK), North and Latin America (Canada, Chile, Cuba, El Salvador, Haiti,
Jamaica, Mexico, Peru, Trinidad and Tobago, USA, and Venezuela),
Africa (Ghana, Kenya, Libya, Mozambique, Nigeria, Rhodesia,
Sierra Leone, South Africa, Sudan, Tanzania, Uganda, Zambia, and
Zimbabwe), and the Pacific (Australia and New Zealand) (Benjamin
& Slot 1969, Ellis 1971, Yu 2001, Zhang 2003, Gannibal 2011,
Woudenberg et al. 2014, Farr & Rossman 2018).

Distinctive features: Large-spored species with filamentous
colored beaks, which are usually unbranched and do not exceed
3 um in width. Conidial bodies are broadly obclavate to oblong,
often with complicated longitudinal septa. Colonies on PDA
often release yellow to pale orange pigment into the medium.
This species is generally characterized by pathogenicity to
Cucurbitaceae (Ellis 1971, Yu 2001, Zhang 2003, Simmons 2007),
and is phylogenetically recognizable via gapdh, rpb2, tefl (Fig.
1), and Alt a 1 sequences (data not shown).

Alternaria dauci (J.G. Kiihn) J.W. Groves & Skolko, Canad. J.
Res., Sect. C, Bot. Sci. 22(5): 222. 1944. Fig. 35.

Basionym: Sporidesmium exitiosum var. dauci J.G. Kiihn,
Hedwigia 1: 91. 1855.

Synonyms: Polydesmus exitiosus var. dauci (J.G. Kihn) J.G. Kiihn,
Die Krankheiten der Kulturgewdichse, ihre Ursachen und ihre
Verhiitung: 165. 1858.

Macrosporium dauci ().G. Kihn) Rostr., Tidsskr. Landoekon. ser.
5,7:385.1888.

Macrosporium carotae Ellis & Langl., J. Mycol. 6(1): 36. 1890.
Alternaria carotae (Ellis & Langl.) J.A. Stev. & Wellman, J. Wash.
Acad. Sci. 34: 263. 1944.

Alternaria brassicae var. dauci (J.G. Kihn) Lindau, Rabenh. Krypt.-
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Fig. 34. Morphological features of Japanese isolates of Alternaria cucumerina (AC106) on V8 juice agar medium. A-E. Conidia. F, G. Colored beaks. H.
Conidiophore. I. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). Scale bars (A—H) = 25 pum.

Fl., Edn 2 (Leipzig) 1(9): 260. 1908. non Alternaria brassicae var.
dauci (J.G. Kuhn) P.C. Bolle, Meded. Phytopathol. Lab. “Willie
Commelin Scholten” 7: 42. 1924, later isonym.

Alternaria porri f. sp. dauci (J.G. Kiihn) Neerg, Danish species of
Alternaria and Stemphylium: 252. 1945.

Alternaria poonensis Ragunath, Mycopathol. Mycol. Appl. 21:
315. 1963.

Typus: Lectotype, B, on leaves of Daucus carota, slide glass
specimen of Sporidesmium exitiosum var. dauci, Gross Krausche
p. Bunzlau, Jul., Kiihn (designated in Simmons 1995a; appeared
to be lost according to Woudenberg et al. 2014). Neotype, Italy,
from seed of D. carota, Sep. 1937, P. Neergaard, CBS H-21745
(designated in Woudenberg et al. 2014), culture ex-neotype CBS
111.38.

Additional material examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of D. carota, Nov. 1998, K. Takebayashi, living cultures MUCC
1684 and AC9.

Morphological characters on V8 medium: Conidiophores
moderately long and broad, 36—94 x 6—-8 um. Conidia commonly
solitary, 152—448 um in total length. Conidial bodies oblong to
broadly obclavate, 52-100 x 13-31 um, with 5-11 transverse
and 0-8 longitudinal septa, sometimes with distosepta-like
structures, brown to dark brown, with a smooth surface.
Filamentous beaks straight and elongated, hyaline to subhyaline,
unbranched or branched once, septated with distoseptum, 100—
368 x 1-3 um.

Colony characteristics on PDA after 7 d at 25 °C: Slow to
moderate-growing, reaching an average of 53.6 + 3.3 mm diam,
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Fig. 35. Morphological features of Japanese isolates of Alternaria dauci (MUCC 1684) on V8 juice agar (V8) medium. A-G. Conidia with filamentous
beaks. H. Conidiophores. I. Sporulation on surface of V8 medium. J. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). Scale

bars (A—H) = 25 um.

variable among strains; aerial hypha cottony, grayish green to
dark green, with white margins; reverse center dark green to
black; sporulation sparse; diffusible pigment red to reddish
brown.

Sexual morph: Not observed.

Natural hosts: Daucus, Coriandrum, Apium (Apiaceae), and
Cichorium (Asteraceae), as well as some recorded cases infecting
non-Apiaceae families under heterogeneous names as forma
speciales of A. dauci (Richardson 1990, Simmons 2007, Woudenberg
et al. 2014, Farr & Rossman 2018, Poudel & Zhang 2018).

Symptoms: Spots appear on the leaves and petioles of Daucus,
and are circular to subcircular with distinct margins, measuring
1-3 mm diam, which become confluent, resulting in severe leaf
blight and causing significant economic losses.

Distribution: Worldwide, including Asia (Cambodia, China, India,
Israel, Japan, Korea, Malaysia, Nepal, Pakistan, Philippines,
Taiwan, and Thailand), Europe (Austria, Bulgaria, Denmark,
Germany, Greece, Finland, France, Italy, Netherlands, Poland,
Portugal, Russia, Turkey, and UK), North and Latin America
(Barbados, Brazil, Canada, Costa Rica, Cuba, El Salvador,
Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua,

Panama, Peru, Puerto Rico, Trinidad and Tobago, USA, Venezuela,
and Virgin Islands), Africa (Algeria, Congo, Ghana, Guinea, Kenya,
Malawi, Mauritius, Morocco, Nigeria, South Africa, Tanzania,
Zambia, and Zimbabwe), and the Pacific (Australia, Cook Islands,
Fiji, New Zealand, Papua New Guinea, Samoa, and Tonga) (Goto
1927, Kranz 1963, Benjamin & Slot 1969, Rao 1969, Richardson
1990, Crous et al. 2000, Yu 2001, Zhang 2003, Soylu et al. 2004,
Lopes & Martins 2008, Delgado 2011, Woudenberg et al. 2014,
Farr & Rossman 2018, Ozkilinc et al. 2018, Poudel & Zhang 2018).

Distinctive features: Conidial bodies are oblong to obclavate,
with hyaline filamentous beaks that often have a single branch.
The conidial morphology of the species is indistinguishable
from those of A. porri, but differs in length and width (usually
not exceeding 3 um), and more frequently in their longitudinal
septa. Its growth rate on PDA is clearly slower, and colonies
produce red pigment. This species is pathogenic to Daucus
and some other species in Apiaceae (Boedo et al. 2012), and is
phylogenetically recognizable via its ITS (Fig. 2), gapdh, rpb2, Alt
a 1, and act sequences (data not shown).

Alternaria porri (Ellis) Cif., J. Dept. Agric. Porto Rico 14(1): 30.
1930. Figs 36, 37.

Basionym: Macrosporium porri Ellis, in Cooke and Ellis, Grevillea
8 (45): 12. 1879.
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Fig. 36. lllustrations of Alternaria porri (AC6). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on V8 juice agar medium.
Scale bar =25 pm.
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Fig. 37. Morphological features of Japanese isolates of Alternaria porri (MUCC 1688) on V8 juice agar medium. A-G. Conidia with filamentous beaks.
H. Conidiophores. I. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). J. Natural symptoms on Allium. Scale bars (A-H) =
25 pm.

Synonyms: Alternaria porri (Ellis) Sawada, Rep. Dept. Agric. Gov.
Res. Inst. Formosa 61: 92. 1930.

Alternaria porri (Ellis) Neerg., Aarsberet. J. E. Ohlsens Enkes
Plantepat. Lab. 3: 5. 1938.

Alternaria allii Nolla, Phytopathology 17: 118. 1927.

Alternaria vanuatuensis E.G. Simmons & C.F. Hill, CBS Biodiversity
Ser. (Utrecht) 6: 260. 2007.

Typus: on Allium porrum (holotype not specified). Lectotype,
USA, New Jersey, Newfield, on leaves of A. porrum, Sep. 1878,
Ellis, NY (designated in Simmons 2007). Epitype, USA, New
York, Orange County, from leaf of Allium cepa, 1996, M.J. Ydries
Morales, CBS H-21746 (designated in Woudenberg et al. 2014),
culture ex-epitype CBS 116699 = EGS 48.152.

Additional materials examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of Viola x wittrockiana, 24 Dec. 2003, J. Nishikawa, living
culture AC2; ibid., on leaves of Calibrachoa sp., 23 Apr. 2004, J.
Nishikawa, MUMH 11670 and MUMH 11699, living culture AC6; ibid.,
on leaves of Allium fistulosum, 7 Oct. 2004, J. Nishikawa, MUMH
11673, living culture MUCC 1688; Saitama Prefecture, on leaves of

A. fistulosum, 1 Nov. 2004, J. Nishikawa, living culture AC15; Gunma
Prefecture, Takasaki, on leaves of A. fistulosum, 16 Mar. 2005, J.
Nishikawa, living cultures AC16 and AC17; Gunma Prefecture, Tomioka,
on leaves of A. fistulosum, 6 Oct. 2006, J. Nishikawa, MUMH 11677,
living culture MUCC 1698; Chiba Prefecture, Mobara, on leaves of A.
fistulosum, 24 Oct. 2006, J. Nishikawa, living culture AC32; Shizuoka
Prefecture, Kakegawa, from seeds of Eustoma exaltatum subsp.
russellianum, 20 Mar. 2007, Y. Makizumi, MUMH 11692, living culture
MUCC 1702; Tokyo, Setagaya, from seeds of A. fistulosum, 7 Jul. 2001, J.
Nishikawa, living culture AC68.

Morphological characters on V8 medium: Conidiophores
moderately long and broad, 35-139 x 6-11 um. Conidia
commonly solitary, 75-351 pum in total length. Conidial bodies
subcylindrical to oblong, pale brown to brown, with smooth
surface, 38-114 x 10-26 pm with 3—-12 transverse and 0-5
longitudinal septa, sometimes with distosepta-like structures.
Filamentous beaks straight to slightly curved, hyaline, 30-248
x 2—4 um, unbranched or often branched 1-2 times, septated
with distoseptum. Conidial morphology on lesions similar to
those on V8 medium, though usually short-beaked.
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Colony characteristics after 7 d at 25 °C: Fast-growing, reaching
an average of 78.6 £ 1.1 mm diam; aerial hypha cottony, white to
grayish green, sometimes with white margins; reverse center dark
green; diffusible pigment bright yellow to orange or reddish brown.

Sexual morph: Not observed.

Natural hosts: Allium spp. (Amaryllidaceae) are the most
common hosts, although there are reports of the following
serving as occasional hosts: Acalypha (Euphorbiaceae), Apium
(Apiaceae), Calendula, Gerbera, and Tagetes (Asteraceae),
Clarkia (Onagraceae), Dichondra and Ipomoea (Convolvulaceae),
Gossypium and Mucuna (Malvaceae), Peganum (Nitrariaceae),
Scabiosa (Dipsacaceae), and Solanum (Solanaceae) (Kranz 1963,
Rao 1969, Richardson 1990, Crous et al. 2000, Ye et al. 2013, Farr
& Rossman 2018).

Symptoms: Leaf spots on Allium are circular to long elliptical,
distinct sooty spots, often with purple-stained appearance,
measuring 7-50 mm diam. Caespituli were frequently observed
on lesions.

Experimental host range: Pathogenic to Allium, but not to
leaves of Ageratum, Calibrachoa, Capsicum, Gentiana, Petunia,
Solanum, Nicotiana, and Viola (data not shown).

Distribution: Worldwide, including Asia (Brunei, China, India,
Indonesia, Iraq, Israel, Japan, Korea, Malaysia, Myanmar, Nepal,
Pakistan, Philippines, Taiwan, Thailand, Uzbekistan, and Vietnam),
Europe (Austria, Bulgaria, Denmark, France, Germany, Greece,
Italy, Netherlands, Poland, Portugal, Romania, Russia, Slovakia,
and UK), North and Latin America (Argentina, Brazil, Canada,
Colombia, Costa Rica, Cuba, Dominican Republic, El Salvador,
Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua,
Panama, Puerto Rico, USA, Venezuela, and Virgin Islands), Africa
(Egypt, Ethiopia, Ghana, Guinea, Kenya, Libya, Malawi, Mauritius,
Nigeria, Rhodesia, South Africa, Tanzania, Uganda, Zambia, and
Zimbabwe), and the Pacific (Australia, Fiji, New Caledonia, New
Zealand, Papua New Guinea, Tonga, and Vanuatu) (Yoshii 1929a,
Rao 1969, Ellis 1971, Stevenson 1975, Richardson 1990, Aveling
& Naude 1992, Koike & Henderson 1998, Crous et al. 2000, Yu
2001, Zhang 2003, Hall et al. 2007, Simmons 2007, Delgado 2011,
Woudenberg et al. 2013, 2014, Farr & Rossman 2018).

Distinctive features: Large-spored species with hyaline
filamentous beaks, which are often branched and exceeded 3
pum in width. Conidial bodies are subcylindrical, with relatively
fewer longitudinal septa. Colonies grown on PDA medium
released bright yellow to reddish brown pigment. This species is
pathogenic to Allium, and is phylogenetically recognizable via its
ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act sequences (data
not shown).

Notes: Woudenberg et al. (2014) recognized A. allii, which
is a morphospecies with multiple branched beaks (Simmons
2007), as a distinct taxon based on the combined phylogeny
of ITS, gapdh, rpb2, tefl, and Alt a 1 sequences. However, the
morphology of isolates that clustered in the A. allii clade was not
always distinguishable in beak branching (Figs 36, 37), and results
of phylogenetic analysis based on ITS, gapdh, tefl, Alt a 1, and
act sequences individually did not clearly support this species
as a unique Allium pathogen (data not shown). Therefore, we

regarded A. allii as a synonym of A. porri here. This species is
also ubiquitous, and frequently found on non-host plants.

Alternaria zinniae M.B. Ellis, Mycol. Pap. 131: 22. 1972. Fig. 38.
Synonym: Alternaria zinniae H. Pape, Angew. Bot. 24: 61. 1942,
nom. inval. (no Latin; ICN Art. 39.1).

Typus: holotype specimen not specified. Lectotype, USA, New
York, Ithaca, on Zinnia elegans, 28 Sep. 1942, A.W. Dimock, IMI
1037 (designated in Simmons 2007; as holotype in Simmons
1997).

Ex-type culture: Unknown.

Additional materials examined: Japan, Nagano Prefecture, Tomi,
on leaves of Zinnia hybr., 6 Jul. 2007, J. Nishikawa, MUMH 11680,
living culture MUCC 1704; Nagano Prefecture, Azumino, on leaves of
Zinnia hybr., Aug. 2010, Y. Makizumi, living culture AC107; Shizuoka
Prefecture, Kakegawa, on Z. elegans, 16 Mar. 2011, Y. Makizumi, living
culture AC108; Nagano Prefecture, Azumino, on Z. elegans, 31 May
2011, Y. Makizumi, living culture AC109.

Morphological characters on V8 medium: Conidiophores
moderately long and broad, 60-183 x 6—8 um. Conidia usually
solitary, but occasionally in chains of two, 109—318 um in total
length. Conidial bodies subcylindrical to oblong, 74-119 x
20-33 um, with 9—16 transverse and 6-14 (often complicated)
longitudinal septa, olive brown to brown, with smooth to
minutely verrucose surface. Filamentous beaks almost straight,
unbranched, pale brown, conspicuously distinguishable and
border the conidial body, 33-213 x 1-3 um.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 60.4 + 5.6 mm diam, variable
among strains; aerial hypha cottony, white to pale gray, with
white margins; reverse center dark green to black; diffusible
pigment yellow to pale orange.

Sexual morph: Not observed.

Natural hosts: Usually Zinnia and the other Asteraceae plants
(Ageratum, Bidens, Blumea, Calendula, Callistephus, Carthamus,
Coreopsis, Cosmos, Dahlia, Echinops, Eclipta, Eupatorium, Gaillardia,
Galinsoga, Gerbera, Glebionis, Helianthus, Kleinia, Parthenium,
Rudbeckia, Sphaeranthus, Spilanthes, Tagetes, Tithonia, Volutaria,
and Xanthium) (Neergaard 1945, Rao 1969, Ellis 1976, Richardson
1990, Farr & Rossman 2018). Records suggest that it may also infect
Impatiens (Balsaminaceae), Nicotiana (Solanaceae), and Papaver
(Papaveraceae) (Neergaard 1945, Richardson 1990).

Symptoms: Leaf spots on seedlings of Zinnia are brown, circular
to irregular, measuring 5-10 mm diam, becoming enlarged and
confluent.

Distribution: Worldwide, including Asia (China, Brunei, India,
Indonesia, Japan, Korea, Malaysia, Myanmar, Nepal, and
Pakistan), Europe (Armenia, Austria, Cyprus, Denmark, France,
Germany, Hungary, Italy, Latvia, Netherlands, Norway, Poland,
Portugal, Romania, and UK), North and Latin America (Brazil,
Canada, Guyana, Jamaica, and USA), Africa (Egypt, Ethiopia,
Ghana, Guinea, Kenya, Libya, Malawi, Mauritius, Rhodesia,
Sierra Leone, South Africa, Sudan, Tanzania, Uganda, Zambia,
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Fig. 38. Morphological features of Japanese isolates of Alternaria zinniae (MUCC 1704) on potato-carrot agar medium. A-E. Conidia. F. Conidiophores.
G. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). H. Natural symptoms on seedlings of Zinnia. Scale bars (A—F) = 25 pm.

and Zimbabwe), and the Pacific (Australia, New Caledonia,
New Zealand, and Tonga) (Kranz 1963, Rao 1969, Ellis 1976,
Richardson 1990, Simmons 1997, Crous et al. 2000, Yu 2001,
Zhang 2003, Woudenberg et al. 2014, Farr & Rossman 2018).

Distinctive features: Large-spored species with filamentous
colored beaks as with those of A. cucumerina. Conidial bodies
are oblong, often with complicated longitudinal septa. Colonies
grown on PDA medium sometimes release yellow to pale orange

pigment into the medium. This species is generally characterized
by selective pathogenicity to Zinnia and some other Asteraceae
plants (Neergaard 1945, Zhang 2003), and is phylogenetically
recognizable via gapdh, rpb2, tefl (Fig. 1), Alt a 1, and act
sequences (data not shown).

Note: Since there are a wide range of records listing Asteraceae
as a host, further pathological studies within Asteraceae, besides
Zinnia, are needed to characterize this species.
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Section Pseudoulocladium Woudenb. & Crous, Stud.
Mycol. 75: 201. 2013.

The four species assigned to this section are characterized
by simple or branched, short, and geniculate conidiophores,
and catenation of mostly 3-septate conidia (Runa et al. 2009,
Woudenberg et al. 2013). Gannibal & Lawrence (2018b) listed
additional species in this section, A. lanuginosa and A. sylvestris,
afterward.

Alternaria chartarum Preuss, Bot. Zeitung 6: 412. 1848. Fig. 39.
Basionym: Sporidesmium polymorphum var. chartarum (Preuss)
Cooke, Fungi Brit. Exs., ser. 2: 329. 1875.

Synonyms: Ulocladium chartarum (Preuss) E.G. Simmons,
Mycologia 59: 88. 1967.

Alternaria stemphylioides Bliss, Mycologia 36: 538. 1944.
Alternaria chartarum f. stemphylioides (Bliss) P. Joly, Encycl.
Mycol. (Paris) 33: 161. 1964.

Typus: Germany, Hoyerswerda, holotype in B, on paper, Preuss,
Klotzsch’s Herb. vivum mycol. no. 1284. Epitype, Canada,
Saskatchewan, from Populus plywood, Jul. 1957, S.J. Hughes,
CBS H-19059 (designated in de Hoog & Horré 2002), culture ex-
epitype CBS 200.67 = ATCC 18044 = DAOM 59616b = IMI 124943
= MUCL 18564 = QM 8328.

Additional material examined: Japan, Tokyo, Setagaya, from seeds
of Capsicum annuum, 8 Dec. 2000, J. Nishikawa, living culture MAFF
246888.

Morphological characters on PCA medium: Conidiophores
solitary and relatively short, 18-95 x 3-5 um, pale brown to
brown, with polytretic pores at the apex, 2—4 geniculate bends,
frequently proliferating at the upper nodes. Conidia in short
chains of 3-8, frequently with lateral branches, brown to dark
brown, ellipsoid to obclavate, smooth to roughened, 13-29 x
8-15 um, with 1-4 (mostly 3) transverse and 0—4 longitudinal
septa. Secondary conidiophores (false beaks) at the apical end

Fig. 39. Morphological features of Japanese isolates of Alternaria chartarum (MAFF 246888). A-D. Conidia and conidiophores on potato-carrot agar
medium. E. Culture on potato-dextrose agar medium (left = surface, right = reverse). Scale bars (A-D) = 25 um.

© 2020 Westerdijk Fungal Biodiversity Institute 265




FUSE

Nishikawa & Nakashima

and median of conidium, short, mostly single-celled, sometimes
proliferate and branched.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching 60.8 = 3.1 mm diam; aerial hypha cottony
to sparse, dark green to greenish brown, with white margins;
reverse center dark green to pale gray; sporulation abundant;
diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Saprophytic, but there are records of pathogenicity
to Quercus, Vaccinium, and Lippia (Vannini & Vettraino 2000,
Starast et al. 2009, Zarandi & Sharzei 2015).

Distribution: Worldwide, including Asia (China, India, Iran,
Iraq, Israel, Japan, Kuwait, Pakistan, and Saudi Arabia), Europe
(Lithuania, Poland, Russia, and UK), North and Latin America
(Canada, Nicaragua, Uruguay, and USA), South Africa, and
Australia (Rao 1969, Ellis 1976, Phillips et al. 1979, Rossman &
Lu 1980, Watanabe et al. 1986, Bettucci et al. 1997, Chen et al.
2002, Nishikawa et al. 2006, Delgado 2011, Kowalski & Andruch
2012, Woudenberg et al. 2013, Zarandi & Sharzei 2015, Barkat et
al. 2016, Farr & Rossman 2018).

Distinctive features: Short conidiophores are geniculate and
proliferate frequently; obclavate conidia commonly appear
in chains, with three transverse septa. This species may be
phylogenetically recognizable via ITS (Fig. 2), gapdh, tef1, Alt a
1, and act sequences (data not shown).

Notes: Theresults of the gapdh and tef1 phylogeny also suggested
that isolates of A. aspera, A. chartarum, A. concatenata, and
A. septospora must be conspecific (data not shown), and
morphological differences between these species were unclear
based on their original descriptions (Simmons 1967, 2004, Xue
& Zhang 2007). This species has often been misidentified as A.
alternata owing to its conidial catenation (Simmons 1967, de
Hoog & Horré 2002, Runa et al. 2009).

Section Radicina D.P. Lawr. et al., Mycologia 105: 541.
2013.

Five species were recognized in this section (Lawrence et al.
2013, Woudenberg et al. 2013), which is morphologically
characterized by medium-sized, beakless conidia. All recognized
species in this section were sourced from Apiaceae. Two
species, A. petroselini and A. radicina, are distributed in Japan
(Yoshii 1929b, Nishikawa & Nakashima 2013), and the former
was examined in the present study.

Alternaria petroselini (Neerg.) E.G. Simmons, in Ellis, More
dematiaceous Hyphomycetes (Kew): 417. 1976. Fig. 40.
Basionym: Stemphylium petroselini Neerg., Zentralbl. Bakteriol.,
2. Abt. 104: 411. 1942.

Synonyms: Stemphylium radicinum var. petroselini (Neerg.)
Neerg., Danish species of Alternaria and Stemphylium: 357. 1945.
Alternaria radicina var. petroselini (Neerg.) Neerg., Encycl.
Mycol. 33: 123. 1964.

Macrosporium cheiranthi f. petroselini Sacc., Rev. Mycol.
(Toulouse) 19: 54. 1897.

Alternaria selini E.G. Simmons, Mycotaxon 55: 109. 1995.

Typus: Denmark, from seeds of Petroselinum crispum, 4
Apr. 1941, P. Neergaard, holotype EGS 11.062 in CP, culture
presumably ex-holotype CBS 112.41 = EGS 06.196.

Additional material examined: Japan, Shizuoka Prefecture, Kakegawa,
on leaves of P. crispum, 27 Apr. 2007, J. Nishikawa, MUMH 11679, living
culture MAFF 243057.

Morphological characters on PCA medium: Previously reported
in Nishikawa & Nakashima (2013).

Colony characteristics on PDA after 7 d at 25 °C: Fast-growing,
reaching 82.1 £ 1.8 mm diam; characteristics previously reported
in Nishikawa & Nakashima 2013.

Sexual morph: Not observed.

Natural hosts: Typically, Petroselinum, Coriandrum, and
Foeniculum (Apiaceae), but may also occasionally infect Carya
(Juglandaceae) (Liu et al. 2013).

Symptoms: Leaf spots on Petroselinum indistinct, sooty brown,
water-soaked, and expand to leaf blight (Nishikawa & Nakashima
2013).

Experimental host range: Widely pathogenic within Apiaceae
plants, including Ammi, Anethum, Angelica, Anthriscus,
Apium, Bupleurum, Coriandrum, Cuminum, Foeniculum, and
Petroselinum (Nishikawa & Nakashima 2013).

Distribution: Australia, China, Italy, Japan, Netherlands, Saudi
Arabia, Spain, UK, and USA (Ellis 1976, Farrar et al. 2004,
Cunnington et al. 2007, Pryor & Asma 2007, Park et al. 2008,
Infantino et al. 2009, Bassimba et al. 2012, Liu et al. 2013,
Nishikawa & Nakashima 2013, Farr & Rossman 2018).

Distinctive features: Conidia are solitary or appear in short chains
and are mostly beakless, and broad-ovoid to long-ellipsoid (but
variable in shape and size). This species was widely pathogenic
to Apiaceae, but not to Daucus, and is phylogenetically
recognizable via its ITS (Fig. 2), rpb2, Alt a 1, and act sequences
(data not shown).

Notes: All the sequences of the examined Japanese isolate
MAFF 243057 were identical with those of the ex-type isolates,
A. petroselini (CBS 112.41) and A. selini (CBS 109382). Based on
both phylogenetic analysis and morphological observations, A.
selini was never distinguishable from A. petroselini (Fig. 1), and,
thus, they are synonymized in the present study.

Section Sonchi D.P. Lawr. et al., Mycologia 105: 542. 2013.

This section is morphologically characterized by large conidia,
which are solitary or may appear in short chains with a blunt-
tapered false beak. There are only two species assigned to this
section (Woudenberg et al. 2013), although Lawrence et al.
(2013) included A. brassicae within this section.

Alternaria cinerariae Hori & Enjoji, J. Pl. Protect. (Tokyo) 18(8):
432.1931. Fig. 41.

Synonym: Alternaria senecionis Neerg., Danish species of
Alternaria and Stemphylium: 201. 1945.
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Fig. 40. Morphological features of Japanese isolates of Alternaria petroselini (MAFF 243057). A—C. Conidia on potato-carrot agar (PCA) medium. D, E.
Conidiophores on PCA medium. F. Natural symptoms on Petroselinum. Scale bars (A-E) = 25 pm.

Typus: Japan, Chiba Prefecture, Chiba, Chiba Prefect. Agric. Exp.
Station, on leaves of Pericallis cruenta, 30 Mar. 1931, and in Apr.
to May 1931, S. Enjoji (holotype not specified; not preserved).
Lectotype, Japan, Chiba Prefect. Agric. Exp. Station, on Senecio
cineraria, 28 Apr. 1931, S. Enjoji, in FU (designated in Simmons
1997). Epitype designated here, Japan, Chiba Prefecture, Narita,
on leaves of P. cruenta, 25 Oct. 2002, J. Nishikawa, TNS-F-85448
(dried culture specimen ex MAFF 243059) [MBT 385024],
isoepitype MUMH 11691, culture ex-epitype MAFF 243059 =
MUCC 1701.

Additional materials examined: Japan, Ibaraki Prefecture, Tsukuba,
Kannondai, on leaves of Farfugium japonicum, Nov. 2008, Y. Otani,
MUMH 11694, living culture MAFF 241266 = MUCC 1613; ibid., on leaves
of Gynura bicolor, Nov. 2008, Y. Otani, MUMH 11695, living culture
MAFF 241267 = MUCC 1614; Kanagawa Prefecture, Atsugi, on leaves of
Jacobaea maritima, 23 Aug. 2017, Y. Makizumi, living culture MUCC 2504.

Morphological characters on V8 medium: Conidiophores broad,
25-196 x 6-11 um, often branched but sometimes unbranched.

Conidia solitary to in chains of 2-5(—9), rarely with lateral branches,
faintly yellowish-tan to pale brown, smooth, long ellipsoid to
obclavate, with a blunt tapered false beak, mostly straight and
laterally symmetrical, 18-319 um in total length, constricted at
each transverse septum. Conidial bodies sometimes excessively
swollen, 18-295 x 8—63 um, with 1-14 transverse septa and up
to 10 longitudinal septa; false beaks unbranched, up to 80-159
x 5-9 um, concolorous with body, inconspicuous border with the
conidial body. Conidia of ex-epitype culture MAFF 243059 on V8
medium solitary to in chains of 2—3 conidia; conidial bodies 30—
138 x 9-46 um, with 2—12 transverse and up to 10 longitudinal
septa; secondary conidiophores up to 123 x 5-9 um.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 62.9 + 3.6 mm diam, variable
among strains; aerial hypha cottony, grayish green to dark
green, with white margins; reverse center black to dark green;
sporulation sparse; diffusible pigment absent.

Sexual morph: Not observed.
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Fig. 41. Morphological features of Japanese isolates of Alternaria cinerariae (MAFF 243059) on V8 juice agar medium. A-H. Conidia. I. Conidiophores.
J. Dried culture specimen ex MAFF 243059 (epitype: TNS-F-85448). K. Natural symptoms on Pericallis. Scale bars (A—I) = 25 um.

Natural hosts: Farfugium, Gynura, Jacobaea, Ligularia, Pericallis,
and Senecio (Asteraceae) (Nishikawa & Nakashima 2015).

Symptoms: Leaf spots on Pericallis black, circular to irregular,
and 3—10 mm diam, often with a necrotic eye at the center. They
appear water-soaked, enlarge, and become confluent.

Experimental host range: Selectively pathogenic to tribe
Senecioneae, and experiments suggest weak pathogenicity to
Cosmos bipinnatus and Centaurea (Nishikawa & Nakashima 2015).

Distribution: Worldwide, but few records exist; Denmark,
Germany, Japan, Korea, New Zealand, South Africa, UK, and USA
(Enjoji 1931, Neergaard 1945, Ellis 1976, Richardson 1990, Yu
2001, Simmons 2007, Woudenberg et al. 2013, Nishikawa &
Nakashima 2015, Farr & Rossman 2018).

Distinctive features: Conidia are large, solitary or in short chains
with a blunt-tapered false beak. Conidiophores are long, broad,

and sometimes branching. This species is selectively pathogenic
to tribe Senecioneae, which includes genera Senecio, Farfugium
and Gynura, and is phylogenetically recognizable via its ITS (Fig.
2), gapdh, rpb2, Alt a 1, and act sequences (data not shown).

Notes: Morphological variations are present between strains,
including the appearance of excessively swollen bodies and
chlamydospore (microsclerotia) formation (Nishikawa &
Nakashima 2015). There is no ex-type culture and few reference
isolates, and the epitype originated near the original type
locality; therefore, an ex-epitype isolate was designated and
deposited for future studies.

Section Ulocladioides Woudenb. & Crous, Stud. Mycol. 75:
204. 2013.

There are ten species and a representative strain of A. botrytis
assigned to this section (Woudenberg et al. 2013), which is
typified by A. cucurbitae, and consists of a majority of the
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former Ulocladium spp. Recently, Gannibal & Lawrence (2018b)
additionally listed ten species citing Geng et al. (2014). Conidial
morphology resembles those of species in sect. Ulocladium
(Woudenberg et al. 2013).

Alternaria atra (Preuss) Woudenb. & Crous, Stud. Mycol. 75:
204. 2013. Fig. 42.

Basionym: Ulocladium atrum Preuss, Linnaea 25: 75. 1852.
Synonyms: Stemphylium atrum (Preuss) Sacc., Syll. Fung. 4: 520.
1886.

Alternaria abietis Tengwall, Meded. Phytopath. Lab. ‘WCS’ 6: 50.
1924.

Typus: Germany, Hoyerswerda, on Betula pubescens (as Betula
alba), Preuss, in B. Epitype, USA, California, from soil, Nov.
1962, PM.D. Martin, BPI 444871 (designated in de Hoog &
Horré 2002), culture ex-epitype CBS 195.67 = ATCC 18040 = IMI
124944 = QM 8408.

Additional materials examined: Japan, Tokyo, Setagaya, from seeds of
Raphanus sativus, Jul. 2000, J. Nishikawa, living culture AC86; ibid.,
from seeds of Brassica oleracea var. capitata, 4 Feb. 2001, J. Nishikawa,
living culture AC87; ibid., from seeds of Brassica rapa subsp. pekinensis,

18 Mar. 2001, J. Nishikawa, living culture AC88; ibid., from seeds of A.
fistulosum, 7 Jul. 2001, J. Nishikawa, living culture MAFF 246889.

Morphological characters on PCA medium: Conidiophores
solitary, usually unbranched and geniculate, frequently
proliferating sympodially, pale brown to brown, 23-73 x 3-5
um, with pores for polytretic sporulation. Conidia commonly
solitary, varied from subsphaeroid, obovoid, obclavate to
ellipsoid, brown to dark brown, roughened to conspicuously
verrucose, 10-33 x 6-17 um, with (0-)1(-3) transverse and
0-2 longitudinal septa, usually beakless, but sometimes with a
secondary conidiophore at the apex. Secondary conidiophores
geniculate, 3—38 x 3-5 um.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching an average of 65.3 + 3.1 mm diam, variable
among strains; aerial hyphae cottony to sparse, grayish green
to dark green or black, with white margins; reverse center pale
gray to dark green or black; sporulation commonly abundant;
diffusible pigment absent.

Sexual morph: Not observed.

Fig.42. Morphological features of Japanese isolates of Alternaria atra (MAFF 246889). A-D. Conidia on potato-carrot agar medium. E, F. Conidiophores.
G. Culture on potato-dextrose agar medium (left = surface, right = reverse). Scale bars (A—F) = 25 um.
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Natural hosts: Saprophytic, but a few records suggest
pathogenicity to Helianthus and Solanum (Shtienberg 1994,
Esfahani 2018).

Distribution: Worldwide, including Asia (China, India, Iran,
Israel, Japan, Korea, Kuwait, Pakistan, and Saudi Arabia), Europe
(Cyprus, Denmark, Germany, Italy, Netherlands, Poland, Spain,
and UK), North and Latin America (Argentina, Canada, Mexico,
and USA), Africa (Egypt, Libya, and Sierra Leone), and the Pacific
(Australia and New Zealand) (Ellis 1976, Abdel-Hafez 1984,
Shtienberg 1994, Heredia et al. 1995, Chen et al. 2002, Lunghini
et al. 2013, Esfahani 2018, Farr & Rossman 2018).

Distinctive features: Short conidiophores are geniculate and
frequently proliferate; conidia are commonly solitary, but often
appear in chains with secondary conidiophores, generally
with one transverse septum in a body. This species may be
phylogenetically recognizable via its ITS (Fig. 2), gapdh, tefl,
rpb2, and Alt a 1 sequences (data not shown).

Notes: The multi-locus phylogeny shown in this study (Fig. 1) as
well as previous studies (Runa et al. 2009, Woudenberg et al.
2013, Geng et al. 2014) suggested that this section consists of
three or more strongly supported subclades, with overlapping
conidial morphology. These species were commonly regarded as
saprophytes (Rena et al. 2009), and consequently could not be
examined under the concept of integrated species recognition
in this study. Therefore, we provisionally identified Japanese
isolates as A. atra based on their conidial morphology and
ITS phylogeny, which may determine species boundaries in
other former Ulocladium spp. in sect. Pseudoulocladium and
Ulocladium (Fig. 2).

Section Ulocladium (Preuss) Woudenb. & Crous, Stud.
Mycol. 75: 206. 2013.

Basionym: Ulocladium Preuss, Linnaea 24: 111. 1851.

Four species typified by A. botrytis were assigned to this section
by Woudenberg et al. (2013), and former Sinomyces spp.,
which is S. alternariae, S. fusoideus and S. obovoideus, may
also be included in this section. Gannibal & Lawrence (2018b)
additionally listed A. manihoticola in this section. Two species, A.
botrytis and A. oudemansii, are found in Japan (Katumoto 2010),
though there are a few morphological differences between the
species in this section (Simmons 1967, Runa et al. 2009).

Alternaria botrytis (Preuss) Woudenb. & Crous, Stud. Mycol.
75: 206. 2013. Fig. 43.

Basionym: Ulocladium botrytis Preuss, Linnaea 24: 111. 1851.
Synonyms: Stemphylium botryosum Wallr. var. ulocladium Sacc.,
Syll. Fung. 4: 522. 1886.

Stemphylium botryosum Wallr. var. botrytis (Preuss) Lindau,
Rabenh. Krypt.-Fl., Edn 2 1(9): 219. 1908.

Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous, Stud.
Mycol. 75: 206. 2013.

Ulocladium oudemansii E.G. Simmons, Mycologia 59: 86. 1967.

Typus: Germany, Hoyerswerda, on wood sliver of Quercus,
holotype in B. Epitype, USA, Cambridge, Massachusetts,
contaminant (air), CBS H-19057 (designated in de Hoog & Horré
2002), culture ex-epitype CBS 197.67 = ATCC 18042 = IMI 124942
= MUCL 18556 = QM 7878.

Additional material examined: Japan, Shizuoka Prefecture, Kakegawa,
from rhizomes of Asparagus officinalis, 8 Apr. 2008, J. Nishikawa, living
culture MAFF 246887.

Morphological characters on PCA medium: Conidiophores
solitary, often branched, geniculate, frequently proliferate
sympodially, pale brown to brown, 48—145 x 2—4 um, with pores
for polytretic sporulation. Conidia commonly solitary, brown to
dark brown, roughened to conspicuously verrucose, obovoid to
ellipsoid, beakless, 13—-30 x 817 um, with (1-)3 transverse and
0-3 longitudinal septa.

Colony characteristics on PDA after 7 d at 25 °C: Moderate-
growing, reaching 68.1 + 0.9 mm diam; aerial hypha commonly
sparse, green to greenish brown, with white margins; reverse
center black to dark green; sporulation abundant; diffusible
pigment absent.

Sexual morph: Not observed.

Natural hosts: Saprophytic (recorded on Pinus, Alnus, Betula,
etc., but no records exist suggesting pathogenicity) (Wicker &
Yokota 1982, Farr & Rossman 2018).

Distribution: China, Egypt, Germany, India, Japan, Kuwait,
Pakistan, Poland, Russia, Thailand, UK, Uruguay, and USA (Ellis
1971, Tokumasu et al. 1994, Alonso et al. 2011, Farr & Rossman
2018).

Distinctive features: Long conidiophores are geniculate and
proliferate. Conidia are solitary and typically obovoid, usually
with three transverse septa. This species is phylogenetically
recognizable via its ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act
sequences (data not shown).

Notes: Phylogenetic analysis conducted during the present
study, as well as morphological similarity, suggest that this
species is conspecific with A. alternariae and A. oudemansii
(Runa et al. 2009, Woudenberg et al. 2013) (Fig. 1). However,
the examined isolate of A. alternariae (CBS 126989 = EGS
46.004) is not an authentic isolate of the species (Wang et al.
2011), and therefore, just A. oudemansii is synonymized herein.
This species has already been observed (as A. botrytis or A.
oudemansii) on pine and Japanese cedar seeds (Wicker & Yokota
1982, Watanabe et al. 1986, Watanabe & Sato 1988).

Monotypic lineages

Woudenberg et al. (2013) recognized six species as single
species not assigned to hitherto known sections, namely A.
argyranthemi, A. brassicae, A. dennisii, A. helianthiinficiens,
A. soliaridae, and A. thalictrigena. Lawrence et al. (2016)
recognized an additional two monotypic lineages, A. peucedani
and A. thlaspis. Among these, A. brassicae is already known
in Japan, and a novel species isolated from Bupleurum is also
newly described here as a ninth monotypic lineage.

Alternaria brassicae (Berk.) Sacc., Michelia 2: 172. 1880. Figs
44, 45,

Basionym: Macrosporium brassicae Berk., in Smith, Engl. Fl.,
Fungi 5(2): 339. 1836.

Additional synonyms in Simmons (2007).
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Fig. 43. Morphological features of Japanese isolates of Alternaria botrytis (MAFF 246887). A-E. Conidia on potato-carrot agar medium. F, G.
Conidiophores producing conidia. H. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). Scale bars (A-G) = 25 um.

Typus: UK, Northamptonshire, Kings Cliffe, on decaying leaves
of Brassica oleracea var. capitata, M.J). Berkeley (holotype
specimen unknown according to Simmons 1995a). Neotype, UK,
Essex, on leaves of B. oleracea var. capitata, 16 Oct. 1966, E.G.
Simmons, IMI 369156 (designated in Simmons 1995a).

Ex-type culture: Unknown.

Additional materials examined: Japan, Shizuoka Prefecture, Kakegawa,
from seeds of Brassica rapa, 15 Aug. 2006, J. Nishikawa, living culture
AC29; Ibaraki Prefecture, Tsukuba, on leaves of Raphanus sativus, Jul.
2007, T. Sato, living culture MAFF 240791; Chiba Prefecture, Narita,
Minami-misatozuka, on leaves of R. sativus, 13 Nov. 2009, J. Nishikawa,
MUMH 11684, living culture MUCC 1615.

Morphological characters on V8 medium: Conidiophores pale brown
to brown, broad, 38-183 x 6-11 um. Conidia solitary to in short
chains of 1-2, pale brown to brown, subcylindrical to oblong, with
blunt-tapered beaks, 40-237 um in total length. Conidial bodies 33—
160 x 8-33 um, with 1-10 transverse and 0-9 longitudinal septa,
commonly smooth. Beaks straight, not filamentous, unbranched,
concolorous with the bodies, 6-121 x 3—10 um.

Colony characteristics on PDA after 7 d at 25 °C: Slow-growing,
reaching an average of 37.6 + 1.6 mm diam; aerial hypha
cottony, white to pale gray; reverse center black to dark green;
sporulation sparse; diffusible pigment absent.

Sexual morph: Not observed.

Natural hosts: Brassicaceae (Arabis, Armoracia, Brassica,
Bunias, Camelina, Cochlearia, Crambe, Descurainia, Eruca,
Eutrema, lberis, Lepidium, Lunaria, Neslia, Radicula, Raphanus,
Rorippa, Sinapis, Sisymbrium, and Sisymbrium), Cucumis sativa
and Cucurbita pepo (Cucurbitaceae), and Beta (Amaranthaceae)
are correct source plants according to Simmons (2007). All other
recorded hosts reported by Farr & Rossman (2018) may be listed
under the names of each formae and variety of A. brassicae.

Symptoms: Small, black spots appear on the leaves and petioles
of Raphanus. They are 5 mm diam, circular to zonate, with a
necrotic eye at the center, becoming enlarged and confluent.

Experimental host range: Strongly pathogenic to Brassicaceae,
including Diplotaxis, Iberis, and Nasturtium; weakly pathogenic
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Fig. 44. lllustrations of Alternaria brassicae (MAFF 240791). Morphology of conidia and conidiophores, and sporulation patterns (opaque) on V8 juice
agar medium. Scale bar = 25 um.
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Fig. 45. Morphological features of Japanese isolates of Alternaria brassicae (MAFF 240791). A-H. Conidia and conidiophores on V8 juice agar medium.
I. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). Scale bars (A—H) = 25 pm.

to Eutrema, Lobularia, and Matthiola; almost non-pathogenic to
Aubrieta, Capsella, and non-Brassicaceae plants (Table 5).

Distribution: Worldwide, including Asia (Bangladesh, Cambodia,
China, India, Indonesia, Iraq, Japan, Korea, Kyrgyzstan, Malaysia,
Myanmar, Nepal, Oman, Pakistan, Philippines, Singapore,
Taiwan, Thailand, and Turkmenistan), Europe (Armenia, Austria,
Azerbaijan, Bulgaria, Cyprus, Czech, Denmark, France, Germany,
Greece, Italy, Latvia, Macedonia, Netherlands, Poland, Romania,
Russia, Serbia, Slovenia, Spain, Turkey, and UK), North and Latin
America (Argentina, Bolivia, Brazil, Canada, Chile, Colombia,
Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala,

Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Peru,
Puerto Rico, Trinidad and Tobago, Uruguay, Venezuela, Virgin
Islands, and USA), Africa (Egypt, Ethiopia, Kenya, Malawi,
Mauritius, Morocco, Nigeria, South Africa, Sudan, Tanzania,
Zambia, and Zimbabwe), and the Pacific (Australia, New Zealand,
and Papua New Guinea) (Farr & Stevenson 1963, Benjamin &
Slot 1969, Rao 1969, Richardson 1990, Jasalavich et al. 1995,
Koike 1996, Koike & Molinar 1997, Crous et al. 2000, Cho et al.
2001, Yu 2001, Zhang 2003, Gaetan & Madia 2005, You et al.
2005, Simmons 2007, Caesar & Lartey 2009, Gannibal & Gasich
2009, Woudenberg et al. 2013, Blagojevi¢ et al. 2015, van de
Wouw et al. 2016, Farr & Rossman 2018).
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Distinctive features: Large spores with blunt-tapered false
beaks, and slow-growing on PDA medium. This species is widely
pathogenic to Brassicaceae, including Eutrema, but not to
Aubrieta and Capsella. It is phylogenetically recognizable via its
ITS (Fig. 2), gapdh, tefl, rpb2, Alt a 1, and act sequences (data
not shown).

Alternaria triangularis Jun. Nishikawa & C. Nakash., sp. nov.
MycoBank MB829137. Figs 46, 47.

Etymology: Named after Latin “triangularis”, referring to the
triangular shape of the conidia.

Diagnosis: The morphology of this species includes isosceles
triangle-shaped conidia, comprising multi-celled bodies and
elongated secondary conidiophores, and is quite unique among
Apiaceae-pathogenic species. Phylogenetic analysis suggested

Fig. 46. lllustrations of Alternaria triangularis (ex-holotype culture MAFF 246776). Morphology of conidia and conidiophores, and sporulation patterns

(opaque) on V8 juice agar medium. Scale bar = 25 pm.
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Fig. 47. Morphological features of Japanese isolates of Alternaria triangularis (ex-holotype culture MAFF 246776). A—G. Conidia on V8 juice agar (V8)
medium. H. Conidiophores on V8 medium. I. Culture on potato-dextrose agar medium (upper = surface, lower = reverse). J-K. Natural symptoms on
Bupleurum. L. Dried culture specimen ex MAFF 246776 (holotype: TSN-F-85454). Scale bars (A—H) = 25 pum.

that this species is a monotypic lineage sister to the sect.
Sonchi and monotypic lineage A. brassicae. The species is also
characterized by its host range, which is restricted to Bupleurum.

Leaf spots are circular, 4-10 mm diam, dark brown to black
with a grayish eye at center, and are distinct at the border;
leaf defoliation follows. On V8 medium, conidiophores short to
moderately long, narrow, 16-59 x 4-6 um. Conidia primarily
in chains of 3-5, up to 8-9 (short to moderately long chains),

lateral branches uncommon 5-7 d after incubation, pale brown
to brown, long ovoid to obclavate, triangular to campanuloid in
maturity, 15-93 um in total length. Conidial bodies 14-53 x 6-33
um, with 1-9 transverse septa and 0-11 (commonly in each
unit, and sometimes complexed) longitudinal septa. The basal
1-2 units broadest, almost flattened bottoms, smooth to faintly
rough. False beaks (secondary conidiophores) often elongated
in 2—3 cells, up to 47 x 6 um. On lesions, conidiophores 19-67 x
3—-6 um. Conidia 10-76 um in total length; conidial bodies 10—
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45 x 5-23 um, with 0-9 transverse septa and 0-9 longitudinal
septa. False beaks up to 41 x 6 um.

Typus: Japan, Kochi Prefecture, Konan, on leaves of Bupleurum
rotundifolium, 9 Jan. 2004, J. Nishikawa (holotype TNS-F-85454)
(a dried culture specimen ex MAFF 246776), isotypes MUMH
11669 and 11700, culture ex-holotype MAFF 246776, GenBank
accession number ITS: LC440629, gapdh: LCA482050, rpb2:
LC476837, tefl: LC480255, Alt a 1: LC481641, act: LC481891.

Additional material examined: Japan, Shizuoka Prefecture, Kakegawa,
on B. rotundifolium, 7 Jun. 2004, Y. Makizumi, living culture AC95.

Experimental host range: Selectively pathogenic to Bupleurum
among members of the Apiaceae family, but weakly pathogenic
or opportunistic to Angelica (Table 6).

Distribution: Only known from Japan.

Colony characteristics on PDA after 7 d at 25 °C: Slow-growing,
reaching an average of 23.9 £+ 0.9 mm diam; aerial hypha
cottony, dense, grayish green to dark green, with white margins;
reverse center dark green to black; sporulation sparse; diffusible
pigment absent.

Sexual morph: Not observed.

DISCUSSION

During our survey of Alternaria species in Japan, we obtained
and examined 85 isolates. Based on morphological observations,
molecular phylogeny, and phenotyping with an experimental
host range, 23 known species (including four species newly
recorded from Japan) and three novel species were found.
Moreover, phenotyping with an experimental host range not
only helped determine each species boundary, but also revealed
closely related and indistinguishable taxa of the examined
Japanese species.

In the present study, five Japanese species with two
formae speciales were clearly recognized in sect. Alternaria.
Based on the conidial morphology of A. iridicola on holotype
material, Simmons (2007) determined the taxonomic affinity
of the species with small-spored species, namely within sect.
Alternaria. Although Gannibal & Lawrence (2018a) suggested
that Russian isolates had intermediate characteristics in both
sect. Panax and Porri, conidial morphology of the examined
Japanese isolates were identical to ex-type descriptions (Ellis
& Everhart 1894, Simmons 2007), especially large conidia
with long false beaks and catenate conidia were particularly
diagnostic for a species in sect. Alternaria (Figs 22, 23). As the
result of the multi-locus phylogeny, it was also revealed that
this species clearly belongs to sect. Alternaria (Fig. 1). Since
there are no living ex-type isolates, a dried-culture specimen
(TNS-F-85452) was deposited as an epitype of A. iridicola. There
are two related taxa, A. iridiaustralis and A. iridis, infecting Iris
within the section. The results of the inoculation test with A.
iridicola demonstrated that this species is not pathogenic to /.
ensata (Table 8), which is a natural host of A. iridiaustralis (Luo et
al. 2018). Therefore, these related species were distinguishable
from A. iridicola based on host selectivity, as well as morphology
and phylogeny. In addition, a novel species, A. cylindrica having

selective pathogenicity to Petunia, was described, and some of
the other species in this section (e.g., A. alstroemeriae and A.
gaisen in the present study) also have selectivity within a host
genus, species, or variety. Species in this section generally have
distinct host specificity, and it is possible that potential host-
selective toxin producers may be present.

In sect. Alternantherae, A. paragomphrenae was newly
described in the present study. It was suggested that species
in sect. Alternantherae were clearly differentiated in their
pathogenicity to Amaranthaceae plants, reflecting their
morphological and phylogenetic differences (Tables 3, 4; Fig.
1). Two species infecting Gomphrena, A. gomphrenae and A.
paragomphrenae, were non-pathogenic to Amaranthoideae
plants, including Amaranthus and Celosia, and were
distinguishable from each otherin pathogenicity to Alternanthera
(Table 4). The remaining species had wide host ranges across
the subfamilies in Amaranthaceae, and A. celosiicola was
pathogenic to Amaranthoideae and Gomphrenoideae. In
addition, it was considered that A. alternantherae and A.
perpunctulata were conspecific, as they share a common original
host (Alternanthera), are morphologically similar, and show high
phylogenetic affinity (Zhao & Zhang 2005).

In sect. Brassicicola, Japanese isolates of A. brassicicola
including the non-Brassica isolate MAFF 246773 were equally
aggressive to a wide range of Brassicaceae hosts (Table 5).
However, these isolates clustered in a well-supported single
lineage together with ex-type isolates of A. mimicula, A.
septorioides, and A. solidaccana, which were isolated from non-
Brassica hosts — Solanum, Reseda, and soil, respectively (Fig. 1).
Based on their host ranges within Brassicaceae, morphological
similarity, and ubiquitousness of A. brassicicola (Simmons 2007,
Farr & Rossman 2018), these three names were synonymized.
Although multi-locus phylogeny resolved two subclades in
this section with high BS and PP support values (Fig. 1), it was
concluded that this section is a possible monotypic lineage
recognized by the ITS phylogeny rather than the multi-locus
phylogeny (Fig. 2).

Likewise, in sect. Japonicae, Japanese isolates of A.
japonica were restricted within Brassicaceae (Table 5), and
their conspecificity to A. nepalensis, the ex-type of which was
isolated from Brassica sp., were supported by phylogenetic
analyses conducted during the present study (Fig. 1). Because
of its morphological similarity to the original description of A.
nepalensis (Simmons 2007), this species was synonymized with
A. japonica, and this section was typified as a monotypic lineage.
It is interesting that during the evolution and differentiation
of the genus Alternaria, three common pathogens that infect
Brassicaceae (A. brassicae, A. brassicicola, and A. japonica) had
almost no differences in their host ranges; nevertheless, they
were distinctive in their conidial morphology and phylogenetic
relationship to each other.

Alternaria cumini (sect. Eureka) and A. triangularis, which
both infect Apiaceae, were morphologically and phylogenetically
distinguishable from other species, including A. dauci (sect.
Porri), and selectively pathogenic to each original host genus
(Table 6). In sect. Radicina, the morphology and pathogenicity
of A. petroselini were also easily distinguishable from those of
related species, except A. selini (Nishikawa & Nakashima 2013).
It was appropriate to synonymize A. selini with A. petroselini
based on multi-locus phylogenic similarities. According to Park
et al. (2008), two species pathogenic to Daucus, A. radicina
and A. carotiincultae, were phylogenetically recognized as
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a distinct species based on their Alt a 1, tefl, and B-tubulin
gene sequences, but not on their gapdh and rpb2 sequences
(Woudenberg et al. 2013). Further studies will be required to
resolve these species boundaries.

In sect. Gypsophilae, Japanese isolates and a representative
isolate of A. nobilis clustered into a single lineage together
with ex-type isolates of A. ellipsoidea and A. saponariae
based on the ITS phylogeny (Fig. 2). However, the multi-locus
phylogeny conducted in this and previous studies delimited
a distinct subclade consisting of only Japanese isolates from
some subclades of existing taxa (Fig. 1, Woudenberg et al. 2013,
Gannibal 2019). Conidial morphology of Japanese isolates was
identical with those of A. nobilis, but not clearly distinguishable
from closely related species. This study could not examine
pathological phenotyping with host range evaluations under
the concept of integrated species recognition. Further studies
are needed to resolve this contradiction and define the species
boundaries of Dianthus pathogens in this section.

In sect. Panax, Japanese isolates and three representative
isolates of A. panax clustered into a single lineage together
with A. dendropanacis with strong BS and PP support. However,
this clade was divided into three subclades with lower BS (ML
and MP) support (Fig. 1), which were assigned to A. panax, A.
araliae, and A. dendropanacis by Deng et al. (2015). Based on
its conidial morphology, culture characteristics, and original host
plants of Japanese isolates, all of these features overlapped with
one another and were not identical to the definition presented
by Deng et al. (2015). Although it needs to be verified by further
studies such as cross-inoculation tests, it was appropriate that
these taxa should be regarded as one species, A. panax, as
suggested by the ITS phylogeny (Fig. 2).

In the present study five Japanese species were clearly
recognized in sect. Porri. Morphological distinctions based on
the color of their beaks was an especially effective diagnostic
feature. Among these, colored beak species (A. cucumerina
and A. zinniae) were not resolved in the ITS phylogeny (Fig.
2). However, host range has been generally applied as species
criteria in this section (Neergaard 1945, Ellis 1971, Zhang 2003,
Simmons 2007), and these two species were also well correlated
with their hosts (Cucurbitaceae and Zinnia, respectively). As
the result of the multi-locus phylogeny, the species boundary
between these species was strongly supported, reflecting
their host range (Fig. 1). In contrast, Woudenberg et al. (2014)
phylogenetically differentiated A. porri from A. allii, and
Japanese isolates clustered across the two species with lower
BS and PP support (Fig. 1). However, it was affected only by the
rpb2 phylogeny, and was not supported by other genes (ITS,
gapdh, tef1, Alt a 1, and act) (data not shown). Based on the
similarity of their conidial morphology and host range between
both species, A. allii was rejected as a distinct species. It was
also suggested that a multi-locus phylogeny was not always
appropriate to resolve species boundaries in this section. This
section is the largest, containing 63 species (Woudenberg et al.
2014), wherein phenotyping with both detailed morphological
examinations and experimental host range are not sufficient. The
ubiquitousness of A. porri, which was also shown in the present
study, also demonstrated that integrated species recognition is
strongly recommended to define the species boundaries of this
section.

Thus far, we have discussed the utility of phenotyping based
on experimental host ranges to distinguish closely related species.
However, since the former Ulocladium species (especially for A.

atraandA. chartarum) and one of the most frequent contaminants,
A. alternata, were commonly established as saprophytic isolates,
it is difficult to examine their taxonomy under the concept of
integrated species recognition. Further approaches, such as
secondary metabolite assays and inoculation tests to a few
recorded susceptible hosts, are required to determine species
boundaries among saprophytic species.

As a result of comprehensive inoculation tests, distinctive
host selectivity was found along with the systematic ranks
of each host plant, not only with genus but also subfamily,
tribe, species, and variety, for most plant-pathogenic species
of Alternaria. Moreover, phenotyping with experimental host
ranges contributed to define species boundaries in Alternaria,
supporting morphology and molecular phylogenetic data. This
study also suggested that the ITS region is generally still effective
with regard to DNA barcoding for the genus Alternaria, except
for sect. Alternaria, and colored beak species in sect. Porri. It
was concluded that integrated species recognition based on
morphology, phylogeny, and pathogenicity helps elucidate
species boundaries in the genus Alternaria, and will provide a
practical, re-defined species concept for the genus.
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