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ABSTRACT Evidence is presented that the structural rearrangements in late mitosis are accom- 
panied by an alteration in membrane lipid synthesis. This evidence was derived from analyzing 
phospholipid classes after rapid-labeling, as well as from determining the intracellular site of 
incorporation of choline by HeLa $3 cells as they progressed from metaphase into early 
interphase (G1). Compared with postmitotic cell data, the recent mitotic cell data indicate a 
specific two- to threefold increase in the net synthesis of phosphatidylcholine (PC) species, 
which appeared to contain the more saturated fatty acids. Since this was observed with 
glycerol, choline, and orthophosphate labelings, and not with methyl labeling, it appears that 
the CDP-choline plus diacylglycerol pathway rather than the phosphatidylethanolamine to PC 
pathway was augmented. Electron microscope autoradiography of anaphase, telophase, and 
early G1 cells demonstrated that the reformed nuclear envelope was the incorporation site of 
a significant proportion of the newly synthesized PC. This incorporation occurred by early 
telophase prior to chromosome decondensation. The potential significance of PC metabolism 
with regard to membrane rearrangements, such as nuclear envelope reformation, is discussed. 

The late mitotic cell undergoes a series of dynamic ultrastruc- 
tural changes (11, 19) resulting in progeny cells in which 
macromolecular synthesis (16, 22, 23) has been re-established. 
Among the ultrastructural events are several that involve the 
membranous components of the cell, such as reforming the 
nuclear envelope (NE), rearranging the endoplasmic reticu- 
lum (ER), and breaking and resealing the cytoplasmic mem- 
brane. Although ultrastructural changes in mitosis have long 
been recognized, the biochemical basis of most of these events, 
except for those involving the spindle apparatus (for a review 
see reference 18), is largely unknown. For example, this is the 
case for NE reformation, which is an early event in telophase. 
It is thought that membrane fragments for this reformation 
are, at least in part, carried through cell division at the 
telomeres of chromsomes (10). Recently, it has been argued 
that peripheral dense lamina polypeptides (putatively, NE 
components) play a role in this process (14). These polypep- 
tides, which have been designated lamins A, B, and C, appar- 
ently become less phosphorylated during nuclear reformation. 

What role, if any, newly synthesized membrane lipids play 
in either nuclear or cytoplasmic membranous events cannot 
be evaluated at the present time because there is no infor- 
mation that can be associated unequivocally with cells in late 
stages of mitosis. The available data, on the other hand, have 
been obtained from partially synchronized cells and indicate 
that the incorporation of membrane lipids into the NE occurs 
only after the cell has entered interphase (G~) (8) and, thus, 

suggest that newly synthesized lipids are not involved in this 
process. 

In this paper, however, data are presented that suggest a 
specific role for a particular class of membrane lipids in late 
mitotic events. We have determined the amount and the 
profile of phospholipid synthesized in tightly synchronized 
populations, and the intracellular site of incorporation of one 
class of these membrane components. Specifically, aspects of 
phospholipid biosynthesis were explored in the human de- 
rived cell line, HeLa $3, by following the incorporation of 
radioactive orthophosphate, glycerol, choline, and methio- 
nine under conditions of "rapid-labeling." For this analysis, 
metaphase cells were collected and then, by incubation at 
37"C, were permitted to traverse through the final stages of 
mitosis. In addition, the individual stages of late mitosis were 
analyzed for the intracellular distribution of choline incorpo- 
ration by electron microscope autoradiography (EMAR). Our 
data indicate that late mitotic cells have an augmented phos- 
phatidylcholine (PC) biosynthetic activity, in particular, and 
that a substantial portion of this newly synthesized PC can be 
visualized in association with the NE by early telophase before 
chromosome decondensation. 

MATERIALS AND METHODS 
Cell Culture and Synchronization: HeLa S3 cells were maintained 

at 37°C in suspension culture in Eagle's minimal essential medium (gibco 
Laboratories, Grand Island, NY) supplemented with 7% calf serum and 2 mM 
glutamine. 
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Populations of cells in metaphase were obtained by selective detachment 
after a double-thymidine blockade as previously described (16). These prepa- 
rations had a metaphase index of at least 88%, and a mitotic index of >94%. 
Populations of cells that progressed through melaphase, anaphase, and telo- 
phase, and into cady G~, and populations of cells in mid and late Gt periods 
of the cell cycle were obtained by incubation of the collected metaphase cells 
at 37"C for 90 rain (early GO, 4 h (mid GO, or 6.5 h (late GO, respectively. 
Late mitotic cells were obtained with shorter incubation periods as indicated 
in the appropriate figure legends. We have demonstrated previously that cells 
synchronized in metaphase begin to enter S phase 7-8 h after selective detach- 
ment (22). 

Labeling of Cellular Phospholipid Components: Populations 
of synchronized cultu~s were exposed to radioactive choline, glycerol, ortho- 
phosphate, or methionine under conditions that maximized linear uptake. 
Labeling in each instance was done for 90 min, which was equal to that time 
needed for populations of melaphase cells to enter early G~. These conditions 
for "rapid-labeling" permitted sufficient incorporation of label for subsequent 
analysis of the extractable classes of phospholipids. 

Cells were exposed to radioactivity at a concentration of I x 10 + cells/ml in 
prewarmed medium containing 7% dialyzed calf serum and 2 mM glutamine 
at 37"C. To label with radioactive phosphate, the medium was phosphate free 
and contained 0.15 mCi/ml carrier-free [32p]orthophosphate (New England 
Nuclear Boston, MA). To label with glycerol or choline, the medium contained 
one-hundredth the normal concentration of choline and 10 t~Ci/ml of either 
[2-3H]glycerol (5-10 Ci/mmol, New England Nuclear), or [methyl-3H]choline 
chloride (4.2 Ci/mmol, New England Nuclear). To label with methionine, 
the medium was methionine free and contained 25 #Ci/ml of L-[methyl-3Hl - 
methionine, (15 Ci/mmol, New England Nuclear). Some experiments were 
performed with delipidized serum. 

As indicated in the text, cycloheximide (100 ~g/ml) was included in the 
medium in some experiments to inhibit residual protein synthesis in metaphase 
cells and to prevent the restitution of interphase levels of protein synthesis in 
early G~ (23). 

Determination of Acid-insoluble Radioactivity in Whole 
Cells: Aliquots of 1-4 X 10 ~ cells were washed two times in cold (4"C) 
Earle's salts. In some experiments the wash solution contained 0.01% (wt/wt) 
bovine serum albumin to remove any adventitiously adsorbed radioactivity, 
although this subsequently proved to be unnecessary. Cells were then suspended 
in 5% trichloroacetic acid (TCA) and the acid-insoluble radioactivity was 
determined as previously described (25). 

Extraction, Separation, and Determination of Phospholipid 
Radioac t i v i t y :  Whole cells were washed in cold Earle's salts and then 
precipitated with 5 vol of 10% TCA for 20-30 min at 4"C. The resulting pellets 
were washed three times with 5 vol of distilled water at 4"C and then drained 
thoroughly. Supernalant fractions and aqueous washes of the pellet were 
combined and were used to determine cellular soluble (water-acid) radioactivity. 
The same level of recovery was obtained with and without previous sonication 
of the cells, l0 vol of a chloroform/methanol/concentrated hydrochloric acid 
(300:300:1.5) solution was added and the pellets were extracted for 15 h at 4"C. 
After centrifugation, the supernalant solution was saved, and the residue was 
extracted twice with 10 vol of chloroform/methanol/concentrated hydrochloric 
acid (400:200:1.5) solution. These three extracts were combined, dried under 
nitrogen, and the remaining residue was dissolved in chloroform and washed 
three times in 4 vol of chloroform/methanol/water (3:48:47). The upperphase 
aqueous layer that contains complex phospholipids such as lipoproteins (31) 
was discarded. The resulting chloroform layer was dried under nitrogen, and 
the final residue was dissolved in a small volume of chloroform for analysis. 

Individual classes of phospholipids were displayed using two-dimensional 
thin-layer chromatography, essentially as described by Abdel-Latif et al. (l). 20 
x 20-cm glass plates were covered with a 0.40-mm layer of a silica slurry 
prepared by mixing 40 g of silica gel H with 3 g of magnesium acetate in 95 ml 
of deionized water. Plates were air dried and then, before use, activated at 
100*C. In most experiments, 0.50-0.75 ~mol of carrier phospholipid prepared 
from HeLa $3 cells was added to the radioactive extracts before application to 
the plates. For chromatography, the solvent system in the first dimension was 
chloroform/methanol/concentrated ammonium hydroxide (65:25:4), and in 
the second dimension was N-butanol/acetic acid/water (6: l:l). The phospho- 
lipids were visualized by iodine vapor. 12 major classes of phospholipids were 
well separated by this procedure. 

The amount of radioactivity in individual phospholipids was determined by 
scintillation counting after scraping the phospholipid spots into 10 ml of 
scintillant (Formula 963, New England Nuclear). When the radioactivity was 
eluted, the recoveries were ~90%. 

Species of PC (lecithin) with different degrees of unsaturation were analyzed 
by argentation chromatography essentially as described by Arvidson (3). Sam- 
ples of PC were first eluted with chloroform/methanol (2:1 vol/vol) from the 

aforementioned silica gel and were then fractioned on plates (20 x 20 cm) 
covered with a 0.8-mm thick layer of silica gel H-silver nitrate at a 4: l ratio 
(wt/wt). Prior to use, plates were activated at 195"C for 4 h and stored over 
P20~ in a vacuum desiccator. Eluted samples and 0.25 mg each of a-L- 
dipalmitoyl lecithin (Applied Science Div., Milton Roy Co., Laboratory Group, 
Slate College, PA), a-L-dioleoyl lecithin (Applied Science Div., Milton Roy 
Co., Laboratory Group), a-L-dilinoleoyl lecithin (Supelco, Inc., Bellefonte, PA), 
and a-L-diarachidonyl lecithin (Supelco, Inc.) were applied to individual l-era 
lanes, and chromatography was performed in a solvent system composed of 
chloroform/methanol/water (60:30:5 vol/vol). Radioactivity was located in 
successive 5-mm fractions as described above. The marker PC were located by 
exposing the chromatographic plate to ultraviolet light after spraying with a 
0.2% solution of dichlorofluorescein in ethanol. 

Determination of Phospholipid Phosphate: Phospholipid 
phosphate (inorganic phosphate [Pd) assays were performed spectrophotomet- 
rically on dried chloroform/methanol extracts essentially as described by Chert 
et al. (7). Inorganic phosphate was convened to micrograms of phospholipid 
by multiplying by a factor of 25. 

Electron Microscope Autoradiography: After exposure to radio- 
activity, preparations of mitotic cells were washed and then fixed in 0.16 M 
cacodylate buffer containing 0.007 M MgCI2 and 5% glularaldhyde, stained, 
dehydrated in an ethanol or an acetone series, and embedded in EPON as 
previously described (24). After ethanol dehydration, cells retained 40-50% of 
the radioactivity and, after acetone dehydration, 80-90% of the radioactivity 
was retained. Either procedure permitted an autoradiographic analysis. Coating 
of sections of ~ 1,000 • with Ilford L4 emulsion (Ilford Ltd., Essex, England) 
and developing with Microdol X (Eastman Kodak Co., Rochester, NY) were 
carried out as previously described (24). Sections were then stained with aqueous 
uranyl acetate and lead citrate, and examined with a Philips (Philips Electronic 
Instruments, Inc., Mahawah, NJ) 400 transmission electron microscope oper- 
ating at 80 kV. 

RESULTS 

Augmented Incorporation of Label in Cells 
Progressing from Metaphase into Interphase 

To investigate aspects of the biosynthesis of new membrane 
lipids during the metaphase (met) to interphase (G~) transition 
in cultured HeLa cells, we have followed the labeling of 
phospholipids with radioactive choline, glycerol, orthophos- 
phate, and the methyl group of methionine. Initial experi- 
ments indicated that metaphase cells suspended in phospho- 
lipid labeling media passed through anaphase to telophase 
and into early G~ with the same kinetics as mitotic cells 
suspended in complete medium at 37"C (Fig. 1, inset). These 
early G~ cells contained roughly one-half of the metaphase 
cell content of protein and phospholipid (Fig. 1A), which by 
late G~ (6.5 h after synchronization), had increased ~30%. 

When cells were exposed to each radioactive label under 
these conditions, acid-insoluble radioactivity accumulated lin- 
early for at least 90 min (Fig. 1B). As expected, essentially all 
the incorporated choline and glycerol were extractable into 
chloroform/methanol, whereas ~20% of the radioactive-or- 
thophosphate and ~ 30% of the methyl group of methionine 
were extractable into this lipid solvent. Thus, our initial data 
indicated that late mitotic cells were active in membrane lipid 
synthesis. 

To determine whether residual protein synthesis during late 
mitosis, which represents ~ 10-20% of interphase levels (21), 
and/or the restitution of protein synthesis to interphase levels 
in early G~ had any effect on this incorporation, we performed 
experiments in the presence of an inhibitor of protein synthe- 
sis (Fig. 1B). It was observed that, regardless of the label, 
incorporation was independent of concomitant protein syn- 
thesis since levels of incorporation in the presence of inhibitor 
were essentially identical to those observed in the absence of 
inhibitor. Typical data obtained, e.g., with methionine label- 
ing, are presented in Fig. 1B. Late mitotic stages apparently 
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were equally active in phospholipid synthesis because when 
cells were exposed to 10-min pulses of radioactive choline or 
glycerol the level of incorporation was nearly identical 
throughout the 90 rain-incubation period after synchroniza- 
tion in metaphase (data not shown). 

To evaluate more thoroughly this apparent synthesis by 
late mitotic cells, we quantified the incorporation with respect 
to cells that had completed mitosis (Table I). It was observed 
that incorporation of phosphate, glycerol, and choline label 
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FIGURE 1 Phospholipid and protein content (A), and incorporation 
of lipid precursors (B) in cells progressing from metaphase into G1. 
(A) Metaphase cells (89%) were collected and incubated in com- 
plete prewarmed medium at 37°C at a concentration of 1 x 106 
cells/ml. After an incubation period of 10 rain (metaphase cells), 
90 min (early GI ceils), 4 h (mid GI cells), and 6.5 h (late GI cells), 
aliquots of 3 x 106 cells were washed in cold Earle's salts, and either 
total protein or total phospholipid was determined (see Materials 
and Methods). Each point represents the average of triplicate de- 
terminations. The data are plotted as the percent of total of the 
metaphase cells (10 rain) that yielded values of 68.8 x I0 -s/zg of 
protein and 14.1 x I0 -s ug of phospholipid per cell. O, phospho- 
lipid; O, protein. (B) Metaphase cells (88-91%) were collected, 
suspended at a concentration of I × 100 cells/ml, and incubated at 
37°C in the presence of radioactive glycerol, choline, metbylme- 
thionine, or orthophosphate as described in Materials and Methods. 
At 10, 30, 60, and 90 min, aliquots of each culture (I x I0 s and 2 
x I0 s cells) were analyzed for incorporation of radioactivity. Glyc- 
erol and choline incorporation are scored as TCA-insoluble radio- 
activity. Methyl group of methionine and phosphate incorporation 
are scored as chloroform/methonol-soluble radioactivity. When 
protein synthesis was inhibited, cycloheximide was present in the 
suspension medium. The inset is the mitotic index, as determined 
by phase microscopy, of cells completing mitosis in either the 
glycerol, phosphate, or methionine labeling media. &, orthophos- 
phate incorporation; O, methyl group incorporation plus cyclohex- 
imide; 0, glycerol incorporation; II, choline incorporation; I-i, cho- 
line incorporation plus cycloheximide. 

into extractable phospholipid was maximal during the meta- 
phase to interphase period (Table I), and that by late GI this 
capacity had decreased ~40-50%. In contrast, no quantitative 
difference in the incorporation of the methyl group of methi- 
onine into extractable cellular phospholipids was noted 
among any of the synchronized populations. 

When the cellular soluble (water-acid) radioactivity for each 
label was determined, similar amounts of radioactivity were 
recovered from cells that had progressed from metaphase to 
interphase, and from mid and late G~ (postmitotic) cells. 
Thus, although the cytoplasmic membrane of the metaphase 
cell has unique properties (4, 5), the increased incorporation 
of these precursors into cellular phospholipids in the met to 
GI transition did not appear to represent increased transport 
of extracellular radioactive precursor. 

Thin-layer Chromatographic Analysis of 
Phospholipid Synthesis 

To determine the classes of phospholipids synthesized in 
mitotic and postmitotic times, we analyzed the incorporation 
of each precursor by two-dimensional thin-layer chromatog- 
raphy. The chromatographic system separated phospholipids 
into 12 classes, e.g., the major choline-containing classes, 
lysophosphatidylcholine (LPC), PC, and sphingomyelin 
(SPH) were displayed clearly. When mitotic cells were labeled 
with either radioactive glycerol or orthophosphate, radioactiv- 
ity was recovered in each phospholipid class, indicating that 
the met to G~ transition was active in the total synthesis of 
phospholipids. As expected, late mitotic cells exposed to ra- 
dioactive methionine or choline resulted in the recovery of 
label in LPC, SPH, and PC. 

Because of the limited number of cells obtained in the 
metaphase synchronization procedure, it was necessary to add 
carder lipid to each extract to locate individual phospholipid 
classes. Thus, these data generally were analyzed on the basis 
of the relative amount of radioactivity recovered. This re- 
vealed a disproportionate amount of radioactivity in PC in 
some experiments (Table II). For example, after labeling with 
radioactive phosphate (Table II), met to GI cells, as compared 
with mid and late G~ cells, yielded ~2.3-fold increase in the 
relative recovery of radioactivity in PC. Also, with glycerol 
labeling (Table II) an increase in the relative recovery of 
radioactivity in PC was noted. Labeling with methionine or 
choline resulted in a similar distribution of radioactivity re- 
gardless of labeling time after synchronization. For example, 
after choline labeling, ~83, 13, and 1.3% of the label were 
recovered in PC, LPC, and SPH, respectively; and after me- 

TABLE I 

Quantitation of Incorporation of Lipid Precursor 

Radioactive label (cpm/#mol P~) 

Cell s t a g e  Orthophosphate Glycerol Choline Methionine 

Met to G. 1.6 x 107 (100)* 4.8 x 106 (100) 2.5 x 106 (100) 1.8 x 106 (100) 
Mid GI I .O x 107 (69.4) 2.7 x 100 (56.2) 1.6 x 106 (64.0) 1.7 x 106 (95) 
Late GI 1.0 x 107 (68) 2.5 x 106 (52) 1.5 x 106 (60) 1.6 x 106 (93) 

Incorporation of lipid precursors in met to G1 cells, mid G~ cells, and late G1 cells. HeLa cells were synchronized in metaphase (90%), in mid GI (4 h), and in 
late G, (6.5 h), and exposed to radioactive glycerol, choline, methionine, or orthophosphate for 90 min as described in Materials and Methods. [methyl-3H] 
methionine labeling was done in the presence of cycloheximide. Inhibitor and radioactivity were added simultaneously in metaphase populations; in mid and 
late GI populations, inhibitor was added 15 rain prior to the radioactivity. Chloroform/methanol-soluble and TCA-water-soluble fractions were prepared from 
each population, and the amount of radioactivity or P~ was determined as described in Materials and Methods. Values for the chloroform/methanol-soluble 
fraction are presented (see text) and represent the average of three determinations. For comparison, the data obtained with the metaphase population (met 
to G,) have been given a value of 100%. 

* Values in parenthesis are percentages. 
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thionine labeling, ~74, 16, and 9% of the label were recovered 
in PC, LPC, and SPH, respectively. Taken together, these 
results suggested that mitotic cells were more active relatively 
in the synthesis of PC by the CDP-choline plus diacylglycerol 
pathway. 

Further Analysis of PC Synthesis 
PC is one of the most abundant lipid classes in the mem- 

branes of cultured mammalian cells (26, 30), and it was 
possible to locate this component on thin-layer plates without 
adding carrier lipid to the extract. This permitted a direct 
determination of net synthesis, as well as a limited analysis of 
the species of PC synthesized. 

When cells were pulsed with either radioactive phosphate 
or glycerol, and the radioactivity and phospholipid phosphate 
in the PC eluted from the thin-layer plate were determined, 
the specific activities (cpm/~mol phosphatidylcholine Pi) were 
over two- to threefold higher in material extracted from cells 
completing mitosis compared with late GI cells (Table III). 
This PC material was further analyzed by chromatography 
on silver nitrate-impregnanted silica gel, which separates PC 
species on the basis of the degree of saturation of the esterified 
fatty acids (Fig. 2). Rapidly migrating fractions contain the 
smallest number of double bonds whereas the slowly migrat- 
ing fractions contain mixtures of PC containing fatty acids 
with multiple levels of unsaturation. When analyzed in this 
manner, PC synthesized in ceils completing mitosis migrated 
rapidly as a marker species containing zero to two double 
bonds, whereas material synthesized in subsequent late GI 
yielded both fast and slow material. The latter migrated 
heterogeneously about a marker tetraenoic (four double 
bonds) species. Although the precise fatty acid content re- 
mains to be determined, these results do, nevertheless, indi- 
cate that in late mitotic cells PC synthesis was limited to the 
more saturated species. 

Intracellular Site of Incorporation of PC in Late 
Mitotic Cells 

Since late mitotic cells demonstrated a net increase in 
synthesis of PC, sections of whole cells were examined using 
EMAR to visualize the intracellular site of this incorporation. 
Essentially, populations of metaphase ceils were suspended in 
choline-deficient medium containing high levels of tritiated- 
choline, and by incubation, were permitted to progress to the 
late stages of mitosis: anaphase, telophase, and early GI. After 
preparation for electron microscopy, cells retained the cho- 
line-containig phospholipids in the same proportion as non- 

TABLE III 

Specific Activities of PC in Met to G~ and Late G1 Cells 

Cell cycle stage 
Radioactive Ratio, met to 

label Met  to G~ Late G1 G1/late G1 

cpm/izmol F'~ cpm/#mol P~ 
Orthophosphate 2.1 x 106 0.72 x 106 2.9 ± 0.21 
Glycerol  1.8 x 106 0.86 x 106 2.1 ± 0.16 

Specific activities of PC in met to G1 and late GI cells. Metaphase cells (88%) 
completing mitosis (met to G;) and late GI cells were labeled with radioactive 
orthophosphate or glycerol for 90 rain, as described in Materials and Meth- 
ods. Chloroform/methanol-soluble extracts were prepared and the classes 
of phospholipids were separated by two-dimensional chromatography. PC 
was eluted from the silica gel with two chloroform washes, and radioactivity 
and inorganic phosphate were determined. 
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FIGURE 2 Species of PC synthesized in met to G1 cells and late G~ 
cells. Synchronization of cells, labeling with [3ZP]orthophosphate, 
and extraction of phospholipids were done as described in Materials 
and Methods. Phospholipids were fractionated by two-dimensional 
thin-layer chromatography, and the radioactivity associated with 
PC was eluted. Several eluates were pooled and dried. The residue 
was suspended in 0.2 ml of chloroform and analyzed by argentation 
chromatography as described in Materials and Methods. Arrows 
represent the midpoint of the migration of standards with known 
numbers of double bonds in the fatty acid components:8, a-L- 
diarachidonyl PC; 4, a-t-di l inoleoyl PC; 2, a-L-dioleoyl PC; and 0, 
a-L-dipalmitoyl PC. Radioactivity in 5-mm fractions and markers 
were located as described in Materials and Methods. (A) PC labeled 
in met to G1 cells; (B) PC labeled in late G~ (6.5 h). 

processed cells (as mentioned earlier). Initial experiments 
revealed that sections contained relatively small numbers of 
grains and that any one section did not always mirror the 
quantified results obtained from a large number of photo- 
graphs. Presumably, this lack of uniform distribution repre- 
sented domains of incorporation due to short labeling times 
and/or extensive structural rearrangements of ER in mitotic 
cells. Therefore both individual photographs and the quanti- 
fication based on random sections through mitotic cells have 
to be considered together to gain a perspective of the intra- 
cellular distribution of grains (compare Fig. 3 and Table IV). 
In metaphase and anaphase, grains were associated with cy- 
toplasmic structures and only an occasional grain was visu- 
alized at or near the periphery of the chromosomes (Fig. 3,A 
and B). To emphasize this observation, we chose the depicted 
micrographs from among those with the maximum number 
of grains visualized over the entire section in these stages. By 
early telophase, obvious incorporation sites were noted at the 
periphery of the fused chromosome mass in addition to the 
cytoplasmic incorporation. This was observed before signifi- 
cant chromosome decondensation had begun, and before 
nuceoli had reformed (Fig. 3, C and D). These panels dem- 
onstrate the typical variability observed in micrographs of 
such early telophase cells. Fig. 3 D, a magnified view empha- 
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TABLE IV 

Intracellular Localization of the Incorporated PC 

No. Relative 
Stage of of Relative grain 

Cellular compartment cell cycle grains area density 
(%) 

Prenuclear or nuclear Anaphase 84 6.5 1.00 
periphery* Telophase 227 3.8 4.62 

Early G~ 231 4.7 3.80 
Plasma membrane Anaphase 198 6.2 1.00 

Telophase 243 6.8 1.12 
Early G1 202 7.8 0.81 

Cytoplasm (other mem- Anaphase 519 79.0 1.00 
branous structures) Telophase 536 79.2 1.03 

Early G1 322 58.4 0.84 

Quantitation of the intracellular localization of the incorporated PC. Meas- 
urements of cellular area and grain counts were made from micrographs of 
sections of 30 anaphase, 30 telophase, and 30 early G1 cells printed x 
12,500. The relative area of each cellular compartment was estimated from 
a uniformly dispersed grid of points by dividing the points that appeared 
over that structure by the total number of points that appeared over the 
whole section. The relative density represents the grains per area for each 
compartment normalized to that observed at anaphase. 

* Prenuclear refers to the chromosome mass prior to completed nuclear 
reformation. 

sizing an intial stage of nuclear reformation, clearly demon- 
strates the incorporation of radioactive choline at the NE site. 
The well-marginated appearance of the telophase nuclei in 
both panels is consistent with NE reformation. By early G~, 
when chromatin decondensation has been virtually completed 
and nucleoli had reformed, grains were also visualized at the 
nuclear periphery (data not shown). 

These observations were quantified by counting total cyto- 
plasmic grains as well as grains within three half-distances of 
the chromosomal or nuclear periphery and the plasma mem- 
brane (Table IV). Within this distance, one expects to find 
85% or more of the silver grains associated with the presence 
of tritiated radioactivity in a given cellular structure (20). As 
seen in Table IV, grains over cell sections from each of the 
final stages in the transition from metaphase to interphase 
have been scored. Consistent with the previous micrographs, 
the majority of the grains were distributed over the cytoplasm, 
and careful examination revealed that they were at or near 
cytoplasmic membranous structures such as mitochondria 
and vesicles. This quantification also indicates significant 
incorporation at least by telophase in the vicinity of the NE. 
The latter totaled ~25% of the grains observed and, when the 
data were analyzed on the basis of relative area, the NE 
appeared to contain a greater proportion of the intracellular 
radioactivity compared with the cytoplasmic membrane. 

DISCUSSION 

Precise information concerning membrane lipid synthesis 
during cell division has been lacking. Thus, it has not been 
clear whether or not intrinsic changes in these lipids occurred 
during mitosis, and whether or not synthesis of new lipid 
components could be correlated with an observed ultrastruc- 
rural event, such as NE reformation. We have studied the 
latter question concerning new synthesis with cells tightly 
synchronized in metaphase and with labeling times restricted 
to the time required for the metaphase cell to complete 
mitosis. This labeling time is significantly shorter than the 
half-life of the major phospholipids (for a review see, reference 
26) and, thus, focuses attention on newly synthesized material. 



FIGURE 3 Visualization of choline incorporation in late mitotic cells. A preparation of metaphase cells (92%) was suspended in 
medium containing [3H]choline at a concentration of 100 # Ci/ml, as described in Materials and Methods, and incubation was 
continued for 40 rain at 37°C. After fixation and embedding in EPON, gold-to-silver sections were mounted on grids and EMAR 
was performed using llford L4 emulsion (see Materials and Methods). A is a section through a metaphase cell; B is a section 
through an anaphase cell; C is a section through a telophase cell; and D is higher magnification of a section through a telophase 
cell. Details are described in text. Arrows indicate the location of silver grains. In D, only NE-associated grains are indicated. (A- 
C) x 10,625; (D) x 18,250. 
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Also, extracted components were analyzed by two-dimen- 
sional thin-layer chromatography that clearly separated 12 
classes of phospholipids. With this detailed approach, it is 
clear that late mitotic cells, i.e., anaphase, telophase, as well 
as early G~ cells, were not only active in maintaining synthesis 
of  phospholipids but also exhibited an increased net synthesis 
of PC that appeared to be oriented toward the more saturated 
species. Furthermore, visualization of this incorporation into 
individual mitotic cells revealed that a significant amount of 
newly synthesized PC could be detected in the NE coincident 
with its reformation in telophase, prior to the formation of 
progeny GI cells. Whether or not this coincidence reflects a 
causal relationship between this synthesis pattern and NE 
reformation is unknown at present. Our data are consistent 
with this idea, but they do not rule out alternative explana- 
tions. For example, it is conceivable that at any time in the 
life cycle of the cell a large fraction of the newly synthesized 
PC passes through the NE. Presumably, this incorporation 
would represent transport from the ER, the site of  PC synthe- 
sis. Also, other membranous systems such as the ER and 
plasma membrane are undergoing major ultrastructural rear- 
rangements during late mitosis and thus, any speculations 
based on our data could apply equally well to these mem- 
branes. 

Regardless of  which membrane system(s) may be affected, 
implicit in our data is the concept that an altered pattern of 
PC synthesis reflects a membrane compositional change(s). It 
follows then that this could be an integral part of  the mitotic 
process. Several characteristics of  PC and its metabolism are 
compatible with this idea. First of  all, PC itself is thought to 
impart membrane ultrastructure (for a review see reference 9) 
and thus, may be of  major importance in re-establishing, for 
example, NE integrity. The putative half-life of  PC is often 
relatively short and considerably less than a cell generation 
time (27). For example, in cultured baby hamster kidney cells 
labeled with glycerol, it has been estimated that PC has a half- 
life of 2-4 h, that phosphatidylethanolamine (PE) has a half- 
life of  4-8 h, and that phosphatidylinositol (PI) has a half-life 
of 15 h (13). Therefore, significant changes in composition 
could be introduced via PC within the immediate time limits 
of  the division process. In addition, changes in fluidity may 
be important for membrane rearrangements at mitosis, and 
several ideas focus on PC with regard to this property. Among 
these are compositional changes involving the ratio of  PC to 
PE (15), the ratio of  PC to SPH (2), the ratio of unsaturated 
fatty acids to saturated fatty acids (6), and the ratio of  long- 
chain to short-chain fatty acids (6). Presently, our data stress 
the comparison between saturated and unsaturated fatty acids. 
In fact, it has been reported that PC synthesized from PE 
preferentially introduces higher polyunsaturated acids, 
whereas PC synthesized from CDP-choline and diacylglycerol 
preferentially introduces more saturated fatty acids (17, 26), 
It is this latter pathway that our data indicate was augmented 
in late mitosis. 

It is becoming increasingly obvious that the mammalian 
cell is highly structured, and it has been suggested that struc- 
tural reorganization is a controlling element in cellular func- 
tion. With regard to this idea, cytoplasmic cytoskeletons and 
nuclear matrices are receiving much attention, and it has been 
suggested that the biochemical composition and the synthesis 
of  components of such structural elements conceivably could 
play specific regulatory roles (12). It also is coneelvable that 
membranous structural elements, such as an NE, could play 
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regulatory roles in cell division and that their behavior is 
controlled via aspects of PC metabolism. In fact, the amount 
of PC synthesized is under the rate-limiting activity catalyzed 
by CTP:phosphocholine cytidylyltransferase (28, 29), a single 
enzyme in its biosynthetic pathway. 
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