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Rationale: Pulmonary hypertension (PH) is a rare but fatal disease characterized by
elevated pulmonary pressures and vascular remodeling, leading to right ventricular
failure and death. Recently, neuroinflammation has been suggested to be involved
in the sympathetic activation in experimental PH. Whether PH is associated with
neuroinflammation in the spinal cord has never been investigated.

Methods/Results: PH was well-established in adult male Wistar rats 3-week after
pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments
of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP)
in PH rats compared to controls (p < 0.05). To further determine the region of the spinal
cord where GFAP was expressed, we performed immunofluorescence and found a 3 to
3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the
white matter in the spinal cord of PH rats compared to controls. This increase was due to
PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus
ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine
(C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01)
in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed
by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01).

Conclusion: We report for the first time evidence for neuroinflammation in the thoracic
spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on
cardiopulmonary function in PH remains elusive.

Keywords: pulmonary hypertension, Monocrotaline, neuroinflammation, spinal cord, oxidative stress,
sympathetic nervous system, sympathetic activation

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by
elevated pulmonary vascular pressure and pulmonary arterial remodeling, leading
to right ventricular failure and patient’s death. The pathogenesis of PAH is very
complex and multifactorial, including inflammation and dysregulation of the autonomic
nervous response (Huertas et al., 2014; Vaillancourt et al., 2017). Several studies
described an activation of the sympathetic nervous system in PAH patients, which was
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associated with clinical worsening and poor outcome (Velez-
Roa et al., 2004; Dimopoulos et al., 2009; Wensel et al., 2009;
Ciarka et al., 2010; Mak et al., 2012; Witte et al., 2016). Recently,
neuroinflammation has been suggested to be involved in this
sympathetic activation in experimental PH (Hilzendeger et al.,
2014; Sharma et al., 2018). According to Sharma et al. (2018),
inflammation in the paraventricular nucleus, which contains
nerves projecting directly to the right ventricle (RV), may
lead to right heart hypertrophy and failure. Therefore, it may
be appealing to directly target neuroinflammation response in
the brain to protect against PH. However, in clinical setting,
pharmacological treatments of the central nervous system
can be challenging due to physical and biochemical obstacles
created by the blood-brain barrier (Bhowmik et al., 2015;
Pulicherla and Verma, 2015). Furthermore, studies comparing
neuroinflammation following identical traumas in the brain and
spinal cord concluded for a greater inflammatory response in the
spinal cord than in the brain (Schnell et al., 1999; Zhang and
Gensel, 2014). Whether PH is associated with neuroinflammation
in the spinal cord has never been investigated.

Astrocytes are the most abundant cells in the nervous
tissue and play a controversial role in neuroinflammation
(Colombo and Farina, 2016). Oxidative stress induces activation
of astrocytes in dose and time-dependent manner as evident
by increased expression of GFAP (Daverey and Agrawal, 2016).
In acute inflammation, they secrete anti-inflammatory cytokines
to limit inflammation, form glia scar in injured tissue and
promote neuronal survival and myelin regeneration. On the
other hand, astrogliosis may lead to detrimental effects by
upregulating nuclear factor kappa B (NFkB), thus promoting
secretion of pro-inflammatory chemokines such as chemokine
(C-C motif) ligand (CCL) 2 and CCL-3 (Choi et al., 2014;
Gowrisankar and Clark, 2016). Microglia, resident immune
cells in the central nervous tissue, also are key regulators of
neuroinflammation. After activation by nervous tissue injury,
microglia proliferate and help scavenging altered myelin during
demyelination and myelin regeneration (Carlson et al., 1998;
Watanabe et al., 1999). However, as for astrocytes, overactivated
microglia may become harmful to the tissue by expressing several
pro-inflammatory components, including CCL3 (Murphy et al.,
1995; Boutej et al., 2017), TNF-α (Kuno et al., 2005; Guadagno
et al., 2013), glutamate (Takaki et al., 2012), and superoxide
(Chao et al., 1992; Mead et al., 2012). Pro-inflammatory
mediators, in addition to activating glial cells, affect the blood-
spinal cord barrier (BSCB) by activating endothelial cells and
increasing the recruitment and trans-endothelial migration of
inflammatory cells into the tissue (Takeshita and Ransohoff,
2012). Here we report for the first time evidences for the
presence of activated astrocytes, increased production of pro-
inflammatory chemokines, as well as impaired BSCB in MCT-
induced PH rat model.

MATERIALS AND METHODS

Protocols received UCLA animal research committee approval.
Please refer to Supplementary Materials for details on methods.

Animal Experiment
Male Wistar rats were injected s.c. with either 60 mg/kg of
crotaline (MCT, n = 4) or PBS (Ctrl, n = 4) (Figure 1A).
After 21 days, animals were anesthetized and right ventricular
systolic pressure (RVSP) was measured. Lungs and spinal
cords were collected.

Western Blot Analysis
Western blots were performed on thoracic segments of the spinal
cord. Blots were incubated with primary antibody against GFAP.

Immunofluorescence Staining
Thoracic spinal cord sections were stained for GFAP, CCL3,
CD31, and MAP2. Images were acquired with a confocal
microscope (Nikon) and analyzed.

Enzyme-Linked Immunosorbent Assay
(ELISA)
CCL3 concentration was measured on thoracic segments of the
spinal cord using a rat-specific CCL3 ELISA kit according to
manufacturer’s instructions.

Statistical Analysis
Values were expressed in fold changes or mean ± SEM. Mann-
Whitney U test was used for comparisons between two groups. 2-
way ANOVA, with factors of treatment (MCT vs. Ctrl) and region
(gray vs. white matter and dorsal vs. ventral), was performed
when comparing the different regions of the spinal cord.
Probability values <0.05 were considered statistically significant.

RESULTS

Astrogliosis Is Present in the Spinal Cord
of Pulmonary Hypertensive Rats
Pulmonary hypertension in MCT-treated rats was confirmed
by increased RV pressure and pulmonary vascular remodeling
(Figures 1B,C). To assess the presence of astrogliosis in PH,
we performed a Western blot for GFAP, a marker for astrocyte
activation. GFAP expression was significantly increased by 5-
fold in MCT-induced PH rats compared to controls (p < 0.05)
(Figure 1D). To further determine in which region of the spinal
cord GFAP was expressed, we performed immunofluorescence
of thoracic spinal cord tissue sections in combination with the
microtubule-associated protein 2 (MAP2) marker to distinguish
between the gray and the white matter. We found a 3 to 3.5-
fold increase of GFAP marker in the gray matter, and a 2
to 3-fold increase in the white matter in the spinal cord of
our PH rats compared to controls (Figures 1E,F). There was
no impact of the region of the spinal cord (dorsal vs. ventral
and gray vs. white matter) on this increase of GFAP. However,
there was a significant effect (p < 0.01) of PH development
(MCT vs. Control) on GFAP expression in the spinal cord
tissue (Figure 1F). Interestingly, we observed an accumulation
of activated astrocytes around the outer laminae of the dorsal
horn (Figure 1G), which receives terminals of primary afferent
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FIGURE 1 | Astrogliosis is present in the spinal cord of pulmonary hypertensive rats. (A) Male Wistar rats received a subcutaneous injection of either MCT
(60 mg/kg) or PBS for 21 days. (B) MCT-treated rats developed PH assessed by an increased RVSP. (C) Trichrome staining and quantification for pulmonary
vascular remodeling. (D) Western blot for GFAP expression in the spinal cord. (E) Representative immunofluorescence for GFAP shown in red, MAP2 in green and
nuclei (Dapi) in blue. (F) Quantification of GFAP staining in the different regions of the spinal cord. 2-way ANOVA, with factors of treatment (MCT vs. Ctrl) and region
(gray vs. white matter and dorsal vs. ventral), revealed a main effect of MCT treatment, shown by (∗∗p < 0.01), with no significant main effect of the region or
interaction. (G) Immunofluorescence showing a concentration of GFAP positive glial cells around the dorsal horn in MCT-induced PH rats. Mann-Whitney U test was
used for comparisons between two groups. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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and sensory neurons, in opposition to the ventral horn which
contains efferent and motor neurons.

Pro-inflammatory Chemokine CCL3 Is
Increased in Spinal Neuronal Tissue
From PH Rats
Detrimental astroglial activation is characterized by the release
of pro-inflammatory cytokines and chemokines, which may
lead to other glial cell activation and leukocyte recruitment in
neuronal tissue. We looked for the presence of CCL3, one of
these chemokines, in the spinal cord and found a -2.5 to 4-
fold increase in CCL3 staining in the white matter of PH rats
compared to controls. This increase was due to the development
of PH (p < 0.01) and the expression increased in dorsal and
ventral white parts but was not different between the dorsal and
the ventral gray parts of the thoracic spinal cord (Figures 2A–
C). Furthermore, CCL3 expression in the thoracic section of the
spinal cord was also increased ∼ 3-fold in rats treated with MCT
compared to controls, as measured by ELISA (Figure 2D).

Experimental PH Is Associated With
Spinal Neurovascular Endothelial
Activation
CD31 is an adhesion molecule member of the immunoglobulin
superfamily highly expressed by endothelial cells. CD31, in
addition of being an endothelial marker, is a key regulator
of leukocyte trans-endothelial migration and angiogenesis
(Woodfin et al., 2007) and was increased after spinal cord
injury (Schnell et al., 1999). We then looked for possible
changes in CD31 expression in the spinal cord of PH rats. By
immunofluorescence, we found a 1.5 to 1.7-fold increase of
the CD31 adhesion molecule in the gray matter, as well as a
1.7 to 2.3-fold increase in the white matter in the spinal cord
of PH rats compared to controls (Figures 2B–E). Once again,
this increase was significantly impacted by PH development
(p < 0.01), but not dependent on the region (dorsal vs. ventral
and gray vs. white matter).

DISCUSSION

Taken together, the presence of astrogliosis, increased production
of pro-inflammatory mediators like CCL3, as well as the
increased expression of the adhesion molecule CD31 are the
first evidences ever-published suggesting neuroinflammation in
the spinal cord of MCT-induced PH rats. Sensory neurons
ending in the dorsal horn play a prominent role in the
transmission and modulation of pain signals. After peripheral
sensitization of sensory neurons in response to local tissue
injury or inflammation, these sensory neurons release increased
amounts of neurotransmitters such as substance P and calcitonin
gene-related peptide (Iyengar et al., 2017). The increased release
of these neurotransmitters in the dorsal horn by sensory
neurons may have caused sustained astrocyte activation and
neuroinflammation in the thoracic spinal cord of the PH
rats in our study.

CCL3 is a pro-inflammatory chemokine poorly expressed in
resting glial cells. However, activated astrocytes and microglia
begin expressing CCL3 upon stimulation with TNF-α, IL1-β
(Choi et al., 2014), two cytokines known to be highly increased
in the plasma of PAH patients (Humbert et al., 1995; Soon
et al., 2010). Recently, increased levels of chemokines such
as CCL1, CCL2, and CCL3 were also found in the lungs
of mice and humans with PH (Florentin et al., 2018). As
for astrocytes, persistent microglial activation tends to sustain
inflammation rather than resolving it. In a mouse model of
retinal degeneration, microglia expressing CCL3 were shown to
exacerbate inflammation and retinal degeneration, which were
attenuated in CCL3 knock-out mice (Kohno et al., 2014). After
stimulation with TNF-α, human brain microvascular endothelial
cells increased the secretion and presentation of CCL3 on their
apical surface along with a decreased expression of tight junction
proteins and an upregulation of adhesion molecules (Chui and
Dorovini-Zis, 2010; De Laere et al., 2017). Therefore, it is possible
to extrapolate a similar role for CCL3 on the BSCB integrity
during neuroinflammation.

The BSCB integrity is essential for preventing inflammatory
immune cell infiltration in the tissue and its disruption
precedes the post-traumatic inflammatory response in spinal
cord injury (Schnell et al., 1999). Moreover, the microvascular
endothelium in the spinal cord is vulnerable to demyelinating
inflammatory diseases, supported by observations of increased
BSCB permeability related to the severity of disease in models
of multiple sclerosis (Kirk and Karlik, 2003; Roscoe et al., 2009).
Increased angiogenesis was shown in demyelinated lesions of
a multiple sclerosis model and was persistent with chronic
inflammation, perivascular infiltration and severity of the disease
(Kirk and Karlik, 2003; Roscoe et al., 2009; Holley et al., 2010). In
the same manner, the increased expression of CD31 in the spinal
cord of our PH rats may promote recruitment and migration
of leukocytes in the spinal cord of PH rats, thus sustaining
neuroinflammation.

Our study suggests the presence of neuroinflammation
in the spinal cord in experimental PH. Whether this
neuroinflammation has direct or indirect impact on pulmonary
artery pressures or right heart deterioration still needs to be
investigated. It has recently been suggested that microglial
activation in the CNS was playing a role in PH development
(Sharma et al., 2018). Local inhibition of microglial activation
in the paraventricular nucleus of PH rats prevented sympathetic
activation compared to sham-treated rats, assessed by decreased
plasma level of norepinephrine and restored the autonomic
balance. This was associated with improvement of pulmonary
pressures, vascular remodeling, and right ventricular function
(Sharma et al., 2018). The upper thoracic segments of the spinal
cord contain preganglionic sympathetic neurons innervating the
heart and lungs, thus controlling their autonomic activity. Hence,
it is possible to think that oxidative stress and neuroinflammation
in this location may also increase the sympathetic activity in
the heart and the pulmonary circulation promoting PH and RV
dysfunction. On the other hand, Quilez et al. (2011) showed
that rats mechanically ventilated with a high tidal volume
developed lung injury and inflammation, leading to neuronal
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FIGURE 2 | Pulmonary hypertension is associated with increased pro-inflammatory markers and angiogenesis. (A) Representative immunofluorescence showing
CCL3 in red, MAP2 in green and nuclei (Dapi) in blue. (B) Representative immunofluorescence showing the adhesion molecule CD31 expression in red, MAP2 in
green and nuclei (Dapi) in blue. (C) Quantification of CCL3 expression using a 2-way ANOVA, with factors of treatment (MCT vs. Ctrl) and region (gray vs. white
matter and dorsal vs. ventral), revealing an effect of MCT treatment shown by (∗∗p < 0.01), with no significant main effect of the region or interaction except for
dorsal white (∗p < 0.05). (D) Quantification of CCL3 expression in the thoracic section of the spinal cords using ELISA (∗p < 0.05). (E) Quantification of CD31
expression using a 2-way ANOVA, with factors of treatment (MCT vs. Ctrl) and region (gray vs. white matter and dorsal vs. ventral), revealing a main effect of MCT
treatment shown by (∗∗p < 0.01), with no significant main effect of the region or interaction. Mann-Whitney U test was used for comparisons two groups.
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activation in different regions of the brain, including the
paraventricular nucleus. Finally, several studies showed that
chronic heart dysfunction following acute myocardial infarction
induces microglial activation and chronic neuroinflammation
in the periventricular nucleus (Rana et al., 2010; Dworak
et al., 2014; Du et al., 2015). Microglial activation, as
well as the following sympatho-excitatory response, were
inhibited by the administration of minocycline (Dworak
et al., 2014). These studies highlight the interplay between
the lung, heart, and brain. Therefore, it is possible
to hypothesize a possible role for lung inflammation
and RV dysfunction in triggering and/or sustaining the
neuroinflammation seen in the thoracic spinal cord of
our rats with PH.

In conclusion, we report for the first time evidence for the
presence of neuroinflammation in the thoracic spinal cord of
pulmonary hypertensive rats. Whether this neuroinflammation
is triggered and/or sustained by lung inflammation and RV
dysfunction, as well as its potential impact on cardiopulmonary
function remains elusive.
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