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Abstract

Traumatic stress can lead to heightened aggression which may be a symptom of psychiatric diseases such as
PTSD and intermittent explosive disorder. The medial amygdala (MeA) is an evolutionarily conserved subnu-
cleus of the amygdala that regulates attack behavior and behavioral responses to stressors. The precise con-
tribution of the MeA in traumatic stress-induced aggression, however, requires further elucidation. In this
study, we used foot shock to induce traumatic stress in mice and examine the mechanisms of prolonged ag-
gression increase associated with it. Foot shock causes a prolonged increase in aggression that lasts at least
one week. In vivo electrophysiological recordings revealed that foot shock induces potentiation of synapses
formed between the MeA and the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis
(BNST). This synaptic potentiation lasts at least one week. Induction of synaptic depotentiation with low-fre-
quency photostimulation (LFPS) immediately after foot shock suppresses the prolonged aggression increase
without affecting non-aggressive social behavior, anxiety-like and depression-like behaviors, or fear learning.
These results show that potentiation of the MeA-VmH and MeA-BNST circuits is essential for traumatic stress
to cause a prolonged increase in aggression. These circuits may be potential targets for the development of
therapeutic strategies to treat the aggression symptom associated with psychiatric diseases.
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Heightened aggression can be a blight on society and a symptom of many psychiatric diseases. In this
study we show that traumatic stress produces an enhancement of aggression that lasts at least one week
through potentiation of synapses between the medial amygdala (MeA) and the ventromedial hypothalamus
(VmH) and bed nucleus of the stria terminalis (BNST). Depotentiation of these pathways immediately after
foot shock suppresses the increase in aggression, while having no effect on anxiety-like, depressive-like, or
non-aggressive social behaviors. This study identifies the MeA-VmH and MeA-BNST circuits and synaptic
potentiation as neural substrates for traumatic stress-induced prolonged aggression increase and potential
\therapeutic targets in treating the aggression symptom of psychiatric ilinesses such as PTSD. /

ignificance Statement

Introduction symptomatic of psychiatric disorders, including PTSD,

Aggression is an evolutionarily adaptive behavior to  antisocial personality disorder, borderline personality dis-
protect oneself from harm and acquire resources for sur- ~ order, and bipolar disorder (Miczek et al., 2004, 2013;
vival (Nelson and Trainor, 2007). However, increased and  Nelson, 2006; American Psychiatric Association, 2013;

abnormal forms of aggression can be harmful and may be
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Dorfman et al., 2014). Aggression can be influenced by
prior agonistic and stressful experience. For example, in
rodents, stressful life experience such as social depriva-
tion can instigate unprovoked attack behavior, and this ef-
fect is exacerbated by traumatic stress induced by foot
shock (Veenema, 2009; Toth et al., 2011; Chang et al.,
2015, 2018; Zelikowsky et al., 2018; Chang and Gean,
2019). In humans, traumatic stress may trigger acute
stress disorder and PTSD, and individuals with PTSD may
exhibit increased aggression that lasts for years after the
initial stressor (Nelson and Trainor, 2007; McHugh et al.,
2012; American Psychiatric Association, 2013; Smerin et
al., 2016; Taft et al., 2017). The neural circuits involved in
traumatic stress-induced, prolonged aggression increase
are largely unclear.

The medial amygdala (MeA), a subnucleus of the amyg-
dala, is a key structure involved in social behaviors includ-
ing aggression and behavioral responses to stressors
(Rodgers, 1977; Mdller and Fendt, 2006; Nelson and
Trainor, 2007; Takahashi et al., 2007; Hong et al., 2014;
McCue et al., 2014). The MeA is activated by attack be-
havior and traumatic stress, and its overaction is associ-
ated with abnormal displays of aggression (Potegal et al.,
19964a,b; Rosen et al., 1998; Haller et al., 2006; Marquez
et al., 2013; Hong et al., 2014). Stimulation of the MeA in-
creases the likelihood of a future attack and modulates
such behavioral responses to threats as risk assessment
and defensive behaviors (Potegal et al., 1996a; Miller
et al., 2019). Injection of serotonin into the MeA sup-
presses foot shock-induced aggression (Rodgers, 1977).
Inhibition of MeA activity interferes with the processing
of social cues to associate environmental cues with
threats, and lesioning of the MeA suppresses fear re-
sponses to predator odors and decreases avoidance of
physical stressors (Mller and Fendt, 2006; Takahashi et
al., 2007; McCue et al.,, 2014; Twining et al., 2017).
Notably, in humans the MeA is a successful neurosurgi-
cal target in the treatment of intractable escalated ag-
gression (Mpakopoulou et al., 2008).

Neurons in the MeA project to multiple brain regions
that influence aggressive behavior including the ventro-
medial hypothalamus (VmH), bed nucleus of the stria ter-
minalis (BNST), and lateral septum (LS; Gomez and
Newman, 1992; Canteras et al., 1995; Coolen and Wood,
1998; Haller et al.,, 2006; Nelson and Trainor, 2007;
Hashikawa et al., 2016). VmH activation is predictive of fu-
ture attacks and optogenetic activation of the VmH pro-
motes intermale aggression while optogenetic inhibition
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suppresses it (Kruk et al., 1983; Lammers et al., 1988; Lin
et al., 2011; Yang et al., 2013; Falkner et al., 2014; Lee et
al., 2014). The BNST is also activated by attack, and acti-
vation of the BNST modulates attack behavior in cats and
increases social and attack behavior against conspecifics
in mice (Masugi-Tokita et al., 2016). Hyperaggressive ani-
mals show low LS activity, inactivation or lesioning of LS
promotes aggressivity, and optogenetic and electrical
stimulation of LS suppresses it (Siegel and Skog, 1970;
Albert and Wong, 1978; Ramirez et al., 1988; Goodson et
al., 2005; Wong et al., 2016). All three areas are activated
by stress, and the VmH and BNST have been shown to
regulate aggressive responses to perceived threats (Silva
et al., 2013; Anthony et al., 2014; Butler et al., 2015; Miller
et al., 2019). The VmH in particular mediates the acute in-
crease in aggression after foot shock (Chang and Gean,
2019). Based on these findings, it is intriguing to test
whether these MeA target areas are involved in traumatic
stress-induced prolonged aggression increase.

Here, using a combination of in vivo electrophysiology
and optogenetics, we show that traumatic stress-induced
by foot shock causes an increase in aggression and po-
tentiation of synapses between the MeA and the VmH and
BNST. These effects last for at least one week and can be
abolished by synaptic depotentiation induced by low-fre-
quency photostimulation (LFPS) of the MeA. These results
indicate that traumatic stress drives prolonged increases
in aggression through potentiation of select MeA path-
ways and suggest potential targets in the treatment of in-
creased aggression associated with traumatic stress.

Materials and Methods

Animals

All animal protocols were approved by the Animal Care
and Use Committee of the National Institute of Mental
Health (ACUC). C57BL/6 male mice were purchased
from Charles River. We housed mice under a 12 h light
(9P.M. to 9 A.M.)/12 h dark (9 A.M. to 9P.M.) cycle with
ad libitum access to water and food to be able to perform
behavioral testing during the day, as this is the mice’s
dark phase when they are most active (Koolhaas et al.,
2013).

Surgery

Ten-week-old mice were used for viral injection alone
and seven-week old mice were used for viral injection fol-
lowed by optrode implantation. Mice were anaesthetized
with isofluorane (3% for induction and 1% for mainte-
nance) and then placed onto a stereotaxic frame (David
Kopf Instruments). Bilateral craniotomy was made and
500 nl virus was injected into the MeA (AP: —1.50 mm;
ML: 2.1 mm; DV: -5.15 mm) using a 5-pl gas-tight
Hamilton syringe (33-gauge, beveled needle) at a rate of
0.1 ul/min. After injection, the needle was left in place
for an additional 5min and then slowly withdrawn.
Immediately after viral injection, ferrule-terminated opti-
cal fibers (100 um in diameter, ThorLabs) were placed
100 um above the viral injection site at the MeA or at a
midline position above the VmH (AP: +1.5 mm; ML: 0
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mm; DV: —5.7 mm), BNST (AP: +0.14 mm; ML: 0 mm;
DV: —3.8 mm), or LS (AP: +0.38 mm; ML: 0 mm; DV:
—2.2 mm). Optical fibers were secured to the skull using
Metabond (Parkell), stainless steel screws (PlasticsOne),
and dental cement (DuralLay). Mice recovered for
three weeks before MeA stimulation or six weeks before
stimulation of MeA axons at the MeA projection sites.
Four mice died after viral injection (1.92% of total).
Materials can be found in Table 1.

Some animals underwent a second surgery six weeks
after viral injection to implant optrodes, which were used
to record neural activities evoked by optical stimulation
(Nabavi et al., 2014; Zhou et al., 2017). The optrode was
inserted into the VmH, BNST, or LS at the same depth as
the virus. The craniotomy was sealed with bone wax. Two
stainless steel screws were inserted into the skull over the
cerebellum and olfactory bulb to be used as ground and
reference. Each optrode was outfitted with a microdrive
and surrounded by a copper mesh to block external elec-
trical noise. Two mice died after optrode implantation
(0.96% of total).

Behavioral tests and data analysis

All mice were individually housed after foot shock and
surgery and for three weeks before baseline aggression
testing. On the day of testing, mice were transferred to
the behavioral room and allowed to acclimate for 1 h be-
fore commencing behavior experiments. Materials can be
found in Table 1.

Foot shock and contextual fear memory test

Foot shock is a commonly used procedure to induce
traumatic stress in rodents (Rau et al., 2005; Bali and
Jaggi, 2015; Chang et al., 2015, 2018; Chang and Gean,
2019; Brivio et al., 2020). We adopted a foot shock proto-
col from Rau et al. (2005). On day 1, mice were placed
into a fear conditioning chamber illuminated with white
light (Context A) within a sound attenuating cubicle (Med
Associates). After a 3-min exploration period, 15 electric
shocks (0.4-mA, 1 s in duration) were administered
through an electrified grate at random intervals of 240-
480 s over the course of 90 min. Control mice did not re-
ceive foot shock.

For the contextual fear memory test, at 1 d after foot
shock in Context A, mice were placed into the fear condi-
tioning box modified with white plastic walls, no ambient
light, and a background odor of 1% acetic acid (Context B).
Mice were left to freely roam within the chamber for 192 s
before a single 1 s, 0.4-mA shock was delivered via the elec-
trified grate, and were removed from the chamber at 32 s
after foot shock. On the following day, mice were placed
into Context B for 8min and 32 s and were monitored for
freezing behavior. Freezing behavior was defined as an ab-
sence of all movement, excluding respiration, and was ana-
lyzed with Video Freeze software (Med Associates).

Aggression test

Mice were placed in a high-walled, novel cage and al-
lowed to acclimate for 20 min before introduction of a
younger, group-housed conspecific. Both mice were al-
lowed to freely interact for 10 min. Animal behavior was
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captured with a video camera. Mice were tested for ag-
gression before (baseline test) and after foot shock.
Because a further increase in aggression may not be induced
in mice with high aggression because of a ceiling effect
(O’Donnell et al., 1981; Lee and Gammie, 2009, 2010), only
mice exhibiting a total attack time of <3% in the baseline
test, which was considered as low aggression in previous
studies (Hong et al., 2014), were used for further analysis.
Eleven mice (5.29% of total) were excluded based on this cri-
terion. Videos of behavioral tests were reviewed and hand
scored by a researcher blind to the experimental conditions.
Aggressive behaviors such as chasing, boxing, pinning, and
wrestling were identified as reported (Blanchard and
Blanchard, 1977; Lin et al., 2011; Koolhaas et al., 2013; Hong
etal., 2014; Golden et al., 2016).

Open field test

The open field test is a commonly used test for locomo-
tion and anxiety-like behavior in mice (Crawley, 1999). Mice
were transferred to the behavioral testing room at least 1 h
before testing and then placed into a 49 x 49 cm open field
arena for 30min to freely roam. Distance traveled in the
arena was analyzed using TopScan software (CleverSys).

Sociability test

The sociability test was modified from existing proto-
cols (Silverman et al., 2010). During testing, mice were
placed into a 49 x 49 cm arena with two inverted wire
cups: one empty and the other containing an unfamiliar
conspecific. Subject mice were allowed to freely investigate
the arena for 30 min. All experiments were conducted
under light with a luminescence level of 20 lux at the bottom
of the arena (Kaidanovich-Beilin et al., 2011). Social interac-
tion was analyzed using TopScan software (CleverSys) and
scored as the ratio of time spent within 5 cm of the cup con-
taining the animal over the empty cup.

Light/dark box

The light/dark box test is a commonly used test for anxi-
ety-like behavior in mice (Hascoét and Bourin, 1998;
Bourin and Hascoét, 2003). The test room was illuminated
with 20lux light. At time of testing, mice were placed in
the light compartment of a light/dark box with dimensions
of 46 x 27 x 30 cm, where one third of the box was dark
and two thirds were transparent. Mice were then allowed
to freely explore the test box for 11 min. The box was
cleaned with 30% ethanol and water between runs. The
test was recorded using a ceiling mounted camera and
then analyzed using automated behavioral tracking soft-
ware (TopScan/ObjectScan; CleverSystems).

Forced swim test

The forced swim test is a commonly used test for depres-
sion-like behavior (Porsolt et al., 1977; Can et al., 2012).
Mice were placed into a large transparent plastic cylinder of
height 30 cm and diameter of 20 cm, filled with fresh water
to a height of 20cm at 25°C. The test was conducted for
6 min and was recorded with a Digital camera. An index of
despaired behavior was determined by duration of immobil-
ity as defined by no movement of limbs except for respira-
tion. Mice were continuously monitored, and no mice
drowned during the forced swim test.
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Table 1: Key resources table
Source or Additional

Resource type Specific reagent or resource reference Identifiers information
Bacterial or viral strain AAV9.CaMKlla.hChR2 (E123A)- Addgene Catalog #35506-AAV9

eYFP.WPRE.hGH
Bacterial or viral strain pRRIsin.eGFP This paper
Commercial assay or kit Metabond Parkell Catalog #S380
Commercial assay or kit Dental cement DuralLay Catalog #602-7395
Commercial assay or kit Vectashield HardSet Antifade Vector Catalog #H-1500

Mounting Medium

with DAPI
Organism/strain C57BL/6J
Software; algorithm SigmaPlot IBM
Software; algorithm TopScan/ObjectScan

Software; algorithm Video Freeze Software

Charles River

CleverSystems
Med Associates

Laboratories

Strain code: 556
https://www.ibm.com
http://cleversysinc.com
https://www.med-associates.com/
product/video-fear-conditioning/

Software; algorithm Labview National http://www.ni.com/en-us/shop/labview/
Instruments labview-details.html
Software; algorithm MATLAB R2013a MathWorks

Key resources used in Figs. 1-5 and Extended Fig. 2-1 and Extended Fig. 4-1.

In vivo optogenetic stimulation

Optogenetic stimulation was performed via an optical
fiber (ferrule fiber, ThorLabs) connected through a zirconia
split sleeve and patch cord to a 473-nm laser (Coherent)
under the control of an Optogenetics TTL Pulse Generator
(Doric Lenses).

Electrophysiology
Optrode fabrication

A microdrive was assembled from 3D-printed pieces,
screws, and nuts, and then attached to a nano-miniature
connector (Omnetics) with epoxy glue. The optrode was
constructed with sixteen 30-um diameter tungsten wires
(California Fine Wire) surrounding a 100-um diameter opti-
cal fiber. One end of the tungsten wire extended ~300 pm
beyond the tip of the optical fiber, and the other end was
wired to pins of a nano-miniature connector. Impedance
of each channel in the optrode was measured (usually
~100 kQ at 1 kHz) after construction.

In vivo electrophysiological recording in awake, freely
moving mice

The nano-miniature connector on the microdrive was
plugged into an amplifier (RHD2132, Intan Technologies).
The amplifier was connected to an RHD2000 USB interface
board (Intan Technologies) through a motorized commuta-
tor (Tucker Davis Technology). Electrical signals were fil-
tered to obtain signals between 1 and 7500 Hz, sampled
and digitized at 30 kHz by the amplifier, and recorded by
RHD2000 Interface software (Intan Technologies). The 473-
nm laser (Coherent) was controlled by a USB-6212 Bus-
Powered DAQ Device (National Instruments) in Labview
(National Instruments) virtual instruments. After a two-week
recovery period, mice implanted with optrodes were placed
into high-walled novel cages inside a grounded faraday
cage and allowed to acclimate for 20 min before recording.
Video recordings of animal behaviors were obtained via a
ceiling mounted acA1300-200uc USB 3.0 camera (Basler)
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at 30 frames per second simultaneously with electrophysi-
ological recording. Video and electrophysiological record-
ings were synchronized using Master-8 Pulse Stimulator
(A.M.P.1.), which generated and sent an electrical signal for
each light pulse and video frame to the RHD2000 recording
software (Intan Technologies). Local field potentials (LFPs)
were evoked by delivering 1-3 mW, 1-ms light pulses at
0.05-Hz through the implanted optical fiber. Laser power
was adjusted to elicit field EPSPs (fEPSPs) with a clear
early and late component. In vivo electrophysiological data
were analyzed with custom-written MATLAB scripts. Only
recordings with all baseline fEPSPs >90% of the average
baseline fEPSP not significantly different from each other
as determined by repeated measures ANOVA test, verified
opsin expression, and correct targeting of optrodes were
included in further analysis. Two mice (0.96% of total re-
corded mice) were removed based on these criteria.

Production of GFP virus

HEK-293T cells were cultured on 15-cm plates coated
with 0.1% gelatin in DMEM media supplemented with
10% fetal bovine serum (Thermo Fisher Scientific). When
the cell reached 90% confluence, the medium was
changed at 2 h before transfection. For transfection of
each 15-cm plate, 10pug pRRIsin.CMV.eGFP, 7.5ug
psPAX2, 2.5 ug pMD2G, and 1 ug pAdVantage packaging
vector were added to 2 ml water containing 260 ul CaCl,
(2 m) and then mixed with 2 ml 2x HBSS (50 mm HEPES,
280 mm NaCl, and 1.5 mm Na,HPOy,, pH 7.05). After incuba-
tion at room temperature for 2 min, the mixture was added
to the culture plate dropwise. The medium was replaced
with 15 ml UltraCULTURE medium (UltraCULTURE, 1 mm
sodium pyruvate, 0.075% sodium bicarbonate, and 1x glu-
tamine) at 16 h after transfection. The medium was re-
moved 48 h after transfection and kept at 4°C. A total of 15
ml fresh UltraCULTURE medium was added to the plate
and collected 72 h after transfection. The media col-
lected at the two times were combined, filtered with

eNeuro.org
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Table 2: Statistical table
F,t,or F,t or Post hoc
Data Method Factor n U DF Ustat pvalue test
Figure 1B Mann-Whitney Shocks 8,8 = 7.000 0.007
Figure 1C Mann-Whitney Shocks 6,8 U= 2.000 0.003
Figure 1D Mann-Whitney Shocks 6,8 U= 7.000 0.029
Figure 1E Mann-Whitney Shocks 6,8 U= 0.000 <0.001
Figure 1F Mann-Whitney Shocks 6,8 U= 4.000 0.008
Figure 1H Mann-Whitney Shocks 7,7 U= 8.000 0.038
Figure 1/ Mann-Whitney Shocks 7,7 = 18.000 0.456
Figure 1J Mann-Whitney Shocks 7,7 U= 16.000 0.534
Figure 1K Mann-Whitney Shocks 7,7 = 5.000 0.011
Figure 1L Mann-Whitney Shocks 7,7 U= 7.000 0.026
Figure 2F Kruskal-Wallis one-way ANOVA  fEPSPs from shocks 6 Hpy = 11.474 0.003 Tukey’s
on ranks with Dunn’s methods
One-way ANOVA fEPSPs without foot shocks 3 Feoe = 2.439 0.168 Tukey’s
Figure 2J One-way ANOVA fEPSPs from shocks 5 Fio12 = 8.362 0.005 Tukey’s
One-way ANOVA fEPSPs without foot shocks 4 Fo,0 = 0.196 0.826 Tukey’s
Figure 2N One-way ANOVA fEPSPs from shocks 4 Fio9 = 0.612 0.563 Tukey’s
One-way ANOVA fEPSPs without foot shocks 3 Fo6 = 0.325 0.734  Tukey’s
Figure 3B Two-way ANOVA LFPS from shocks 8,8,6 Fu19= 2548 0.127 Tukey’s
Two-way ANOVA Virus 8,8,6 Fa,19) = 0.383 0.543 Tukey’s
Figure 3C Two-way ANOVA LFPS from shocks 7,7,5 Fa,16) = 6.024 0.026 Tukey’s
Virus 7,7,5 Fa,16) = 7.437 0.015 Tukey’s
Figure 3D Two-way ANOVA LFPS from shocks 7,7,5 Fu1e=  4.595 0.048 Tukey’s
Virus 7,7,5 Fu1e= 10.286 0.005 Tukey’s
Figure 3E Two-way ANOVA LFPS from shocks 7,7,5 Fuig= 8776 0.009 Tukey’s
Virus 7,7,5 Fa,16) = 6.137 0.025 Tukey’s
Figure 3F Two-way ANOVA LFPS from shocks 7,7,5 Fa,16) = 5.844 0.028 Tukey’s
Virus 7,7,5 Fa,16) = 4.969 0.04 Tukey’s
Figure 3H Two-way ANOVA LFPS from shocks 7,7,5  Fpon= 2704 0.115 Tukey’s
Virus 7,7,5 F(1,21) = 2.085 0.163 TUkey,S
Figure 3/ Two-way ANOVA LFPS from shocks 7,7,5 Fpon= 0223 0.641 Tukey’s
Virus 7,7,5 Fa,21 = 1.603 0.219 Tukey’s
Figure 3J Two-way ANOVA LFPS from shocks 8,8,8 Fa21) = 0.516 0.480 Tukey’s
Virus 8,8,8 Fuon= 0.626 0.438 Tukey’s
Figure 3K Two-way ANOVA LFPS from shocks 7,7, 7 Fa,21) = 0.000 0.984 Tukey’s
Virus 7,7,7 Fuoy= 0.364 0.553 Tukey’s
Figure 3L Two-way ANOVA LFPS from shocks 8,8,8 Fuon= 0205 0.656 Tukey’s
Virus 8,8,8 Fa21 = 1.076 0.311  Tukey’s
Figure 4D One-way ANOVA Time from shocks 6 Fo,15 = 0.135 0.875 Tukey’s
Figure 4F One-way ANOVA Time from shocks 5 Fo12=  0.473 0.634 Tukey’s
Figure 5B Two-way ANOVA Shocks 6,10,7 Fupo9= 0.018 0.895 Tukey’s
LFPS vs no stim 6,10,7 Fa0= 5.588 0.028 Tukey’s
Figure 5C Two-way ANOVA Shocks 6,10,7 F20= 1.167 0.293 Tukey’s
LFPS vs no stim 6,10,7 F20 = 0.600 0.448 Tukey’s
Figure 5D Two-way ANOVA Shocks 6,10,7 Fa0= 0.292 0.595 Tukey’s
LFPS vs no stim 6,10,7 Fupo= 12715 0.002 Tukey’s
Figure 5E Two-way ANOVA Shocks 6,10,7 F20= 1.944 0.179 Tukey’s
LFPS vs no stim 6,10,7 Fa0= 5.262 0.033 Tukey’s
Figure 5F Two-way ANOVA Shocks 6,8,6 Fu17= 0.155 0.698 Tukey’s
LFPS vs no stim 6, 8,6 Fa1n = 7.25 0.015 Tukey’s
Figure 5G Two-way ANOVA Shocks 6, 8,6 Fa1n = 0.281 0.603 Tukey’s
LFPS vs no stim 6,8,6 Fuin= 5.694 0.029 Tukey’s
Figure 5H Two-way ANOVA Shocks 6, 8,6 Fa1n = 0.007 0.937 Tukey’s
LFPS vs no stim 6,8,6 Fuyin= 6.973 0.017 Tukey’s
Figure 5/ Two-way ANOVA Shocks 6,8,6 Fain= 0.589 0.453 Tukey’s
LFPS vs no stim 6,8,6 Fa1n = 8.380 0.010 Tukey’s
Extended Data One-way ANOVA fEPSPs from shocks 6 Fo,15 = 6.752 0.008 Tukey’s
Figure 4-1B
Extended Data One-way ANOVA fEPSPs from shocks 5 Fio12) = 7.690 0.007 Tukey’s
Figure 4-1D
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0.45-um filter bottles, and centrifuged at 25,000 rpm for
90 min at 4°C (Beckman, SW28 rotor). The supernatant
was removed, and the pellet containing the virus was
dissolved by incubation with 100 ul 1x HBSS overnight
at 4°C. For further purification of virus, the viral suspen-
sion was placed on the top of 1.5 ml 20% sucrose (in 1x
HBSS) and centrifuged at 21,000rpm for 2 h at 4°C
(Beckman, SW55 rotor). The pellet was incubated with
100 ul 1x HBSS overnight at 4°C, aliquoted and stored
at —80°C. The titer of purified virus was determined by
transducing HEK-293T cells with a series of dilutions. All
viruses used for in vivo injection had a titer of 10°-
10"°1U/ml. We elected to use the GFP virus as it was
routinely made and confirmed for transduction efficiency
in our lab.

Image acquisition and image analysis

Brain slices were imaged with a multi-slide fluorescent
microscope (Zeiss Axio Scan) with a 10x (NA 0.45) objec-
tive to locate viral expression and optrode placement at
regions of interest. The location of optrodes were deter-
mined from the electrode tract left in the brain tissue. In
some images, boundaries can be seen between two adja-
cent areas because of uneven illumination between tiles.
Z-stack confocal images were collapsed and analyzed
with Imaged by researchers blind to the experimental
conditions.

Statistical analysis

All data were presented as individual data points or ex-
pressed as mean = SEM. SigmaPlot software was used
for statistical analysis. To compare two groups, two-tailed
Student’s t test was used if the data were normally distrib-
uted with equal variance, and Mann-Whitney U test was
used if the data did not satisfy both the normality and
equivariance tests. To compare three or more groups,
one-way ANOVA or Kruskal-Wallis one-way ANOVA on
ranks with Dunn’s methods and Tukey’s test for post hoc
multiple comparisons were used. To analyze three or
more groups injected with two different viruses, two-way
ANOVA and Tukey’s test for post hoc multiple compari-
sons were used. To analyze in vivo electrophysiological
data, repeated measures ANOVA was used for group dif-
ferences across days, and two-tailed paired Student’s t
test was used to compare day 1 and day 7 recordings to
baseline; p < 0.05 was considered significant.

Results

Traumatic stress induces prolonged increases in
aggression

Previous studies show that attack behavior increases at
30 min after traumatic stress induced by electric foot shock
(Chang et al., 2015, 2018; Chang and Gean, 2019). To test
whether the aggression increase following traumatic stress
is long lasting, we administered a traumatic stress protocol
by delivering 15-foot shocks at 0.4 mA randomly spaced
over a 90-min period (Rau et al., 2005). Foot shocks
were temporally randomized as unpredictable threat is
more effective in producing sustained fear (Davis et al.,
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2010). Since only socially isolated mice show aggression
increase after foot shock (Veenema, 2009; Toth et al.,
2011; Chang et al., 2015, 2018; Zelikowsky et al., 2018;
Chang and Gean, 2019), and heightened aggression is
more prevalent in men than women suffering from PTSD
and after social isolation in males than females in mice,
Drosophila, and non-human primates (Gluck and
Sackett, 1974; Rodgers and Cole, 1993; Tolin and Foa,
2006; Bubak et al., 2019), only male mice were used in
this study.

Male mice (10-week-old) were individually housed for
three weeks before shock. Control mice were left in the
fear conditioning box for the same amount of time but
with no foot shocks. One day after foot shock, mice were
divided into two groups and tested for stress-enhanced
fear learning (SEFL) and aggression (Fig. 1A). To test for
SEFL, mice were placed into a novel environment
(Context B) and received one-foot shock (1 mA) followed
by assessment of freezing behavior in Context B 1 d after
(Fig. 1A). Freezing in Context B was significantly en-
hanced compared with control mice (Fig. 1B), indicating
that fear learning is enhanced by foot shock as previously
reported (Rau et al., 2005). To evaluate the long-term ef-
fect of traumatic stress on aggression, aggression tests
were performed 7 d after foot shock (Fig. 1A). Four param-
eters of attack behavior commonly used to examine ag-
gression were measured: overall attack time, number of
attacks, duration of each attack, and latency to the first
attack (Hong et al., 2014; Golden et al., 2016; Todd et al.,
2018). Consistent with previous reports (Haller et al.,
2006; Nelson, 2006), foot shock significantly increased at-
tack time, attack number, and attack duration, while de-
creasing latency to the first attack (Fig. 1C-F).

In addition to aggression, we examined the effect of
foot shock on sociability, anxiety-like behavior, and de-
pression-like behavior. Anxiety-like behavior was eval-
uated using the open field and light/dark box tests
(Hascoét and Bourin, 1998), sociability was examined
using the social interaction test (Silverman et al., 2010),
and depression-like behavior was examined using the
forced swim test (Porsolt et al., 1977). These tests were
ordered as illustrated in Figure 1G and spaced with a 2-d
interval to minimize the effect of stress related to behav-
ioral testing. Foot shocked mice spent less time in the
center of an open field arena (Fig. 1H), in the light com-
partment of a light/dark box (Fig. 1K), and were immobile
for a longer duration during the forced swim test (Fig. 1L).
No change was observed for distance traveled during the
open field test (Fig. 1/) and in the social interaction score
(SI, the ratio of time spent exploring a mouse to that ex-
ploring an object) during the Sl test (Fig. 1J).

These results indicate that traumatic stress has long-
term effects on aggression, anxiety-like behavior, and de-
pression-like behavior and that the behavioral alterations
of shocked mice are not caused by changes in locomo-
tion or sociability.

Traumatic stress induces long-term synaptic

potentiation in MeA-VmH and MeA-BNST synapses
MeA and its downstream synaptic partners, the VmH,

BNST, and LS, are key regions in the aggression circuit,
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Figure 1. Traumatic stress enhances aggression, fear learning, and anxiety-like and depression-like behaviors while preserving
non-aggressive social interactions. A, Experimental schedule for B-F. Ten-week-old mice were individually housed for three weeks
before foot shock. Control animals were placed into Context A for the same amount of time but with no foot shocks applied.
Different cohorts were used for B, C-F, H-L. B, Analysis of freezing behavior in Context B. C-F, Analysis of attack behavior 7 d after
foot shock. G, Experimental schedule for H-L. H, Time in the center of the arena in the open field test. I, Distance traveled during
the open field test. J, Ratio of time spent interacting with the cup containing a mouse to the time interacting with the empty cup (SI
score) during the social interaction test. K, Time spent in the light compartment during the light/dark box test. L, Time spent immo-
bile during the forced swim test. Data are presented as mean = SEM; #p < 0.05, ##p < 0.01, *+xp < 0.001. Detailed statistics found

in Table 2.

and they have been implicated in traumatic stress-in-
duced behavioral changes (Rodgers, 1977; Pucitowski et
al., 1985; Shaikh et al., 1986; Nikulina et al., 2004;
Nelson and Trainor, 2007; Silva et al., 2013; Butler et
al., 2015; Masugi-Tokita et al., 2016; Wong et al., 2016;
Hashikawa et al., 2017). The VmH in particular has been
shown to mediate the acute effect of foot shock on at-
tack behavior (Chang and Gean, 2019). Previously, it
has been shown that 1-h restraint stress switches can-
nabinoid type-1 receptor-dependent synaptic plasticity
in the BNST from long-term depression (LTD) to long-
term potentiation (LTP) and that social instability stress
causes changes in synaptic proteins at the MeA and
LS (Glangetas et al., 2013; Hodges et al., 2019). Hence,
it is possible that foot shock may alter synaptic

July/August 2020, 7(4) ENEURO.0147-20.2020

transmission between the MeA and its downstream tar-
get regions. To test this possibility, we analyzed the
strength of synapses between the MeA and the VmH,
BNST, and LS in awake, behaving mice. To this end,
six-week-old mice were injected with AAV channelrho-
dopsin-2 (ChR2) virus into the MeA and then implanted
with optrodes into the VmH, BNST, or LS six weeks later
(Fig. 2A,C,G,K). ChR2 expression was readily observed
in MeA cell bodies (Fig. 2B) and MeA axons at all three
projection sites by two weeks after virus injection when in
vivo electrophysiological recordings were performed (Fig.
2D,H,L). Optically evoked fEPSPs were obtained at 30 min
before, 1d, and 7 d after foot shock, or without foot shock
to rule out any potential handling effects. Optically evoked
fEPSPs were analyzed by obtaining the slope derived by
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Figure 2. Traumatic stress induces LTP of MeA-VmH and MeA-BNST synapses. A, Experimental schedule for in vivo electrophysiol-
ogy. Individually housed mice were injected with ChR2 virus into the MeA and six weeks later were implanted with optrodes into the
VmH, BNST, or LS. LFPs evoked by stimulating MeA axons at the VmH, BNST, or LS were recorded for 30 min. B, Representative
image of ChR2 expression at the MeA. Scale bar: 200um. C, D, G, H, K, L, lllustrations for the sites of viral injection and optrode
placement (C, G, K) and representative images of ChR2 expression in MeA axons at the VmH (D), BNST (H), or LS (L). Scale bars:
200 um (D), 200 um (H), and 100 um (L). E, I, M, Representative traces of optically evoked responses at the VmH (E), BNST (/), or LS
(M) recorded before, 1 d, and 7 d after foot shock or without foot shock. F, J, N, Average slopes of 90 light-evoked fEPSPs recorded
at the VmH (F), BNST (J), or LS (N) before (pre), 1 d, and 7 d after foot shock or without foot shock (normalized to preshock). Data
are presented as mean = SEM; #p < 0.05, **p < 0.01. See Extended Data Figure 2-1 for more details. Detailed statistics found in
Table 2.

fitting the rising phase of the late component of the fEPSP  synaptic potentiation in the MeA-VmH and MeA-BNST, but
(excluding the bottom and top 10%) with linear regression  notin the MeA-LS, synapses.

as described previously (Extended Data Fig. 2-1; Xiong et To assess whether synaptic potentiation in the MeA circuit
al.,, 2015; Zhou et al., 2017). Both the VmH and BNST  mediates the increases in attack behavior from foot shock,
showed sustained increases in fEPSPs after foot shock  we used an optogenetic synaptic depression protocol (900
(Fig. 2E,F,I,J). Conversely, no changes were observed at  pulses of 1-Hz stimulation, LFPS) which is proven effective
the LS or in the no foot shock group (Fig. 2E,F,[,.J,M,N).  in vivo (Nabavi et al., 2014; Zhou et al., 2017) to reduce syn-
These results indicate that foot shock induces long-term  aptic strength. Ten-week-old socially isolated mice were
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Figure 3. LFPS immediately after traumatic stress suppresses attack behavior. A, Experimental protocol for B-F. Mice were injected
with ChR2 or GFP into the MeA and implanted with optical fibers above. After foot shock, LFPS was delivered immediately or 1d
after. Different mice were tested in B, C-F, H-L. B, Analysis of freezing behavior in Context B. C-F, Analysis of attack behavior 7d
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(Sl score) during the social interaction test. K, Time spent in the light compartment during the light/dark box test. L, Time spent im-
mobile during the forced swim test. Data are presented as mean + SEM; xp < 0.05, ##p < 0.01. Detailed statistics found in Table 2.

injected with ChR2 virus or GFP virus into the MeA and
optical fibers were implanted above. Three weeks later,
mice were delivered 15 foot shocks and then returned to
their home cages. In separate groups, mice were deliv-
ered LFPS immediately or 1d after foot shock (Fig. 3A).
Mice injected with ChR2 virus and stimulated with LFPS
immediately, but not 1 d after, foot shock were less ag-
gressive than mice injected with GFP virus and stimu-
lated with LFPS (Fig. 3C-F). LFPS applied immediately
or 1d after foot shock had no effect on contextual fear
memory, anxiety-like behavior, depression-like behavior,
sociability, or locomotion (Fig. 3B,H-L).

These results indicate that foot shock induces po-
tentiation of synapses between MeA and its synaptic
partners and that there is a critical period to prevent

July/August 2020, 7(4) ENEURO.0147-20.2020

foot shock-induced aggression increase via synaptic
depression.

Potentiation of the MeA-VmH and MeA-BNST
synapses is required for foot shock-induced
aggression increase

Having found that foot shock induces synaptic poten-
tiation in the MeA-VmH and MeA-BNST synapses, we
tested whether the effect of LFPS at the MeA is mediated
by the MeA-VmH and MeA-BNST synapses. We injected
ChR2 virus into the MeA of seven-week-old mice and im-
planted optrodes into the VmH or BNST six weeks later.
Mice were then delivered foot shocks followed immedi-
ately after by LFPS (Fig. 4A). Optically evoked fEPSPs at
MeA-VmH and MeA-BNST synapses were recorded in
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vivo before and after foot shock. fEPSPs recorded before,
1 d, and 7d after foot shock were comparable (Fig. 4B-
G). Importantly, we confirmed that LFPS depotentiated
the MeA-VmH and MeA-BNST synapses that were poten-
tiated by foot shock by recording fEPSPs immediately
after foot shock and then immediately after LFPS
(Extended Data Fig. 4-1).

To assess whether the MeA-VmH and MeA-BNST syn-
apses are responsible for the effect of LFPS on foot
shock-induced aggression increase, we applied LFPS to
the MeA projections to the VmH and BNST immediately
after foot shock and evaluated aggression 7d later (Fig.
5A). Mice that received LFPS at the MeA-VmH and MeA-
BNST projections immediately after foot shock displayed
less overall attack time as well as shorter duration of each
attack compared with mice that received foot shock but
without LFPS (Fig. 5B-/). LFPS at MeA-BNST synapses
also decreased the number of attacks and latency to the
first attack (Fig. 5C,E).

Taken together, these findings indicate that potentiation
of the MeA-VmH and MeA-BNST synapses underlie the

July/August 2020, 7(4) ENEURO.0147-20.2020

prolonged aggression increase induced by traumatic
stress through foot shock.

Discussion

Traumatic stress can increase aggression (Nelson,
2006). Previous studies have shown that traumatic stress
induced by foot shock can prime animals to attack and in-
crease anxiety and depression-like behaviors (Chang et
al.,, 2015, 2018; Chang and Gean, 2019). These effects
were measured at 30 min after foot shock. The long-term
effect of foot shock on attack behavior has not been ex-
plored. In this study, we find that foot shock causes an in-
crease in attack that lasts for at least 7 d, while preserving
locomotion and sociability. As the MeA is a key area medi-
ating aggressive behavior, we further investigated the role
of the MeA in this enhancement. In vivo electrophysiologi-
cal recordings revealed that the MeA-VmH and MeA-
BNST synapses were potentiated for up to 7 d after foot
shock. No effects were found at the LS, another region
involved in stress and aggression, and a downstream syn-
aptic partner of the MeA. LFPS suppressed shock-
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Figure 5. LFPS of the MeA-VmH and MeA-BNST synapses suppresses foot shock-induced aggression increase. A, Experimental
protocol. LFPS was delivered to the VmH or BNST immediately after foot shock. B-I, Analysis of attack behavior 7d after foot
shock. Data are presented as mean = SEM; #p < 0.05, ##p < 0.01. Detailed statistics found in Table 2.

induced potentiation of MeA-VmH and MeA-BNST syn-
apses. LFPS also suppressed foot shock-induced ag-
gression enhancement when applied to the MeA or the
MeA-VmH and MeA-BNST synapses, indicating that po-
tentiation of the MeA-VmH and MeA-BNST pathways is
necessary for changes in attack behavior.

A natural question is how social exposure at 7 d after trau-
matic stress drives an aggressive response. One possibility
is that potentiation of the MeA-VmH and MeA-BNST path-
ways results in a general increase in arousal that sets the
mouse in a constant state of social alertness independent of
social cues. High social arousal is expected to be reflected
in social interactions. We see no changes in sociability or
non-aggressive social behavior during the aggression test.
Additionally, while LFPS of the MeA-VmH and MeA-BNST
synapses suppressed foot shock-induced aggression in-
crease, it did not alter non-aggressive social behaviors.
These findings suggest that foot shock specifically affects
aggressive behavior rather than general social interaction
through the MeA-VmH and MeA-BNST pathways.

Previous studies have demonstrated a link between the
VmH and BNST to attack behavior (Nelson and Trainor,

July/August 2020, 7(4) ENEURO.0147-20.2020

2007; Hashikawa et al., 2017). Both regions are also asso-
ciated with stress responses. The VmH and BNST are ac-
tivated by social and physical stress, with the VmH driving
defensive responses to a predator and the VmH and
BNST regulating anxiolytic responses to foot shock
(Dennis, 1976; Jennings et al., 2013; Kim et al., 2013;
Silva et al., 2013; Anthony et al., 2014; Butler et al., 2015;
Zelikowsky et al., 2018). Recently, the VmH was shown to
underlie attack behavior measured at 30min after foot
shock (Chang and Gean, 2019). The MeA is an afferent
pathway for the VmH and the BNST, and these circuits
have been implicated in aggression. MeA neurons ex-
pressing dopamine D1 receptors and projecting onto the
VmH and BNST regulate fighting during the resident in-
truder assay (Miller et al., 2019). GABAergic neurons ex-
pressing the neuropeptide Y type 1 receptor (Npy1R) in
the MeA receive input from VmH neurons and subse-
quently project onto the BNST to modulate territorial ag-
gression during starvation (Padilla et al., 2016). It remains
unclear, however, what role these pathways play in the
aggression increase resulting from traumatic stress. We
show here that the MeA controls foot shock-induced
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prolonged aggression increase through potentiation of
the MeA-VmH and MeA-BNST synapses and that depot-
entiation of these synapses can suppress these increases
in attack behavior. The MeA-VmH and MeA-BNST path-
ways may have non-redundant or overlapping functions
in traumatic stress-induced aggression. A more detailed
examination of these pathways is warranted to address
this question.

It has been shown that foot shock induces attack be-
havior only after social isolation (Veenema, 2009; Toth et
al., 2011; Chang et al., 2015, 2018; Zelikowsky et al.,
2018; Chang and Gean, 2019) and that heightened ag-
gression after social isolation is more prevalent in male
than female animals (Gluck and Sackett, 1974; Rodgers
and Cole, 1993; Bubak et al., 2019). In addition, high-ag-
gression mice may not be able to further increase ag-
gression because of a ceiling effect (O’Donnell et al.,
1981; Lee and Gammie, 2009, 2010). We, therefore,
elected to use socially isolated male mice that demon-
strated low-aggression levels before foot shock to exam-
ine the effect of traumatic stress on aggression. It cannot
be ruled out though that limiting our cohort to socially
isolated, low-aggression mice may constrain the gener-
alizability of our findings. It is possible that the increase
in attack behavior after traumatic stress is attributable,
at least in part, to sensitization of the MeA by social iso-
lation. Thus, potentiation of the MeA circuit may be a
mechanism for traumatic stress-induced aggression
only under certain conditions. Future studies assessing
the effect of social isolation on synaptic physiology of
the MeA pathways and experiments using group-housed
mice would address this question. However, optrode im-
plantation poses technical challenges to postsurgery
group housing.

Finally, the finding that LFPS can suppress foot
shock-induced attack increase when applied immedi-
ately but not 1d after shock indicates that depotentia-
tion of MeA-VmH and MeA-BNST synapses is time
constrained. This is consistent with the finding that
there is a critical period after synaptic potentiation
when depotentiation can be induced (e.g., 10 min in hip-
pocampal slices; Chen et al.,, 2001; Huang and Hsu,
2001). The molecular mechanism for potentiation of the
MeA-VmH and MeA-BNST synapses is an intriguing
question for future studies. Neurotransmitter receptors
including NMDARs, mGluRs, AMPARs, GABA-A recep-
tors, and endocannabinoid receptors that are shown to
mediate synaptic plasticity in other brain regions are
potentially involved. Moreover, synaptic potentiation is
often accompanied by the structural changes of synap-
ses, such as formation and enlargement of dendritic
spines, which support long-term information storage
(Bolshakov et al., 1997; Toni et al.,, 1999; Bosch and
Hayashi, 2012). Spine formation in the auditory cortex
and at lateral amygdala-auditory cortex synapses has
also been observed after foot shock stress (Yang et al.,
2016; Lai et al., 2018). The effect of foot shock-induced
aggression on the structure and formation of spines at
MeA-VmH and MeA-BNST synapses is of interest to fu-
ture studies.
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