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A deep learning approach 
to identify and segment 
alpha‑smooth muscle actin stress 
fiber positive cells
Alexander Hillsley1, Javier E. Santos2 & Adrianne M. Rosales1*

Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix 
remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the 
development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, 
a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by 
the de novo assembly of alpha‑smooth muscle actin stress fibers; however, there are few methods 
to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To 
address this limitation, we present a computer vision model to classify and segment cells containing 
alpha‑smooth muscle actin stress fibers into 2 classes (α‑SMA  SF+ and α‑SMA  SF‑), with a high degree 
of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing 
methods with deep learning techniques to achieve semantic segmentation of the different cell 
phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid‑based hydrogels 
of various moduli to induce alpha‑smooth muscle actin stress fiber formation. The model successfully 
predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken 
together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic 
models, thereby increasing reproducibility in fibroblast phenotypic characterization.

Fibrosis is a pathological process that affects millions of Americans each year and can manifest in nearly every 
organ in the body, including as cirrhosis in the liver (2.5 million  people1), idiopathic pulmonary fibrosis in the 
lungs (5  million2) and as heart failure (6  million3). Due to its development in multiple tissue environments, 
several factors can lead to fibrosis. For example, cardiac fibrosis has a range of etiologies, including acute events 
such as myocardial  infarct4 and chronic conditions such as  hypertension5 and  aging6,7. Regardless of the tissue 
or initiating injury, fibrosis is characterized by excessive tissue deposition and matrix remodeling, leading to 
increased stiffness and impaired organ  function8,9.

On a cellular level, fibrosis is associated with the persistent activation of fibroblasts into myofibroblasts, a 
smooth muscle cell-like phenotype presumed to be highly  secretory10 and  contractile11–13. Myofibroblasts are 
most often identified in vitro by the de novo assembly of alpha-smooth muscle actin (α-SMA) stress  fibers14–16, 
although recent research has shown that α-SMA+ cells are not the only types of fibroblasts responsible for secre-
tion and contractility during fibrosis in vivo17,18. Despite the fibroblast heterogeneity in vivo, numerous studies 
in vitro and in vivo have shown that increasing matrix stiffness is both a  cause19 and a  result20 of increasing 
α-SMA expression, creating a positive feedback loop that, when uncontrolled, progresses to pro-fibrotic cellular 
phenotypes. Synergistic processes such as TGF-B  signaling21,22 and the innate immune  response23 also lead to 
increased myofibroblast activation as identified by α-SMA stress fibers. Due to the organization inherent to 
their assembly, α-SMA stress fibers are most commonly identified via manual classification using fluorescence 
microscopy and immunohistochemical staining.

Although α-SMA stress fibers represent a hallmark of the myofibroblast phenotype, almost all fibroblasts 
express a base level of diffuse α-SMA24 (Fig. 1). This differential expression complicates the manual identifica-
tion and classification of cells with stress fibers, leading to a time-consuming process. Manual identification also 
lends itself to reproducibility problems and user bias, which can lead to variations in cell classification between 
experiments, researchers, and labs. Previous attempts to automate this process have used methods such as 

OPEN

1McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA. 2Hildebrand 
Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX, USA. *email: 
arosales@che.utexas.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-01304-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21855  | https://doi.org/10.1038/s41598-021-01304-4

www.nature.com/scientificreports/

flow  cytometry25 and simple intensity measurements through packages such as  FIJI26 to determine the average 
α-SMA expression of the cell population. However, these methods yield results that correlate overall α-SMA 
expression with staining intensity, which may overlook stress fiber organization. The organization of α-SMA 
into stress fibers is responsible for many of the phenotypic behaviors associated with myofibroblast  activation27 
and therefore represents a key aspect of the myofibroblast classification  process28. To this end, an automated 
method of image-based cell identification that is based on fiber structure would both reduce time spent on this 
tedious task and increase consistency in the field. Although the degree of α-SMA stress fiber formation exists on 
a spectrum, it is possible to differentiate between cells that contain no stress fibers (α-SMA  SF-) and those that 
contain at least a single stress fiber (α-SMA  SF+). Therefore, we sought to train a model to classify cells based 
on stress fiber presence.

Automating the identification of cells containing organized α-SMA stress fibers (referred to as α-SMA  SF+) 
presents a complex computer vision problem due to the following reasons: (1) fiber organization does not neces-
sarily correlate with staining intensity, (2) all cells have unique, often sprawling shapes, and (3) most α-SMA  SF+ 
cells are heterogeneous and also have regions of diffuse α-SMA. Because of these complexities, no pre-existing 
image processing algorithm is well suited for this task.

Convolutional neural networks (CNNs) have recently become a powerful tool for solving image segmentation 
 problems29. CNNs are machine learning models that utilize multiple levels of abstraction to learn the identify-
ing features of an  image29,30. Previous work has combined CNN-based frameworks with high throughput flow 
methods to differentiate up to 4 different cancer cell lines  simultaneously31,32, classify white blood cell  types33, 
and identify various types of HEp-2  cells34. However, all of these methods classify images containing a single, 
suspended cell. Classification of images containing multiple adherent cells are less  common35 but has been 
applied to identify subcellular features in publicly available datasets of  HeLA36 and  CHO37 cells. These previous 
reports are all examples of image classification, where a label is assigned to the image as a whole (i.e., all cells in 
the image are of the same “type”). In contrast, the classification of images with multiple distinct cell phenotypes 
(e.g., “α-SMA  SF+” vs. “α-SMA  SF−”) requires semantic segmentation, where a label is assigned to each pixel 
within the  image38. Semantic segmentation is often approached using an encoder–decoder architecture, which 
contains 2 paths: (1) an encoder that uses a series of convolutions to learn the most essential features, and (2) a 
decoder that upscales those features to create a segmentation map of the original image. This type of model was 
first utilized by Ronnenberger et al. in their  UNet39 and has since been built upon, including but not limited to 
 ResUNet40,  ENet41,  FRRN42, and  ERFNet43. This type of segmentation allows us to process more complex images 
(for example, one with multiple cell types) and allows for further analysis such as measuring cell shape and size. 
Semantic segmentation of cells is an active area of  research38,44–48; however, most efforts have focused on the task 
of segmenting cells from tissue or background, rather than distinct cell types from each other.

Here, we report the design and application of a computer vision model trained to classify two different phe-
notypes of cardiac fibroblasts in the same image, based upon the presence of α-SMA stress fibers within each 
cell. Specifically, we combined traditional image processing techniques with a model based on well-established 
semantic segmentation components. To train and test our model, we generated heterogeneous fibroblast samples 
with mixed cell phenotypes using hyaluronic acid (HA) hydrogel substrates of various elastic moduli, spanning 
a range that mimics healthy tissue and fibrotic tissue to mechanically promote α-SMA stress fiber organization. 
After two, four, and six days of cell culture, we stained for α-SMA stress fibers and imaged the samples using 
fluorescence microscopy. We demonstrate that this model can accurately segment both α-SMA  SF+ and α-SMA 
 SF− cells within a single image and capture changes in cell phenotype following a change in substrate stiffness. 
Because α-SMA stress fiber formation is common to myofibroblasts from many different organ and tissue  types49, 
our model has the potential to be broadly applied to other cell types.

Figure 1.  Fixed and stained cardiac fibroblasts with increasing levels of α-SMA stress fiber organization. 
Myofibroblast activation has been shown to correlate with α-SMA  SF+ phenotypes. Red: F-actin, Green: alpha-
smooth muscle actin, Blue: Nuclei, scale bar = 50 μm.
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Materials and methods
Cell culture. Normal human cardiac fibroblasts (NHCFs, Lonza) were thawed from cryogenic storage at 
passage 5 and expanded for a single passage (4 days) on 100 mm tissue culture polystyrene petri dishes. NHCFs 
were expanded in complete DMEM with 10% fetal bovine serum (Corning) and 1% penicillin/streptomycin 
(Fisher Scientific). Cells were then removed from the plate using 0.25% trypsin solution and seeded on hydrogels 
in a 12 well plate at a seeding density of 3000 cells/cm2. For the stiff control hydrogels, the seeding density was 
slightly lowered to 2000 cells/cm2 to achieve similar confluency as the soft hydrogels at 6 days. Low seeding den-
sities were chosen to reduce cell–cell contact when imaging. During culture on hydrogels (up to 6 days), com-
plete media was changed every other day. All cells were cultured in an incubator at 37 °C containing 5%  CO2.

Methacrylated hyaluronic acid (MeHA) synthesis. MeHA was synthesized following the procedure 
from Chung et al.50 with small modifications. Briefly 2 g hyaluronic acid (HA 75 kDa, Lifecore Biomedical) was 
dissolved in DI water at a concentration of 1 wt%. The solution was then cooled on ice and titrated with 5 M 
NaOH to a pH of 8.5. Next, 9.06 mL (0.05 mol) methacrylic anhydride (MA) was added in 750 µL doses, while 
titrating the solution back to a pH of 8.5 and waiting 5 min between additions. After the last dose of MA, the 
pH of the reaction was monitored and kept between pH 7.5–8.5 for 3 h by the addition of 5 M NaOH. The reac-
tion was then removed from ice and allowed to proceed overnight. The next day the solution was transferred to 
dialysis tubing (6–8 kDa, Spectrum), and dialyzed against DI water for 7 days. The dialyzed solution was then 
frozen, lyophilized, and stored at – 20 °C until use. The MA functionalization was assessed via 1H NMR to be 
22% (Fig. S1).

Hydrogel formation. MeHA was dissolved in PBS (final concentration 4 wt%) with lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP, 0.05  wt% final) and a cell-adhesive peptide (full sequence: GCG YGR 
GDSPG, 2 mM final). Next, 40 µL of this macromer solution was pipetted onto a Sigmacote (Sigma-Aldrich) 
treated glass slide. An 18 mm glass coverslip functionalized with (3-mercaptopropyl) trimethoxysilane was then 
placed on top, sandwiching the solution between the coverslip and the slide. The construct was then exposed to 
365 nm light (10 mW/cm2, Omnicure S1500 lamp) for a predetermined amount of time, then left to sit for an 
additional 5 min for the gelation process to complete. The slide was then submerged in PBS, and the coverslip 
and bound hydrogel (referred to as hydrogel) was gently separated from the slide with a razor blade. The hydro-
gel was then allowed to swell in PBS at 37 °C overnight before cell seeding. PBS was replaced with full media 1 h 
before cell seeding to facilitate cell adhesion.

Hydrogel stiffening. After 2 days of cell culture on hydrogel coverslips, media was aspirated and replaced 
with 0.05 wt% LAP in complete DMEM to further initiate crosslinking. Hydrogels were then incubated at 37 °C 
for 1 h to allow the LAP to diffuse evenly throughout the hydrogel. This media was then aspirated and replaced 
with 100 μL phenol red-free and serum-free media to minimize interference with 365 nm light penetration. The 
hydrogels were then exposed for 50 s to 365 nm light at an intensity of 10 mW/cm2. Immediately after stiffening, 
the phenol red-free media was replaced with complete DMEM.

Rheological characterization of hydrogels. Dynamic shear moduli were measured on a TA Instru-
ments HR-2 rheometer with an 8 mm parallel plate geometry. Hydrogel macromer solution (same formulation 
as in section “Hydrogel formation”) was placed on a quartz plate and exposed to 10 mW/cm2, 365 nm light 
in situ. A time sweep recorded the increase in the storage and loss moduli (G′ and G″, respectively) during the 
gelation process at 1 Hz and 1% strain. After gelation, a frequency sweep was performed from 0.01 to 100 Hz 
(Fig. S2) to confirm these measurements were in the linear viscoelastic range; all subsequent modulus measure-
ments were then acquired at 1 Hz and 1% strain.

Fluorescent microscopy and immunostaining. NHCFs on hydrogels were fixed following established 
 procedures26,51–53 for 10 min at days 2, 4, and 6 with a 2% paraformaldehyde solution in PBS. After fixing, cells 
were permeabilized for 3 min with a 0.2% Trition X-100 and 2% paraformaldehyde solution in PBS. All experi-
ments were performed with this same staining procedure; however, it is important to note that detection of 
α-SMA-positive cells may be underestimated with Triton X-100  permeabilization54. Next, the cells were blocked 
with 1% BSA blocking buffer for 1 h on a shaker table. After aspiration of the blocking buffer, 75 µL of primary 
antibody solution (Mouse anti α-SMA 3 µg/mL in blocking buffer (abcam cat# ab7817)) was placed at the bot-
tom of a 12 well plate. The hydrogel was then flipped cell side down on top of the antibody solution, to ensure 
full coverage while minimizing the necessary volume, and stored at 4 °C overnight. Hydrogels were then flipped 
back cell side up and washed 3 × 5 min with PBS. Next, 75 µL of secondary antibody (Alexafluor 488 goat anti-
mouse 1:200 (Invitrogen)) and rhodamine phalloidin (1:100 (Invitrogen)) were placed in the bottom of the well, 
and the hydrogels were flipped as for the primary antibody, and placed on a shaker table for 1 h. Hydrogels were 
then flipped cell side up and washed 3 × 5 min with PBS. Finally, the hydrogels were shaken with 500 µL of DAPI 
solution (1:1000 (Invitrogen)), followed by 2 final PBS washes. Hydrogels were then fixed on a glass slide using 
a gelvatol solution and allowed to dry overnight before imaging. All imaging was done on a Nikon Ti2-E eclipse 
microscope.

Computation. The model was built using the TensorFlow python  library55. The model training was carried-
out on 4 NVIDIA Tesla V100 GPUs of the Longhorn supercomputer at the Texas Advanced Computing Center 
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(TACC). Additionally training and test data sets are available on the Texas Data Repository at https:// datav erse. 
tdl. org/ datav erse/ rosal esche.

Statistical analysis. All error bars and boxes represent ± standard deviation. Results were analyzed with 
a one way ANOVA, and a two tailed student’s t test assuming equal variances. P values less than 0.05 were con-
sidered significant.

Results
Substrate elasticity effects on α‑SMA stress fiber organization. To generate populations of cells 
with organized α-SMA stress fibers (α-SMA  SF+), we cultured cardiac fibroblasts on MeHA hydrogels of various 
substrate elasticity (Fig. 2a). Based on previous  reports56, a soft control (G′ = 3 kPa) was targeted to mimic the 
matrix stiffness of the healthy myocardium, and a stiff control (G′ = 20 kPa) was targeted to mimic end stage 
fibrotic cardiac tissue. To mimic the fibrotic progression from soft to stiff tissue, we also included a dynamic 
substrate that demonstrated rapid stiffening in situ after initial gelation via the photo-crosslinking of unreacted 
methacrylate groups. To facilitate cell attachment, the fibronectin-derived peptide RGD (Fig. S3) was incorpo-
rated into each hydrogel at the time of initial crosslinking and gelation.

To achieve the targeted moduli, the exposure time of photoinitiation (10 mW/cm2, 365 nm) was controlled: 
10 s exposure for the soft condition and 300 s exposure for the stiff condition. The storage and loss moduli were 
measured using shear oscillatory rheology (Fig. 2b). After 2 days of cell culture, a portion of the soft hydrogels 
were exposed to an additional 50 s of 10 mW/cm2, 365 nm light, resulting in an increase in the storage modulus 
from 3 to 16 kPa (“Dynamic” condition, Fig. 2b). This additional dose of light was determined not to decrease 
cell metabolic activity (Fig. S4). Two, four, and six days after plating, cells were fixed, stained, and imaged in three 

Figure 2.  (a) Structure of methacrylated hyaluronic acid (MeHA) polymer for hydrogels. Cardiac fibroblasts 
were cultured on stiff substrates to promote α-SMA stress fiber organization. (b) Storage moduli for soft, stiff, 
and dynamic hydrogels as measured by shear oscillatory rheometry. (c) More cells display α-SMA stress fiber 
organization when cultured on stiff substrates, even when initial culture begins on soft substrates (as in the 
dynamic condition). (d) Cell area increases after at least two days of culture on stiff substrates. Boxes are ± 1 
standard deviation; detailed statistics are shown in Tables S1 and S2.

https://dataverse.tdl.org/dataverse/rosalesche
https://dataverse.tdl.org/dataverse/rosalesche
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channels, corresponding to distinct cellular components for counting and morphological analysis: (1) rhodamine 
phalloidin for F-actin, a part of the cytoskeleton that is common to both α-SMA  SF+ and  SF− cells and illustrates 
cell shape, (2) DAPI for cell nuclei, to count number of cells and identify distinct cells, and (3) antibodies for 
α-SMA, for which organization into fibers is used to determine phenotype.

Cardiac fibroblasts were manually analyzed based on the presence of organized α-SMA stress fibers in indi-
vidual cells (Fig. 2c). The presence of one stress fiber was considered sufficient to classify a cell as “α-SMA  SF+”. 
Using manual counting methods, the cells cultured on the stiff substrates were found to be highly α-SMA  SF+ 
over all 6 days (56% α-SMA  SF+ D2, 59% α-SMA  SF+ D4, 57% α-SMA  SF+ D6), while cells cultured on the soft 
hydrogels remained relatively stress fiber free (4% α-SMA  SF+ D2, 20% α-SMA  SF+ D4, 10% α-SMA  SF+ D6). For 
the dynamic condition, it was observed that stress fiber formation increased tenfold (4% → 45%) only 2 days 
after hydrogel stiffening. Furthermore, at 4 days post-stiffening, the cell population on the dynamic hydrogel 
matched the α-SMA  SF+ level of the cell population cultured on the static, stiff control (67% α-SMA  SF+ dynamic 
D6). Stress fiber organization did not significantly correlate with relative expression of alpha-smooth muscle 
actin (ACTA2) measured for the same conditions (Fig. S5).

Average cell size, which has been shown to correlate with myofibroblast  activation57 and stress fiber formation, 
was also measured (Fig. 2d). In accordance with the α-SMA fiber analysis, cells on the static stiff substrate were 
significantly larger (5400 μm2 D2, 6700 μm2 D4, 8700 μm2 D6) than those on the static soft substrate (1300 μm2 
D2, 1300 μm2 D4, 1400 μm2 D6) across all 6 days. While the levels of α-SMA  SF+ cells remained relatively constant 
over 6 days, the cells cultured on the stiff substrate exhibited an increase in average cell area over time. Two days 
after stiffening, cells cultured on the dynamic substrate had roughly doubled in size (1300 μm2 D2, 3000 μm2 
D4) and doubled in size again 4 days post-stiffening (6300 μm2 D6).

In total, this experiment generated 306 images (containing 2942 individual cells) with images where 0–100% 
of the cells displayed stress fiber organization, depending on the elasticity of the underlying substrate. To reduce 
the time burden of manual classification, as well as to reduce variation between researchers, we next created a 
computational model that could automate stress fiber identification in a shorter time.

Model design. We developed a model that first applies traditional image processing methods, such as 
thresholding, to simplify the problem, then uses deep learning to achieve segmentation (Fig.  3). In contrast 
with traditional methods, deep learning models are comprised of a series of layers with tunable parameters. 
For instance, in the case of semantic segmentation, the model receives an input image and passes it through 
these layers to generate an output prediction. The parameters within each layer are then optimized to minimize 
the mismatch between this prediction and a ground truth (expert labeled image). These models can be made 
using many different architectures, each optimized for a specific task. Some of the most well established deep 
learning models for semantic segmentation utilize an encoder/decoder architecture (Fig. S6), where an encoder 
first downscales the image to distill the most essential features for the given task (segmentation), and then a 
decoder upscales this representation to build a segmented version of the input image. Each of these components 
is comprised of a series of residual  blocks58. Residual blocks allow for the training of models containing many 
layers, which in turn, allows the model to capture more complex relationships. The encoder and decoder are con-
nected by a series of paths at different  depths39, which allow for the flow of information between different scales. 
These connections help model training while also preserving semantic information from the input and passing it 
directly to the decoder. Combined, these components have previously been applied to a variety of segmentation 
tasks including biological applications, such as cell  segmentation39,59.

Figure 3.  General workflow. The model supplements an encoder-decoder deep learning architecture with 
binary thresholding to generate a segmentation map. Post-processing then applies a nuclear segmentation map 
to predict individual cell phenotype.
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Given the aforementioned 3 channel input, our goal was to semantically segment, or label each pixel within 
an image, as one of 3 classes: α-SMA  SF+ cell, α-SMA  SF− cell, or background. We first employed an established 
encoder-decoder model architecture similar to those previously  reported39. This model struggled to differenti-
ate any of the 3 classes; it had an accuracy of 55%, and a mean IOU of 11% (Figs. 4 and S8, “No masks” model). 
To improve performance, we next employed a customized computer vision model. The first layer of the model 
applies the triangle thresholding  algorithm60 and a minimum size cutoff of 300 μm2 (to remove cellular debris) to 
the F-actin channel only, in order to segment cells from the background. This process is highly efficient because 
of the high contrast provided by the fluorescent phalloidin stains. This cell mask is then passed directly to the 
decoder, where it is incorporated before the final activation layer. This method of masking the background allows 
the model’s parameters to be trained exclusively to label the two cell-types since the background pixels will not 

Figure 4.  Sample results of 3 images from the test set. (a) The first column shows the fluorescent input images, 
the second column shows cells with organized α-SMA stress fibers as determined by manual identification, the 
third column shows the model prediction, and the final column highlights areas in the image where the model 
prediction deviates from the manual identification. (b) Model accuracy increased with the addition of class 
weights and data augmentation. (c) The false positive/false negative (FP/FN) ratio was used to measure model 
bias towards a particular class.
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produce a training signal. Next, the 3 channel image is passed to the encoder, which is made up 4 residual blocks, 
each downscaling the information by a factor of 2. The information is then passed to the decoder which upscales 
it into a segmentation map with the same dimensions as the original input. By taking advantage of traditional 
image processing techniques (such as thresholding) and combining them with standard deep learning compo-
nents, we were able to construct a model capable of segmenting α-SMA  SF+ cells.

Model training and evaluation. Our model was trained on 300 unique images (note, these are 300 new 
images, different than those referenced in section “Substrate elasticity effects on α-SMA stress fiber organiza-
tion”, see Table S3), containing between 5 and 30 cells each, collected over the course of 7 different cardiac fibro-
blast activation experiments on substrates of various moduli. Images were originally captured at high resolution 
(2160 × 2560), then scaled to 560 × 640 for model training. The scaling minimized the memory needed to train 
the model, while maintaining a high enough resolution to identify activated cells manually. While training each 
iteration of the model, the training set was randomly split such that 80% of the images were used for model 
training and 20% of the images were used for validation after each training epoch. Tables S4 and S5 have more 
information about model size and specific hyperparameters used for training.

In order to evaluate the pixel-wise accuracy of the model, we created a test set of 20 images (195 total cells of 
which 45% were manually classified as α-SMA  SF+). These images were collected during the same experiments 
as the training set images; however, they were withheld during the training process and used to compare the 
performance of different model iterations. They encompassed a range from relatively simple single cells to more 
complex clusters of cells with multiple cell–cell contacts (select images from test set Fig. S7). Many of the cells 
themselves contained intermediate phenotypic markers such as few stress fibers, heterogeneity in α-SMA stain-
ing within the cell, extended cell shape, or dim staining. The model output classifies each pixel in the image as 
“α-SMA  SF+,” “α-SMA  SF−,” or “background” (Fig. 4a).

A significant difficulty in evaluating the model was the translation of the segmentation mask (individual pixel 
predictions) into a count of α-SMA  SF+ cells. Because cells are often clustered together, it becomes very difficult 
to determine clear boundaries between individual cells. In order to determine the number of cells and their 
location within the image, we assumed that each nucleus corresponds to a single cell. We found that a general-
ized Otsu’s thresholding  algorithm61 worked best to segment cell nuclei from the DAPI channel, because of its 
ability to handle greater variations in the image intensities. This algorithm works well due to the consistently 
large contrast associated with DAPI staining; however, it is important to note that changes in the calculated 
threshold value could slightly change the shape of the segmented nucleus and therefore have an effect on the final 
model output. We combined this algorithm with a size cutoff range of 100–3000 μm2 to accurately segment only 
the cell nuclei. The segmentation mask from the DAPI channel was then superimposed on the model output, 
and the average class (or predicted phenotype) of each nuclear region was used to determine the phenotype of 
each cell. Importantly, Otsu’s thresholding was only applied to the DAPI input channel to identify a “nuclear 
region of interest;” the model output of this region remained unchanged (Fig. 3). Using this method, the model 
was trained on the 300 image training set, and an accuracy of 65% was achieved (Fig. 4a), i.e. 65% of cells were 
assigned the same label by both the manual analysis and the model. Interestingly, the model appeared to over-
predict the α-SMA  SF+ class, as quantified by a false positive to false negative ratio (FP/FN) of 1.85 on the test 
set (Fig. 4b). This is likely due to a class imbalance (2.5:1) towards α-SMA  SF+ cells within the training set. In 
order to correct this imbalance, we applied weights to each sample so that images containing a greater fraction 
of α-SMA  SF- cells were given a higher weight in the loss function. This method slightly increased the accuracy 
to 67% and decreased the FP/FN to 0.97 (Fig. 4b).

Given the small number of unique images in the training set, we explored a variety of methods to further 
increase model accuracy. The first method, data augmentation, took the original images and randomly zoomed 
and cropped, sheared, flipped, or dimmed/brightened them to generate 4800 images. Retraining the model on this 
expanded training set resulted in an increase in accuracy up to 77%, and an F1 score of 0.76. Further expansion 
of the training set to 7800 images resulted in an increase to 78.5% accuracy and an F1 score of 0.77 (Fig. 4b, c), 
and additional augmentation did not see a further increase in accuracy. For this final model, the training IOU 
for α-SMA  SF- was 0.654, while the validation IOU was 0.644. This shows that the model was not significantly 
overfitted. We also trained a model to directly predict the class of only the nuclear area; however, this model 
had significantly lower accuracy than the model trained to predict full cells. We hypothesize that this is due to 
limitations caused by the structure of the cell. It was often observed that the nuclear region had lower levels of 
a-SMA present than cytoplasmic regions, resulting in a lesser phenotypic difference between α-SMA  SF+ and 
α-SMA  SF− cells. By applying nuclear masks in post-processing rather than within the model, the model is able 
to use the entire cell to make its prediction, increasing its accuracy. Lastly, we incorporated additional layers such 
as  attention62, squeeze and  excite63, and pyramidal  pooling64. However, none of these increased model accuracy 
further. We hypothesize that this is due to limitations of the small amount of training data (Fig. S9 shows model 
metrics improving significantly as number of training images increases).

Model application. To demonstrate the effectiveness of our model, we applied it to the dataset collected 
in Fig. 2 and compared the results to the manual analysis (Fig. 5a). During model development, the training 
data was normalized so that the mean intensity of each channel was 0. This same normalization worked well for 
the test set because the images were originally from the same larger set of experiments. However, the substrate 
stiffening dataset (Fig. 2d) was collected at a later time, under different microscope settings. As a result, the 
mean intensities of each channel were significantly different than those of the training set. In order to correct for 
this, the experimental images were normalized by a different set of values than the training set. This normaliza-
tion was determined by selecting a small subsample of application images and optimizing these normalization 
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Figure 5.  (a) Percentage of α-SMA  SF+ cells predicted by the model (light bars) and manual identification (dark 
bars). (b) Visualization of the difference between model and manual identification on an individual image scale. 
For 98/306 images, the results matched exactly. (c) Comparison of average cell area predicted by the model (light 
bars) and manual analysis (dark bars). Detailed statistics are shown in Tables S1 and S2.
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parameters until the model best matched the manual analysis. It is expected that this normalization will need to 
be adjusted, as a type of calibration, when processing images from a different microscope or taken with different 
settings.

The model predicted fibroblasts cultured on the stiff substrate to be 49% α-SMA  SF+ on day 2, 52% α-SMA 
 SF+ on day 4, and 54% α-SMA  SF+ on day 6. It also predicted fibroblasts cultured on the soft substrate to be 36% 
α-SMA  SF+ on day 2, 41% α-SMA  SF+ on day 4, and 19% α-SMA  SF+ on day 6. For the dynamic condition, the 
model predicted 52% α-SMA  SF+ fibroblasts on day 4 and 57% α-SMA  SF+ on day 6. Although the model over-
predicted the amount of α-SMA  SF+ fibroblasts cultured on the soft substrate compared to the manual analysis, 
it captured the trend of increasing stress fiber organization on stiffer substrates compared to soft substrates. 
Furthermore, to analyze the model performance by image, we calculated the difference between the predicted 
and manual values (Fig. 5b). In this analysis, positive values correspond to an over prediction of α-SMA  SF+ 
levels, while negative values correspond to an under prediction. Finally, we measured average cell area using our 
model by dividing the F-actin segmentation mask by the number of nuclei in each image. For this measure, the 
model matched the manual analysis for all substrate conditions (Fig. 5c).

Discussion and conclusion
We have developed a computer vision model that is able to segment cells containing α-SMA stress fibers from a 
standard, 3 channel fluorescence image. This model was applied to a set of images containing cardiac fibroblasts 
with a range of α-SMA expression levels and organization states. We specifically controlled α-SMA expression 
levels by culturing cardiac fibroblasts on soft, stiff, or dynamic hydrogel substrates to mimic the mechanical 
changes in extracellular matrix during fibrotic progression. Our model captured the same trends in stress fiber 
organization as reported using a manual classification analysis, and its predictions were statistically the same as 
the manual analysis for all conditions. For the soft condition, our model over predicted the amount of α-SMA  SF+ 
cells, although the prediction is still significantly lower than that of the stiff and dynamic conditions on all days.

Automating the identification of α-SMA stress fiber assembly is a complex computer vision task of relevance 
to many biological contexts. Here, our use of a mechanically tunable hydrogel model with a mechanism for in situ 
control highlights the rapid development of biomaterials platforms that can screen numerous cell–matrix condi-
tions. While we explored the effect of increasing mechanics on fibroblast activation at one timepoint, one could 
easily envision generating data from additional stiffening timepoints, additional moduli besides 3 kPa or 20 kPa, 
or additional culture times or cell densities. Toward this end, many hydrogel platforms are under development for 
incorporation into high throughput screening platforms that utilize small volumes and rapid liquid  handlers65. 
These platforms have the potential to generate large amounts of image-based datasets, which further highlights 
the need for automated data processing methods that can predict cell phenotype.

While our model meets a need for automated stress fiber identification, it is important to note a few limitations 
of this model. Firstly, because of the relatively small amount of training data, our model requires an empirical 
calibration before application to new data sets, which corrects for small experimental variations such as differ-
ences in fluorescent stain intensity and microscope settings. This limitation could be addressed in the future by 
retraining the model with a larger and more diverse dataset, containing images with different staining procedures 
and taken under different microscope settings. Secondly, due to the difficulty of segmenting individual cells in 
fluorescent images, our post-processing procedure only considers the predicted class of the nuclear region of 
each cell. Segmentation of 2D fluorescent images is of future interest to the authors, and once successful, will 
enable the model to use the predicted class of the entire cell in its output. Lastly, because all labels were manually 
created by a single researcher, this model contains an inherent bias. This limitation could be addressed in the 
future either by developing a “consensus dataset” that combines the opinions of multiple researchers in the field, 
or by using unsupervised learning to remove the need for manually-assigned labels entirely.

Due to the commonality of α-SMA stress fibers between myofibroblasts of different tissues, this model has the 
potential to be applied towards identifying phenotypes in cells from many sources. As with all neural networks, 
we are limited by the training data available. Future iterations of this model would be improved through inclu-
sion of more cardiac fibroblast images, as well as images of other fibroblast types.

Data availability
All code is available with test set images at https:// github. com/ ahill sley/ celln et. Training and test data is also 
available on the Texas Data Repository at https:// datav erse. tdl. org/ datav erse/ rosal esche. All other data is avail-
able upon request.
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