
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

Cerebral Cortex, October 2020;30: 5597–5603

doi: 10.1093/cercor/bhaa146
Advance Access Publication Date: 19 June 2020
Original Article

O R I G I N A L A R T I C L E

Quantifying the Polygenic Architecture of the Human
Cerebral Cortex: Extensive Genetic Overlap between
Cortical Thickness and Surface Area
Dennis van der Meer 1,2, Oleksandr Frei1, Tobias Kaufmann1,
Chi-Hua Chen3, Wesley K. Thompson1,4, Kevin S. O’Connell1,
Jennifer Monereo Sánchez2, David E. J. Linden2, Lars T. Westlye1,5,
Anders M. Dale3 and Ole A. Andreassen1

1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical
Medicine, University of Oslo, Oslo, Norway, 2School of Mental Health and Neuroscience, Faculty of Health,
Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands, 3Center for Multimodal
Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA, 4Department of Family
Medicine and Public Health, University of California at San Diego, La Jolla, CA 92037, USA and 5Department of
Psychology, University of Oslo, Oslo, Norway

Address correspondence to Dennis van der Meer, Kirkeveien 166, 0450 Oslo, Norway. Email: d.v.d.meer@medisin.uio.no

Abstract
The thickness of the cerebral cortical sheet and its surface area are highly heritable traits thought to have largely distinct
polygenic architectures. Despite large-scale efforts, the majority of their genetic determinants remain unknown. Our ability
to identify causal genetic variants can be improved by employing brain measures that better map onto the biology we seek
to understand. Such measures may have fewer variants but with larger effects, that is, lower polygenicity and higher
discoverability. Using Gaussian mixture modeling, we estimated the number of causal variants shared between mean
cortical thickness and total surface area, as well as the polygenicity and discoverability of regional measures. We made use
of UK Biobank data from 30 880 healthy White European individuals (mean age 64.3, standard deviation 7.5, 52.1% female).
We found large genetic overlap between total surface area and mean thickness, sharing 4016 out of 7941 causal variants.
Regional surface area was more discoverable (P = 2.6 × 10−6) and less polygenic (P = 0.004) than regional thickness measures.
These findings may serve as a roadmap for improved future GWAS studies; knowledge of which measures are most
discoverable may be used to boost identification of genetic predictors and thereby gain a better understanding of brain
morphology.
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Introduction
The morphology of the human cerebral cortex is highly heri-
table, and identifying the genetic variants involved will have a
big impact on our understanding of brain development. Despite
large-scale efforts, the majority of these genetic variants remain
unknown (Grasby et al. 2020). This is in part due to the genetic
signal of cortical morphology being distributed across many
causal variants, each having a small effect (Fan et al. 2018;
Holland et al. 2019). Our ability to identify causal SNPs can be
improved not only by increasing sample sizes to boost statis-
tical power but also by employing better delineated, less noisy
brain measures that better map onto the biology we seek to
understand. Such measures might have fewer causal variants
but with larger effects, that is, lower polygenicity and higher dis-
coverability. Quantifying these characteristics of the polygenic
architecture across often-used cortical measures may there-
fore optimize the selection of the most informative measures,
enhancing gene discovery.

The thickness of the cerebral cortical sheet and its surface
area are two separable morphological measures which have
been reported to follow differing trajectories over the lifespan
(Hogstrom et al. 2012) and to be differentially associated with
cognitive ability (Schnack et al. 2015) and psychiatric disor-
ders (Rimol et al. 2012). The radial unit hypothesis of cortical
expansion posits that the extent and timing of developmen-
tal cellular processes, particularly neurogenesis and neuronal
migration from the embryonic proliferative zone, differentially
impact cortical thickness and surface area (Rakic 1988). In line
with this, the largest genome-wide association study (GWAS)
of the cortex to date found that surface area is influenced by
genetic variants regulating neural progenitor cells during fetal
development, while thickness is influenced by active regulatory
elements in adult brain samples, which may reflect processes
later in life, such as myelination, branching, or pruning (Grasby
et al. 2020). This study found a small negative genetic correla-
tion between area and thickness through linkage disequilibrium
score regression (LDSC), a genome-wide measure of the correla-
tion of additive genetic effects on two traits. Further, twin- and
family-based studies have reported that there is no genetic cor-
relation between these two measures, suggesting their genetic
underpinnings should be assessed separately (Panizzon et al.
2009; Winkler et al. 2010). However, this claim does not take
into account that complex traits such as brain measures may
have a substantial number of shared genetic loci (Smeland et al.
2019) even in the absence of genetic correlation, due to mixed
directions of effects (Smeland et al. n.d.; Frei et al. 2019). Iden-
tification of the fraction of shared causal variants between two
brain phenotypes (Frei et al. 2019), beyond genetic correlation,
is valuable for an understanding of their biological relation.
This overlap may further be exploited to boost identification of
genetic factors for these traits (Andreassen et al. 2013; van der
Meer et al. 2019).

Here, we sought to quantify important characteristics of
the polygenic architecture of the cerebral cortex through
MiXeR, a Gaussian mixture modeling tool (Frei et al. 2019;
Holland et al. 2019). We estimated the genetic overlap between
mean cortical thickness and total surface area, as well as
the polygenicity, discoverability, and heritability of regional
measures.

Materials and Methods
Participants

For this study, we made use of data from White European partic-
ipants of the UK Biobank that had undergone the neuroimaging
protocol, obtained from the data repository under accession
number 27412. The composition, set-up, and data gathering
protocols of the UKB have been extensively described elsewhere
(Sudlow et al. 2015; Miller et al. 2016). After data preprocessing,
described below, our final sample consisted of 30 880 individuals
with a mean age of 64.3 (standard deviation [SD] 7.5). 52.1% was
female.

Image Acquisition and Processing

T1 scans were collected from three scanning sites throughout
the United Kingdom, all on identical Siemens Skyra 3 T
scanners with a 32-channel receive head coil. T1 images
with 1-mm isotropic voxel size were acquired through a 3D
MPRAGE sequence in sagittal plane (208 × 256 × 256), with
a TI/TR of 880/2000 ms. The UKB core neuroimaging team
has published more extensive information on the applied
scanning protocols and procedures, which we refer to for more
details (Miller et al. 2016). The T1 scans were obtained from
the UKB data repositories and stored locally at the secure
computing cluster of the University of Oslo. We applied the
standard “recon-all” processing pipeline of Freesurfer v5.3,
performing automated surface-based morphometry segmen-
tation (Desikan et al. 2006). From the output, we extracted
global and regional estimates of cortical thickness and surface
area.

Parcellation

For the primary analyses, we made use of the Desikan–
Killiany atlas, dividing each hemisphere into 34 regions,
based on gyral and sulcal patterns (Desikan et al. 2006). We
additionally extracted regional estimates of cortical thickness
and surface area using three other parcellation approaches:
1) the Chen et al. surface area atlas, which divides each
hemisphere into 12 clusters, based on genetic correlations
derived from cortical surface area data from 406 monozygotic
and dizygotic twins (Chen et al. 2012). For this, we made
use of the GCLUST phenotype extraction protocol, 2) the Yeo
et al. atlas, which provides a 7- and a 17-cluster solution of
dividing each hemisphere, based on functional connectivity
patterns in resting-state fMRI data of a 1000 subjects (Yeo
et al. 2011), and 3) the Glasser et al. atlas, dividing the
hemispheres into 180 regions, based on multimodal MRI data
from the Human Connectome Project (HCP) and an objective
semi-automated neuroanatomical approach (Glasser et al.
2016).

Data Preprocessing

We first selected all White European individuals that had under-
gone the UK Biobank neuroimaging protocol up to February 2020
with good-quality genetic data (N = 35 660). We then excluded
anyone with a primary or secondary ICD10 diagnosis of a mental
or neurological disorder (ICD10 codes, as indicated by data fields
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41 202 and 41 204, starting with and “F” or “G,” n = 3095). Following
that, we removed all T1 scans with an Euler number (a measure
of scan quality, Rosen et al. 2018), pre-residualized for age and
sex, 3 SD below the scanner mean (n = 764), or with a global brain
measure more than 5 SD from the sample mean (n = 10). We then
removed one of each genetically related pair of individuals, as
defined by a threshold of 0.0625 determined by genome-wide
complex trait analysis (GCTA, n = 911). For all processed brain
measures, in the remaining sample (N = 30 880), we regressed
out age, sex, scanning site, Euler number, genetic batch, and the
first 20 genetic principal components. For the regional measures
of thickness and area, we also regressed out the corresponding
hemisphere-specific global measure, in accordance with previ-
ous work (van der Meer et al. 2019). This was done to obtain
region-specific information. Subsequently, we applied a rank-
based inverse normal transformation to the residuals of each
measure, ensuring normally distributed input into the GWAS.

We conducted several supplementary analyses of the
Desikan–Killiany atlas: 1) leaving out the correction for the
global cortical measures; 2) constructing an overview of the
phenotypic and genetic correlations between all the regions
and calculating the number of independent measures through
spectral decomposition of the correlation matrices; 3) analyzing
cortical volume, that is, the composite measure (product) of
cortical thickness and surface area; and 4) rerunning the primary
analyses while additionally pre-residualizing for scan bore
coordinates (X, Y, and Z), age2, age∗sex, and age2∗sex. Please
see Supplementary material for more details and the results.

GWAS Procedure

We made use of the UKB v3 imputed data, which has under-
gone extensive quality control procedures as described by the
UKB genetics team (Bycroft et al. 2017). We additionally carried
out standard quality check procedures, including filtering out
individuals with more than 10% missingness, as well as removal
of SNPs with low imputation quality scores (INFO < 0.8), with
more than 5% missingness, or failing the Hardy–Weinberg equi-
librium test at P = 1∗10−9. We further set a minor allele frequency
threshold of 0.001 leaving 12 245 112 SNPs. The GWAS on each
pre-residualized and normalized brain morphology measures
was carried out using the standard additive model of linear
association between genotype vector, gj, and phenotype vector,
y, using PLINK2 (Chang et al. 2015).

Causal Mixture Models (MiXeR) Procedure

We applied causal mixture models to the GWAS summary
statistics, using the MiXeR tool (Frei et al. 2019; Holland et al.
2019). MiXeR estimates the likely total number of the underlying
causal variants, without identifying their specific location. This
is implemented by fitting a causal mixture model that allows us
to estimate the proportion of such variants and then multiply
that proportion with the total number of genetic variants in a
reference panel. This procedure includes detailed information
of linkage disequilibrium (LD) structure in the reference panel,
thus estimating how many causal variants are underlying SNP
associations across SNPs that are in strong LD with each other.
As an example, schizophrenia and Crohn’s disease are both
highly heritable diseases, with SNP heritability from GWAS
estimated to be around 45%. At the same time, schizophrenia
is estimated to have nearly 20 times higher polygenicity (Frei
et al. 2019). As heritability is the product of polygenicity and

discoverability, the discoverability of schizophrenia is 20 times
lower. Thus, the size of the GWAS sample needed for discoveries
in Crohn’s disease is much smaller than needed to obtain
genome-wide significant findings in schizophrenia. In the
current study, we aim to provide similar insights with respect
to differences in discoverability and polygenicity across brain
regions. For more details on the MiXeR procedure, please see
Supplementary material.

Through univariate MiXeR, we estimated polygenicity (esti-
mated number of causal variants, NC), discoverability (propor-
tion of phenotypic variance explained on average by a causal
variant, σ 2

β ), and narrow-sense heritability (the product of poly-
genicity and discoverability, that is, proportion of phenotypic
variance explained, h2). Standard errors on the MiXeR estimates
are calculated via the observed information matrix (the hessian
of the log-likelihood function). We excluded from our analyses
regions where the ratio between the estimated heritability and
its standard error (SE) was less than 3, as this suggests there
may be insufficient signal in the data to reliably estimate MiXeR
parameters (Frei et al. 2019). We used bivariate MiXeR to calcu-
late genetic overlap, as the estimated number of causal variants
with an effect on both traits.

We contrast the MiXeR parameter estimates with genetic cor-
relations estimated through linkage disequilibrium score regres-
sion (Bulik-Sullivan et al. 2015).

Statistical Analyses

All downstream analyses were carried out in R v3.5.1 (Team
2015). We applied Bonferroni corrections for the multiple
comparisons: given we compared polygenicity, discoverability,
and heritability (i.e., three measures) of surface area and
thickness, we set a significance threshold of ∝ = 0.05/3 = 0.017;
for the 10 pairwise comparisons of parcellation schemes, we
consider the ∝ = 0.05/30 = 0.0017. Data was visualized through
the R package ggplot2 (Wickham 2009). The code for running
the MiXeR analyses, together with a tutorial and example data,
is available at https://github.com/precimed/mixer. The GWAS
summary statistics are available upon request.

Results
Genetic Overlap between Global Measures

We identified a large degree of genetic overlap between total
surface area and mean thickness, with a Dice coefficient of 0.67
(see Fig. 1A). This is in contrast to the negative phenotypic and
genetic correlations displayed below the Venn diagram, which
suggest a smaller degree of overlap. The bivariate density plot,
Figure 1B, illustrates mixed directions of effects for many SNPs,
which explains these apparent conflicting findings; some SNPs
have the same direction of effect on both traits, while others
have a positive effect on area and a negative effect on thick-
ness or vice versa, with the net result being a smaller negative
correlation.

Our analysis revealed that the total surface area is more
heritable (h2 = 0.32, SE = 0.02) than mean thickness (h2 = 0.23,
SE = 0.02), in accordance with previous findings (Grasby et al.
2020). We show that surface area has a marginally higher poly-
genicity (NC = 7858, SE = 1449) than mean thickness (NC = 4097,
SE = 1032), at similar levels of discoverability (σ 2

β =4.0 × 10−5,
SE = 5.9 × 10−6 vs. σ 2

β =5.5 × 10−5, SE = 1.0 × 10−5).

https://github.com/precimed/mixer
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Figure 1. Genetic overlap of total surface area and mean thickness. (A) Venn diagram depicting the estimated number of causal variants shared between total surface
area and mean thickness and unique to either of them. Below the diagram, we show the estimated genetic (“rg”) and phenotypic (Pearson’s, “rp”) correlation. (B)
Bivariate density plot, illustrating the relationship between the observed GWAS Z-values for total area (on the x-axis) and mean thickness (on the y-axis).

Regional Estimates

Using the Desikan–Killiany regional estimates, we observed a
strong trade-off between the polygenicity and discoverability
(Spearman’s rs = −0.88, P < 1 × 10−16), as shown in Figure 2A. The
heritability of regional measures was positively correlated with
discoverability (rs = 0.41, P = 4.9 × 10−6) but not with polygenicity
(rs = 0.03, P = 0.76). Regional area was significantly less polygenic
and more discoverable and heritable than regional thickness,
as shown in Figure 2B–D. Further, we found that the size of the
brain regions was significantly positively correlated with their
discoverability (rs = 0.53, P = 1.9 × 10−5) and negatively related
to their polygenicity (rs = −0.40, P = 0.002), for the area-specific
estimates only. For the full results, and an overview of parameter
estimates per region, see Supplementary material.

Comparison of Parcellation Schemes

Given that the definition of regions likely plays an important
role in imaging genetics studies, we additionally compared
the Desikan–Killiany atlas with other often-used parcellation
schemes that differ both in the biological basis of their
parcellation and the number of regions they divide the brain in,
that is, their granularity (see Materials and Methods section).
Of the five schemes, for the area measures, the Chen et al.
parcellation was both the most discoverable and the most
heritable. Further, generally, the less granular schemes were
more discoverable and heritable. There were no significant
differences in polygenicity between the parcellation schemes.
These results are summarized in Figure 3. There were no
differences in discoverability of regional thickness estimates
between the parcellations (see Supplementary material).

Discussion
These findings provide new insights into the polygenic archi-
tecture of the cerebral cortex, with three main take-home mes-
sages. First, there is large genetic overlap between mean cor-
tical thickness and total surface area. Second, regional sur-
face area measures are more discoverable and less polygenic
than regional thickness measures. And third, the genetically
informed and less granular parcellation schemes had highest
discoverability.

We provide evidence of strong genetic overlap between mean
cortical thickness and total surface area, contrary to previous
reports based on genetic correlations (Panizzon et al. 2009;
Winkler et al. 2010; Grasby et al. 2020). The previously reported
weak negative, or even absent, genetic correlation therefore
appears not to be the result of a small amount of shared
genetic variants with opposing direction of effects, but rather
a large amount of shared genetic variants with a mixture
of opposite and same direction of effects. This is a likely
scenario for brain morphology, as numerous neurobiological
processes are to a large degree overlapping between brain
regions, while at the same time, there are important differences
in tuning and activity levels of these processes between regions.
This further adds to recent literature revealing high levels of
pleiotropy between brain-related behavioral traits and disorders
(Watanabe et al. 2019). For instance, nearly all causal variants for
schizophrenia are shared with educational attainment despite
a negligible genetic correlation (Frei et al. 2019), in accordance
with research identifying many shared genetic loci between
the two traits without a clear pattern of sign concordance
(Le Hellard et al. 2016; Bansal et al. 2018). This is critical for
our understanding of the biological relationships between
brain-related traits and disorders and how to study them, as



Quantifying the Polygenic Architecture of the Cortex van der Meer et al. 5601

Figure 2. Polygenicity, discoverability, and heritability of regional cortical surface area and thickness. (A) Scatter plot depicting the relationship between estimates
of polygenicity (x-axis) and discoverability (y-axis) for regional cortical measures. The shape of the data points distinguishes between surface area and thickness
estimates, the point size reflects the size of the region, and the color relates to the estimated heritability. (B–D) Violin plots comparing the polygenicity, discoverability,
and heritability (on the y-axis) of regional area and thickness estimates (x-axis). Significance, indicated at the top of each graph, is calculated through the Wilcoxon

signed-rank test. For comparison, the diamonds indicate the estimate for the corresponding global measure.

knowledge of loci shared by two traits should provide clues to
the underlying mechanisms. In the case of cortical thickness
and surface area, identification of these loci may improve our
understanding of the developmental processes of cell number
regulation and neuronal migration that together determine
the thickness and size of the cortical sheet (Rakic 1988). The
genetic overlap may particularly inform us on (the extent of)
the interactions between these processes, for example, how a
balance between cortical thickness and area may be determined
through genetically regulated temporal shifts in neurogenesis
and migration. This, in turn, is essential for greater insight into
the pathogenesis of neurodevelopmental disorders (Geschwind
and Rakic 2013).

We further found that regional area is more heritable than
regional thickness, in line with previous reports (Eyler et al.
2012), and we show that this is driven by higher discoverability.
This matches findings from a recent GWAS study, with 187
genome-wide significant hits for regional area versus only 84
for regional thickness (Grasby et al. 2020). There appears to be
more variation in the distribution of the estimates for regional
surface area compared to regional cortical thickness, suggest-
ing the latter has a more homogeneous polygenic architecture
across regions. Larger differences between the polygenic archi-
tectures of regional surface area measures may also underlie the
somewhat higher polygenicity for total surface area compared
to mean thickness. It may further explain why most genome-
wide significant variants are found for surface area, as only

those regions with high discoverability have effects that may be
identified with current sample sizes.

Our comparison of different parcellation schemes indicates
that the choice of scheme makes a significant difference on
the outcome of imaging genetics studies. While all schemes
had similar levels of polygenicity, the Chen et al. parcellation
performed best in terms of discoverability. Besides the fact that
this parcellation was based on twin data, that is, genetically
informed, granularity may play an important role in the perfor-
mance of the schemes we compared; measurement noise due to
inaccuracy of boundary placement will disproportionally affect
smaller regions, thereby lowering heritability (Eyler et al. 2012;
Patel et al. 2018) and discoverability, compounding the multiple
comparisons problem faced by studying more granular schemes.
This is also in line with the global measures having higher
heritability and discoverability than the vast majority of regional
measures. Boundary placement accuracy at the individual level
is of less importance for thickness estimates (Eyler et al. 2012),
likely contributing to why we only saw differences between the
schemes for the area estimates.

To conclude, we revealed that surface area and thickness
share a considerable number of genetic variants, and provide
the first estimates of discoverability and polygenicity of regional
cortical measures across parcellation schemes. These findings
may serve as a roadmap for improving future studies. Knowl-
edge of which measures or parcellations are most discoverable,
and why, as well as the genetic overlap between these measures,
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Figure 3. Comparisons of discoverability and polygenicity of regional surface area across parcellation schemes. Violin plots comparing the polygenicity (A),
discoverability (B), and heritability (C) (on the y-axis) of the five different parcellation schemes (x-axis). Significance of each paired comparison, indicated at the

top of each graph, is calculated through the Wilcoxon signed-rank test with ∗P < 0.05, ∗∗P < 0.0017, ∗∗∗P < 0.00017, and ∗∗∗∗P < 0.000017.

can be exploited to boost identification of genetic predictors
(Andreassen et al. 2013; van der Meer et al. 2019) and thereby
gain a better understanding of brain morphology and associated
disorders.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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