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While photoperiod has been generally accepted as the primary if not the exclusive cue
to stimulate reproduction in photoperiodic breeders such as the laying hen, current
knowledge suggests that metabolism, and/or body composition can also play an
influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review
thus intends to first describe how photoperiodic and metabolic cues can impact the
HPG axis, then explore and propose potential common pathways and mechanisms
through which both cues could be integrated. Photostimulation refers to a perceived
increase in day-length resulting in the stimulation of the HPG. While photoreceptors are
present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors
(DBPs) located in the hypothalamus that have been identified as the potential mediators
of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-
ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding
these DBPs, along with their individual and relative importance and, their possible
downstream mechanisms of action to initiate the activation of the HPG axis. On the
metabolic side, specific attention is placed on the hypothalamic integration of appetite
control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory
(Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the
HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP),
and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin
(POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed.
Furthermore, beyond hypothalamic control, several metabolic factors involved in the
control of body weight and composition are also presented as possible modulators of
reproduction at all three levels of the HPG axis. These include peroxisome proliferator-
activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the
switch from growth to reproduction, adiponectin as a potential modulator of ovarian
development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
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INTRODUCTION

Decades of genetic selection along with significant improvements
in environmental conditions and nutrition have allowed modern
commercial chickens to become exceedingly efficient. However,
as traits associated with growth and reproduction are negatively
correlated (Siegel and Dunnington, 2017), divergent breeding
objectives have been established for broiler and layer chickens.
While breeding programs for layers have been instrumental in
improving production by advancing sexual maturation, reducing
the time of egg formation and improving peak of lay, limited
emphasis was put on the underlying physiological processes,
thus pushing the boundaries closer to the hen’s biological limit
(van Sambeek, 2010). With the rising demand for sustainable
egg production, breeding companies have more recently focused
on extending the laying period to achieve 500 eggs per hen
at 100 weeks of age (van Sambeek, 2010; Bain et al., 2016).
Physiologically, this will require precise co-ordination of several
systems involved not only in the control of the reproductive
axis, but also metabolism and nutrient partitioning. However,
to date, most research models describing the control of the
hypothalamic-pituitary gonadal (HPG) axis have largely focused
on the impact of environmental cues such as photoperiod
(Bédécarrats, 2015), rather than incorporating the impact of
growth and metabolic status. Recent evidence suggests that
modern commercial laying hens do not exclusively rely on
photostimulation to initiate sexual maturation, as egg production
may commence at an earlier age, prior to an increase in
photoperiod (Baxter and Bédécarrats, 2019).

Conversely, broiler chickens have been intensively selected for
increased growth rate and feed efficiency (Zuidhof et al., 2014).

Abbreviations: α-MSH, Alpha-Melanocyte Stimulating Hormone; β-MSH, Beta-
Melanocyte Stimulating Hormone; γ-MSH, Gamma-Melanocyte Stimulating
Hormone; ACTH, Adrenocorticotropin Hormone; AdipoR1, Adiponectin
Receptor 1; AdipoR2, Adiponectin Receptor 2; AFE, Age of First Egg; AgRP,
Agouti-related Peptide; ARC, Arcuate Nucleus; AVT, Arginine Vasotocin;
CART, Cocaine and amphetamine-regulated transcript; CORT, Corticosteroid;
CYP19A1, Cytochrome P450 aromatase; DA, Dopamine; DBP, Deep-Brain
Photoreceptor; DIO2, Type 2 Deiodinase enzyme; DIO3, Type 3 Deiodinase; E2,
Estradiol; ER-β, Estrogen Receptor Beta; FSH, Follicle-Stimulating Hormone;
GH, Growth Hormone; GH-R, Growth Hormone Receptor; GHRH, Growth
Hormone-releasing hormone; GnIH, Gonadotropin-Inhibiting Hormone;
GnIH-R, Gonadotropin-Inhibiting Hormone Receptor; GnRH-I, Gonadotropin-
Releasing Hormone I; GnRH-II, Gonadotropin-Releasing Hormone II; GnRH-RI,
Gonadotropin-Releasing Hormone Receptor I; GnRH-RIII, Gonadotropin-
Releasing Hormone Receptor III; HPA axis, Hypothalamic-Pituitary Adrenal axis;
HPG Axis, Hypothalamic-Pituitary Gonadal Axis; IGF-1, Insulin-like Growth
Factor 1; IN, Infundibular Nucleus; INSR, Insulin Receptor; LD, Long Day; LEP,
Leptin; LEPR, Leptin Receptor; LH, Luteinizing Hormone; LSO, Lateral Septal
Region; MBH, Medial-Basal Hypothalamus; MC1R, Melanocortin Receptor
subtype 1; MC3R, Melanocortin Receptor subtype 3; MC4R, Melanocortin
Receptor subtype 4; MC5R, Melanocortin Receptor subtype 5; ME, Median
Eminence; MEL, Melatonin; MRAP, Melanocortin Receptor Accessory Proteins;
NPY, Neuropeptide Y; OPN1, Opsin 1; OPN3, Opsin 3; OPN4, Melanopsin
(Opsin 4); OPN5, Neuropsin (Opsin 5); P4, Progesterone; PMM, Pre-
mammillary Nucleus; POMC, Pro-opiomelanocortin; PPAR-γ, Peroxisome
Proliferator-activated Receptor Gamma; PRL, Prolactin; PT, Pars Tuberalis; PVN,
Paraventricular Nucleus; PVO, Paraventricular Organ; RGR, Retinal G-coupled
Receptors; SD, Short Day; StAR, Steroidogenic Acute Regulatory Protein; T3,
Triiodothyronine; T4, Thyroxine; TMTs, Teleost Multiple Tissue Opsins; TSH,
Thyroid-Stimulating Hormone; VA-Opsin, Vertebrate-Ancient Opsin; VIP,
Vasoactive Intestinal Peptide.

As a result, broiler breeders, the parent stock of broilers, carry
the genetics for rapid growth, while displaying poor reproductive
capacity in comparison to layers. Specifically, when fed ad-
libitum, breeders tend to rapidly become overweight due to a lack
of appetite control. In turn, this results in compromised health,
along with impaired reproduction. Thus, pullets are typically
reared under feed restriction programs (Decuypere et al., 2010).
Although the impact of body weight on reproductive fitness has
been studied in broiler breeders (Eitan et al., 2014; van der Klein
et al., 2018) and migratory birds (Davies and Deviche, 2014),
this aspect has been largely overlooked in laying hens. While
it is accepted that laying hens need to achieve a mature body
weight prior to sexual maturation (Brody et al., 1984; Dunnington
and Siegel, 1984; Zelenka et al., 1987), little is known about the
physiological conditions and body composition underlying this
suggested threshold.

As more evidence of convergence between hormones
influencing both metabolic control and reproductive processes
emerges, it is imperative to further study and describe these
interactions. Thus, this review aims to summarize the current
knowledge on the control of sexual maturation in chickens, with a
specific emphasis on the integration of photoperiodic cues while
presenting evidence of possible interactions with factors involved
in metabolic control.

PHOTOPERIODIC CONTROL OF
REPRODUCTION

Overview of the Effects of Photoperiod
on the Reproductive Axis
Early studies conducted in wild birds showed that increased
day length during spring coincided with increases in gonadal
weight and size (Homma et al., 1994) and the initiation of
reproduction and breeding (Whetham, 1933; Byerly and Moore,
1941; Sharp, 1993). This concept of reproductive modifications
in response to changing seasonal day length served as starting
point for the development of lighting programs under managed
environments. Since then, the integration of photoperiodic
signals on the activation and function of the HPG axis has
been fairly well characterized and reviewed elsewhere (Sharp,
2005; Bédécarrats et al., 2009; Bédécarrats, 2015; Bedecarrats
et al., 2016). This axis is primarily responsible for providing a
cohesive signal, through the coordinated synthesis and secretion
of hormones to effectively initiate or terminate the reproductive
cycle. The hypothalamus, which acts as a neuroendocrine control
center, is responsible for secreting stimulatory neuropeptides,
gonadotropin-releasing hormones (GnRH-I and GnRH-II),
along with an inhibitory neuropeptide, gonadotropin-inhibitory
hormone (GnIH; Matsuo et al., 1971; Tsutsui et al., 2000). In
turn, these neuropeptides regulate the synthesis and release of
gonadotropins which then lead to the activation of the ovary,
allowing for the initiation of lay. In vertebrates, light, hence
photoperiod, is detected by photoreceptors and transduced into
nervous and endocrine signals (Ebrey and Koutalos, 2001). In
avian species, these photoreceptors are present in the eye as
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visual photoreceptors on the retina, as well as in the pineal
gland and the hypothalamus, as extra-retinal photoreceptors
(Kumar et al., 2004) to coordinate photoperiodic responses.

Although the role of the pineal gland and its associated
melatonin (MEL) production has not been directly linked to
the ability of the photoperiodic response to trigger reproduction
(Juss et al., 1993; Bentley et al., 2013; Kang and Kuenzel,
2015), MEL released by the pineal gland and the retina during
the scotophase stimulates the expression of GnIH by the
hypothalamus (Ubuka et al., 2005). During the pullet growing
stage, when the chicken is sexually immature, photoperiod is
maintained below 10 h of light, resulting in elevated levels
of MEL, thus maintaining inhibition via GnIH. In addition
to directly supressing GnRH production (Bentley et al., 2003,
2008) and release (Tsutsui et al., 2000), GnIH also supresses
the hormonal response from the anterior pituitary by binding
to its gonadotropin-inhibitory hormone receptor (GnIH-R) and
preventing the secretion of gonadotropins, luteinizing hormone
(LH), and follicle-stimulating hormone (FSH; Ciccone et al.,
2004; Ikemoto and Park, 2005; Ubuka et al., 2006). At the time
of photostimulation, reduced scotophase results in lower MEL
synthesis, thus lifting the inhibition on the HPG axis by GnIH
(Ikemoto and Park, 2005; Maddineni et al., 2008). Suppression
of MEL production occurs through the stimulation of the pineal
gland specific photoreceptor, pinopsin (Okano et al., 1994;
Holthues et al., 2005). The resulting down-regulation of GnIH
removes the suppression of GnRH and gonadotropes, allowing
the pituitary to synthesize and release LH and FSH (Ikemoto
and Park, 2005). Upon photostimulation, a longer day length will
not only reduce the production of MEL, but also stimulate deep
brain photoreceptors (DBPs) to trigger a greater synthesis and
release of GnRH from the hypothalamus. Although two different
isoforms of chicken GnRH have been characterized, GnRH-I and
GnRH-II, which both bind to the GnRH receptors (cGnRH-
RI and cGnRH-RIII), it is now well accepted that GnRH-I is
the neuropeptide released in the median eminence (ME) to
stimulate pituitary gonadotropes by binding to cGnRH-RIII, the
predominant receptor present in the pituitary gland (Shimizu
and Bedecarrats, 2006; Joseph et al., 2009). Interestingly, it was
shown that the pituitary ratio of GnIH-R to cGnRH-RIII switches
at the time of sexual maturation (Shimizu and Bédécarrats,
2010), thus also shifting the sensitivity of the pituitary from
inhibitory to stimulatory.

As GnRH increases, circulating levels of LH and FSH increase
(Etches, 1996). Both glycoproteins are composed of 2 subunits
including a common alpha subunit, along with a unique beta
subunit responsible for their specific actions (Burke et al., 1979).
While the major role of LH is the induction of ovulation through
an increase in progesterone and testosterone production by the
ovary of the mature hen (Shahabi et al., 1975), during the
earlier stages of sexual maturation and follicular development,
LH stimulates steroidogenesis of various sex hormones, such as
androgens, estrogens, and progestins by the follicles and ovarian
cortex (Robinson et al., 1988, 2003). On the other hand, the
primary role of FSH during the follicular maturation process
includes granulosa cell differentiation and the stimulation of
steroidogenesis, as the pre-hierarchal follicles acquire FSH

responsiveness (Johnson and Bridgham, 2001; Johnson and
Woods, 2009a). In culture, administration of FSH demonstrated
an increase in the production of cAMP in the smaller pre-
ovulatory follicles, while this effect of FSH was reduced as these
follicles increase in size and become responsive to LH (Calvo and
Bahr, 1983). Meanwhile, daily exogenous doses in laying hens
were able to increase the number of white follicles, small yellow
follicles, and preovulatory follicles, demonstrating the critical role
of FSH in all stages of follicular development (Palmer and Bahr,
1992). Thereby, both gonadotropins influence the steroidogenic
capacity of the ovary, enabling the production and secretion of
estradiol (E2) and progesterone (P4; Shahabi et al., 1975; Shodono
et al., 1975). At the time of sexual maturation, the ovary contains
thousands of viable small white follicles (SWF) embedded in the
highly vascularized stroma of the ovary (Johnson and Woods,
2009b), and these follicles are responsible for the production
of circulating E2 (Robinson and Etches, 1986). The rise in E2
following photostimulation results in amplified protein synthesis
to initiate maturation of the oviduct (Muller et al., 1970), with this
demand further increasing prior to the onset of lay when elevated
concentrations of E2 and P4 are present (Shahabi et al., 1975;
Shodono et al., 1975). Due to the oviparous nature of this species,
during maturation E2 targets the liver for the synthesis of yolk
proteins deposited into follicles, the skeletal frame and digestive
system to coordinate calcium mobilization for shell formation,
and the oviduct for the coordination between egg formation and
ovulation (Dacke et al., 1993; Walzem et al., 1999).

Photoreception and Photoreceptors
Retinal Photoreceptors
The retina of the eye, through the capture and absorption of
photons, is the primary source of photic information by receiving
and transmitting images from the external environment to the
brain while also contributing in part to the entrainment of
the circadian rhythm (Underwood et al., 1984). The retina has
3 types of photoreceptor cells classified as rods, cones and
double cones (Perry, 1995). Rod cells are primarily utilized
during periods of low illumination, as they are highly sensitive
to light, yet they do not detect colour due to the single
spectral class (Bowmaker and Knowles, 1977; Yau, 1994; Hart,
2001). Conversely, cone cells can be used at much higher
levels of brightness and to determine variations in colour, with
avian species being tetrachromatic, meaning they are able to
visualize peaks within violet (415 nm), blue (455 nm), green
(508 nm), and red (571 nm) wavelengths (Yoshizawa, 1992;
Perry, 1995; Prescott and Wathes, 1999; Hart, 2001). Initially,
retinal photoreceptors were believed to be the only types of
photoreceptors, as an early study on migrating junco showed
that providing supplemental light to artificially create long
days (LDs) resulted in hens laying eggs in the middle of the
winter season (Rowan, 1931). However, it was later determined
that blind laying hens have a similar rate of egg production
when compared to their sighted counterparts, regardless of the
presence of retinal photoreceptors (Siopes and Wilson, 1980).
This study was one of the first to suggest that the eye is a non-
essential component of a hens’ neuroendocrine reflex to light,
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indicating it may not be necessary for the photostimulatory
response. Since then, further studies have suggested that in
fact, input from the retinal photoreceptors may delay sexual
maturation, as blind hens and roosters were shown to mature
more rapidly than their sighted counterparts (Siopes and Wilson,
1980; Perttula and Bédécarrats, 2012; Baxter et al., 2014).

Extra-Retinal Photoreceptors
With retinal photoreceptors playing no significant role in
mediating the response to photostimulation, transduction of
light photons into biological signals is believed to be performed
by extra-retinal reception. One of the first studies to show
the significance of extra-retinal photoreceptors was conducted
by Benoit in 1935 (Benoit, 1935a,b), showing that although
sighted and blind ducks displayed similar gonadal growth
rates and patterns, when a black cap was placed over the
head to prevent deep brain penetration of light, the gonadal
response was inhibited. This implied that the avian skull is
permeable to light and that light could scatter through and be
absorbed by overlapping tissues in order to stimulate encephalic
receptors (Foster and Follett, 1985). Thus, emphasis will be
put on deep brain photoreception, as the role of the pineal
gland and its associated MEL production were discussed in the
previous section.

Any photoreceptive molecule outside of the retina is referred
to as an extra-retinal photoreceptor. In the avian brain,
4 regions have been proposed to house DBPs; the lateral
septal region (LSO), the paraventricular nucleus (PVN), the
premammillary nucleus (PMM), and the paraventricular organ
(PVO; Kuenzel et al., 2015). Four criteria have also been
utilized to determine if new candidate photopigments can be
classified as a DBP, including (1) Explicit expression in the
photosensitive region of the brain; (2) Physiological capability
of the molecule to signal light as an opsin/vitamin A-based
photopigment; (3) Appropriate maximum spectral absorption,
predicted to be ∼492 nm, and (4) Corresponding to the
maximum photon capture and spectrum of available light within
the hypothalamus (Foster and Helfrich-Förster, 2001; Davies
et al., 2012). From there, working models suggest that the
components of the avian photoperiodic response are confined
to the medio-basal hypothalamus (MBH; Benoit, 1935a,b;
Menaker, 1968). To date, it has been proposed that the DBPs
involved in priming the reproductive axis include the vertebrate
ancient (VA) opsin (a member of the opsin 1 family; OPN1;
Foster et al., 1985, 1994; Halford et al., 2009; Davies et al.,
2012), melanopsin (OPN4; Chaurasia et al., 2005; Kang et al.,
2010), and neuropsin (OPN5; Nakane and Yoshimura, 2010;
Ohuchi et al., 2012).

Candidate DBPs for Photo-Induced
Sexual Maturation
Since the first discovery of DBPs, new opsin families have
been identified in the hypothalamus. The recent annotation
of opsin sequences within the chicken genome has allowed
for the identification of five opsin family categories under
which all opsins can be classified, including OPN1, OPN3,
OPN4, OPN5, and retinal G-protein coupled receptors (RGR;

TABLE 1 | Summary of the candidates for deep brain photoreception.

Opsins Wavelengths DBP
Family consolidated (nm) Expression criteria

1 2 3 4

OPN1 Vertebrate ancient
(VA) Opsins

450–520 Pineal gland
Hypothalamus

X X X X

Rhodopsin 480–495 Pineal gland
Skin
Retina

x X X X

Pinopsins 480–540 Pineal gland x X X X

OPN3 Teleost multiple
tissue (TMT) opsins

450–470 Cerebellum
Retina
Paraventricular
nucleus

x X x x

Encephalopsins Cerebellum
Thalamic nuclei

x X x x

OPN4 Melanopsins 410–480 Hypothalamus
Pineal gland
Retina

X X x x

OPN5 Neuropsin 350–470 Hypothalamus X X x x

RGR Retinal G
protein-coupled
receptors

470–490 Retina x X x x

Peropsins Pineal gland x X x x

The five families of opsins broken down into their components, along with their
associated wavelength of spectral absorption (nm), the signaling pathway they
utilized and where they are expressed in the chicken. Wavelengths indicated in
BOLD are within the 492 nm maximum spectral absorption hypothesized to be
associated with reproduction. The deep brain photoreceptor (DBP) criteria refer
to (1) Explicit expression in photosensitive regions of the brain; (2) Physiological
capability of the molecule to signal light as an opsin/vitamin A-based photopigment;
(3) Appropriate maximum spectral absorption, predicted to be ∼492 nm; and (4)
Correspond to the maximum photon capture and spectrum of available light within
the hypothalamus (Foster and Follett, 1985; Davies et al., 2012).

Table 1). The family of OPN1 includes VA-opsin, expressed
in the hypothalamus and pineal gland, as well as rhodopsin,
expressed in the retina and pineal gland (Foster et al., 1985,
1994; Halford et al., 2009; Davies et al., 2012). Conversely,
members from the OPN3 family consist of teleost multiple
tissue opsins (TMTs) found in the cerebellum, retina and the
PVN of the hypothalamus, and encephalopsins found in the
cerebellum as well as the thalamic nuclei (Kato et al., 2016),
suggesting this family does not play a role in reproductive
control due to its localization outside the light-sensitive regions
associated with reproduction. Similarly, with RGR expressed
in the retina and pineal gland rather than the brain, evidence
supports a role in circadian rhythm and vision rather than
reproduction (Díaz et al., 2017). Meanwhile, two additional
candidates, OPN4 and OPN5 were identified within various
photosensitive regions throughout the hypothalamus (Chaurasia
et al., 2005; Kang et al., 2010; Nakane and Yoshimura, 2010;
Ohuchi et al., 2012), with OPN4 also expressed in the pineal
gland (Chaurasia et al., 2005; Kang et al., 2010), and the
retina (Tomonari et al., 2005). Thus, based on location, OPN1,
OPN4, and OPN5 appear to be the best candidates to act
as mediators of photoperiod on reproduction and are further
discussed below.
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Melanopsin (OPN4)
Melanopsin is a photopigment often referred to as OPN4, due
to its gene of origin (Hankins et al., 2008b). Originally isolated
in the melanophores of Xenopus (Provencio et al., 1998), this
protein was later found in the diencephalon, pineal gland, and
retina of the chicken (Foster et al., 1987; Bailey and Cassone,
2005; Chaurasia et al., 2005; Tomonari et al., 2005; Kang et al.,
2010) and, due to its role in non-image light detection, it was
proposed as a candidate DBP impacting the HPG axis (Freedman
et al., 1999; Peirson and Foster, 2006; Hankins et al., 2008b).
At the time, two isoforms were identified in avian species
including OPN4M (mammalian-like) and OPN4X (xenopus-
like; Bellingham et al., 2006; Hankins et al., 2008a). In the
turkey, OPN4X mRNA has been found in dopamine (DA)-
expressing neurons of the brain, including in the PMM, as well
as in MEL expressing neurons (Kang et al., 2010; Kosonsiriluk
et al., 2012). The Dopamine-Melatonin (DA-MEL) neurons are
activated upon interruption of the dark phase with various light
periods from 30 min to 3 h when the birds are within the
photoresponsive phase of reproduction, leading to decreased
expression of OPN4X and MELergic activity, while DAergic
activity is elevated (Kang et al., 2010). Increased DAergic activity
has been implicated in GnRH-I and Vasoactive Intestinal Peptide
(VIP) signaling (Bhatt et al., 2003; Chaiseha et al., 2003; Kang
et al., 2006), possibly through the alteration of thyroid stimulating
hormone (TSH), and type 2 deiodinase (DIO2) activity (Kang
et al., 2010). While this evidence supports the role of melanopsin
in the control of reproduction in the turkey hen, this connection
has yet to be established in the domestic chicken. Although
OPN4 is present in the brain of day-old chicks (Chaurasia
et al., 2005), no expression has been found in the hypothalamus
of maturing birds (Chaurasia et al., 2005; Hankins et al., 2008a).
Furthermore, with an absorption spectrum between 410–480 nm,
OPN4 fails to reach the predicted maximum spectral absorption
of 492 nm for deep brain perception (Foster and Follett, 1985).
Altogether, this indicates that while melanopsin may play a role
in the photoperiodic response, it is unlikely to be the key opsin
triggering the initiation of sexual maturation.

Neuropsin (OPN5)
Neuropsin is encoded by the OPN5 gene (Tarttelin et al., 2003),
localized in the cerebrospinal fluid (CSF)-contacting neurons of
the PVO within the MBH (Halford et al., 2009; Nakane and
Yoshimura, 2010), meeting the location criteria outlined for a
potential DBP. However, OPN5 is also expressed in the adrenal
glands with a possible role in chemosensory reception (Ohuchi
et al., 2012). Nonetheless, it has been the subject of a number of
studies for its potential role in controlling reproduction. It was
determined that OPN5 has two isoforms including an ultra-violet
(UV) light-absorbing form that possesses a 11-cis-retinal with a
maximum absorption at 360 nm, and a visible light-absorbing
form altered by the addition of all-trans-retinal maximally
absorbed at 474 nm (Yamashita et al., 2010). This indicates that
this photopigment is bi-stable, signifying its ability to absorb two
light spectra, and may interact with reproductive control in some
capacity under either UV or visible light (Yamashita et al., 2010).
While these molecules are both capable of signaling light within

the hypothalamus, these absorption maxima fall short of the
predicted wavelength requirements and, simply transitioning
birds from short to LDs did not alter the expression of OPN5
(Yamashita et al., 2010; Stevenson and Ball, 2012). It has been
proposed that light detected by OPN5-positive CSF-contacting
neurons allows information to be transmitted to the pars tuberalis
(PT) to induce TSH-β mRNA expression (Nakao et al., 2008),
thereby suggesting that OPN5 plays a role in the activation of the
HPG axis (Nakane et al., 2014). Interestingly, evidence that OPN5
is coupled to the Gi (inhibitory) subunit (Yamashita et al., 2010),
along with OPN5 knockdown or gene silencing via small-
interfering RNA (siRNA) disrupting the photoperiodic control
of reproduction, has supported the theory that OPN5 could play
an inhibitory role. One particular study used antisense sequences
found to reduce the expression of OPN5 by 32% compared to
the scrambled sequence and, birds demonstrated an elevation in
TSH-β levels with the decline in OPN5 when photostimulated
by LD under white light (Stevenson and Ball, 2012). A more
recent study has demonstrated that knockdown of OPN5, in
conjunction with pinealectomy and eye patches, suppressed the
production of TSH-β traditionally stimulated by LD when housed
under UV-lighting (Nakane et al., 2014). By utilizing UV-light,
Nakane et al. (2014) were able to directly stimulate the OPN5
photoreceptors, explaining the opposing results of Stevenson and
Ball (Stevenson and Ball, 2012), in which the photoreceptors
non-responsive to UV stimulation had not been isolated. With
an inhibitory impact in mind, future studies should explore
a possible interaction between OPN5 and GnIH. Interestingly,
it appears that expression of OPN5 is age-dependent, with
expression increasing throughout maturity in male quail up to
16 weeks of age (woa), yet by 144 woa expression had decreased
(Banerjee et al., 2018). Further studies in females would provide
insight into these age-related changes in OPN5 and whether they
correlate with sexual maturation and the dissipation of juvenile
photorefractoriness.

Vertebrate Ancient (VA)-Opsin
Vertebrate Ancient-opsin, first identified in the Atlantic salmon
(Soni and Foster, 1997; Soni et al., 1998), is a functional
photopigment belonging to the OPN1 family. In the chicken,
two isoforms, cVALong (cVAL), and cVAShort (cVAS), have been
identified (Halford et al., 2009). With a spectral peak of 491 nm,
perikarya localized in the MBH, and projections extending
into the ME, VA-opsin satisfies all the proposed criteria for a
DBP mediating photoperiodic response (Young, 1962; Hankins
et al., 2008b; García-Fernández et al., 2015). Indeed, current
working hypotheses suggest VA-opsin perikarya in the MBH
are responsible for photoreception, with the projections sent to
the posterior portion of the hypothalamus, through to the ME,
allowing for interactions with the PT (García-Fernández et al.,
2015). This would suggest that VA-opsin neurons may interact
with pituitary thyrotropes to produce TSH, eliciting the response
of thyroid hormones to activate the HPG axis, as described
below. However, while these perikarya may be the primary site
of photoreception, it is also possible that the fibers of VA-opsin
neurons form a photosensitive net, responding to light directly
within the ME rather than indirectly stimulating this region.
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Recently, it was shown that VA-opsin is co-expressed
with GnRH in perikarya present in the anterior and medial
hypothalamus with projections to the ME (García-Fernández
et al., 2015), corresponding to regions previously identified
with GnRH (Foster et al., 1987; Dawson et al., 2001). While
this suggests a direct link between VA-opsin photoreception
and GnRH-I synthesis and release, the timing of GnRH-I
release corresponds to the activation of the HPG axis (Ni
et al., 2013), rather than anytime during the photosensitive
period that precedes the trigger of photostimulation itself.
Therefore, these discrepancies in timing signify that while this
photoreceptor may interact with GnRH-I to activate sexual
maturation, it is unlikely that VA-opsin is able to directly
stimulate the HPG axis and its mode of action remains
unknown. Similar to neuropsin, VA-Opsin mRNA, along with
the number of ir-VA-Opsin cells, have been suggested to be
elevated from the immature state through to the period of
sexual maturation, from 6 to 16 woa in the male quail,
with a decline observed at 144 woa (Banerjee et al., 2018).
Furthermore, as VA-Opsin and GnRH-II perikarya have been
identified to be expressed within similar regions, with projections
extending to various additional regions of the brain outside
of the ME (Sharp et al., 1990; García-Fernández et al., 2015),
a possible relationship may exist and should be investigated.
Interestingly, VA-Opsin also strongly co-localizes with arginine-
vasotocin (AVT; García-Fernández et al., 2015), a system
known to cause oviposition by triggering contractions of the
shell gland in avian species (Koike et al., 1988), via an up-
regulation of local prostaglandin production (Rzasa, 1978,
1984). Since AVT has also been linked to the stimulation
of prolactin (PRL), adrenocorticotropic hormone (ACTH),
and pro-opiomelanocortin (POMC; El Halawani et al., 1992;
Wu et al., 2019), this raises the possibility that VA-opsin, in
addition to contributing to the photo-induced activation of the
HPG axis, may also contribute to the initiation of lay, as well as
the control of oviposition timing via PRL (Harvey et al., 1979a).
The implications of POMC along with its cleavage product ACTH
on the neuroendocrine response of reproduction are discussed at
length later in this review.

Downstream Effects of Deep Brain
Photoreception
While the exact characterization of hypothalamic photoreceptors
remains elusive, the detection of light via photoreception and
the cascade of succeeding events have been well established. It
is known that longer daylength, integrated via a molecular clock
contained within the MBH (Yasuo et al., 2003), will lead to the
stimulation of thyrotrope cells in the PT of the pituitary to release
TSH. TSH then acts on the specialized ependymal cells, referred
to as tanycytes, contained within the third ventricle and believed
to be critical for the induction of the HPG axis. Subsequent
stimulation of these tanycytes will elicit an upregulation in
the expression of DIO2 enzyme (Nakao et al., 2008). DIO2
is a thyroid hormone-activating enzyme responsible for the
conversion of the prohormone, thyroxine (T4), into the bioactive
form, triiodothyronine (T3; Bernal, 2002). It has been determined

that DIO2 is directly induced through light stimulation during
the photosensitive phases, however, this same elevation in
expression is not observed when stimulation is provided outside
of the photosensitive phase, meaning that DIO2 expression
is upregulated under LD and downregulated under short day
(SD; Yoshimura et al., 2003). At the same time, expression
of a thyroid hormone-inhibiting enzyme, type 3 deiodinase or
DIO3, was reported to act in an opposing fashion to DIO2
(Yasuo et al., 2005). The reciprocal relationship between these
enzymes allows for a refined activity control of thyroid hormones
within the MBH, occurring 18 h after dawn on the first day of
photostimulation (Nakao et al., 2008). There is strong evidence
suggesting TSH-β is a trigger for the expression of DIO2/DIO3.
TSH-β is expressed in the PT 14 h after dawn, approximately
4 h prior to the release of DIO2/DIO3 (Nakao et al., 2008). This
indicates that TSH under the influence of LD could be a key
factor in the regulation of reproduction in birds (Yoshimura,
2013). Elevated levels of T3 in the MBH target thyroid hormone
receptors in the ME (Yoshimura et al., 2003). GnRH nerve
terminals, residing in the ME, will allow for the release of GnRH
in response to these elevations, thereby activating the HPG axis
(Hanon et al., 2008; Hazlerigg and Loudon, 2008; Nakao et al.,
2008). This occurs as a result of morphological changes between
GnRH nerve terminals and glial endfeet (Yamamura et al., 2004).
Under SD, prior to the photostimulatory period, these GnRH
nerve terminals are unable to contact the basal lamina as they
are encased by the endfeet of glial processes. However, with
the shift to LD, these nerve terminals are able to interact with
the basal lamina, deemed critical as the neuropeptides must be
secreted into the portal capillary system (Prevot et al., 1999;
Yamamura et al., 2006). Additional studies have shown that
local administration of T3 to the MBH has the ability to imitate
these morphological changes to the GnRH nerve terminals, even
under SD, outlining the importance of thyroid hormones to the
reproductive process (Yamamura et al., 2006).

HYPOTHALAMIC INTEGRATION OF
APPETITE CONTROL AND
REPRODUCTION

Appetite Control and the Melanocortin
System
First and foremost, it is important to understand the integration
of hypothalamic signals contributing to feed intake as it
will ultimately impact body weight and composition of the
hen. It is well established that the melanocortin system
is responsible for monitoring energy status and controlling
appetite. This occurs through the combined effects of POMC
and cocaine and amphetamine-regulated transcript (CART)
to downregulate hunger, as well as agouti-related peptide
(AgRP), and neuropeptide Y (NPY) to upregulate feed intake.
In addition, 5 melanocortin receptors have been identified,
all of which are expressed in the avian brain (Takeuchi
et al., 1996, 1998, 1996, 2000; Berghman et al., 1998;
Takeuchi and Takahashi, 1998, 1999).
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Initial studies showed that during periods of food deprivation
or negative energy balance (Phillips-Singh et al., 2003; Higgins
et al., 2010; Song et al., 2012), hens display elevated co-expression
of orexigenic hormones, AgRP and NPY. Both peptides have
been identified in the MBH of the ring dove (Strader and
Buntin, 2003; Strader et al., 2003), as well as the infundibular
nucleus (IN) in quail, which is the equivalent to the mammalian
arcuate nucleus (ARC; Boswell et al., 2002), while NPY has
been identified in the IN of the chicken (Kameda et al., 2001).
Levels of AgRP have been reported to increase with the duration
of food deprivation (Phillips-Singh et al., 2003; Higgins et al.,
2010; Song et al., 2012), yet, strong evidence suggests these levels
can be restored between 24 and 48 h following re-introduction
to feed, depending upon the duration of deprivation (Harrold
et al., 1999; Mizuno and Mobbs, 1999; Wilson and Bagnol,
1999; Higgins et al., 2010; Lei and Lixian, 2012; Song et al.,
2012; Dunn et al., 2013; Fang et al., 2014). Levels of NPY
mRNA were additionally found to elevate during periods of
restricted feeding (Song et al., 2012) and, central injection of
this peptide can stimulate feed intake in chickens (Kuenzel
et al., 1987) and white crowned sparrows (Richardson et al.,
1995). Thus through the coordination of NPY and AgRP (Hahn
et al., 1998; Chen et al., 1999), the orexigenic portion of the
melanocortin system is able to respond to declining energy status
and hunger signals.

Conversely, gene expression of the anorexigenic hormones,
POMC and CART, significantly decrease due to reduced food
availability (Higgins et al., 2010). The co-expression of CART
and POMC has not yet been published in chickens, yet CART
neuronal cell bodies have been found in the IN of zebra finches
(Singh et al., 2016). Although CART is able to decrease feed
intake in ad libitum fed broilers and layers, it had no impact
on feed restricted layers, while intracerebroventricular (ICV)
injection did induce a dose-dependent decline in the feed intake
of restricted broilers (Tachibana et al., 2003). Additionally, CART
is able to partially inhibit NPY-induced feeding (Tachibana et al.,
2003), but the mechanism of action is unknown. POMC is
expressed in the IN of the hypothalamus, along with NPY
and AgRP in quail (Boswell et al., 2002), as well as in
chickens (Gerets et al., 2000). However, results have shown
inconsistencies, as some studies have demonstrated that levels
of POMC mRNA decrease after 7 days of restricted feeding in
both layers and broilers (Hen et al., 2006), with others showing
no changes in this anorexigenic peptide, demonstrating that
AgRP mRNA is a much more reliable measurement (Dunn
et al., 2013). Interestingly, while no differences in POMC
mRNA were observed after 24 h of fasting, a significant
decline occurred at 36 h (Ren et al., 2017), indicating that this
hormone may not be the primary cause of the anorexigenic
effects observed, but rather a result of the activated pathway.
As a precursor polypeptide, POMC is cleaved into various
key hormones, including ACTH, alpha-, beta-, and gamma-
melanocyte stimulating hormone (α-MSH, β-MSH, and γ-MSH),
and β-endorphin (Takeuchi et al., 1999). While α-MSH is
involved in decreasing feed intake through the central nervous
system by interacting with melanocortin receptor subtype 4
(MC4R; Mountjoy et al., 1994), ACTH is a key link between

regulation of appetite and stress response via the hypothalamic-
pituitary adrenal (HPA) axis (Aguilera, 1994), further decreasing
feed intake when injected (Kawakami et al., 2000; Strader et al.,
2003; Cline et al., 2008; Shipp et al., 2016). However, it has
also been demonstrated that α-MSH can trigger the release of
corticosterone (CORT) in a dose-dependent manner, supporting
further integration of the HPA axis in appetite control (Tachibana
et al., 2007). Yet, ostrich-β-endorphin has been reported to
stimulate feed intake of pigeons immediately after ICV injection
(Deviche and Schepers, 1984). The opposing role of this POMC
cleavage product may offer insight into the aforementioned
inconsistencies of the mRNA levels of the peptide during states
of feed deprivation.

These melanocortins can elicit their response through any
of the 5 receptor subtypes, however, unlike mammals, avian
receptors possess a higher affinity for ACTH in comparison to
that of α-MSH (Ling et al., 2004), pointing to a larger role for the
stress response in appetite control. This alteration in avian species
has been predicted to result from the absence of the intermediate
lobe of the pituitary in the chicken, allowing ACTH to become the
predominant melanocortin signal (Boswell and Takeuchi, 2005).
Melanocortin receptors are able to stimulate various responses
ranging from the regulation of energy expenditure, through
receptor subtype 3 (MC3R), to food intake control, through
MC4R. Due to the localization of MC3R and MC4R in the
hypothalamus of the chicken, these subtypes have been heavily
studied for their contributions to energy homeostasis (Ka et al.,
2009; Higgins et al., 2010; Song et al., 2012; Yi et al., 2015).
While α-MSH acts as an agonist of MC4R to inhibit feed intake
in periods of satiety, AgRP has been found to antagonize the
activity of ACTH and α-MSH on MC3R and MC4R (Zhang
et al., 2017), demonstrating the ability of the melanocortin system
to achieve energy homeostasis through competitive interactions
with the receptors. However, each of these receptor subtypes
are expressed in various tissues, ranging from the brain to the
liver, playing a role in the integration of metabolic processes and
appetite. Expressed in melanocytes, MC1R is primarily involved
with α-MSH regulation of feather pigment (Teshigawara et al.,
2001). Meanwhile, MC2R and MC3R are expressed in the
adrenals, mediating the effects of ACTH on the HPA axis
(Takeuchi et al., 1998; Takeuchi and Takahashi, 1999), and
MC5R was the only receptor subtype present in the liver of
the chicken (Ren et al., 2017). Additionally, NPY is known to
act via its receptor subtypes, NPYR1 through NPYR5, which
have been implicated in adipogenesis and early broiler growth
(Resnyk et al., 2013; Shipp et al., 2016). Currently, NPYR1
has been hypothesized to be associated with most orexigenic
activity elicited by NPY, according to studies conducted in mice
(Gehlert, 1999). NPY1R and NPY5R mRNA have an elevated
expression in the hypothalamus of low weight selected hens,
compared to that of their high weight selected counterparts.
However, these receptors were alternatively higher in adipose
tissue of the high weight selected hens, compared to the low
(Zhang et al., 2013). This differential receptor expression could
implicate NPY in alternative pathways, diverting energy from fat
storage to utilization, requiring further investigation in the sexual
maturation of the laying hen.
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FIGURE 1 | Proposed integration of the hypothalamic control of reproduction with the melanocortin system. While the hen is in an immature state (A),
Gonadotropin-inhibitory hormone (GnIH) is the primary neuropeptide released by the hypothalamus. GnIH simultaneously stimulates orexigenic peptides,
agouti-related peptide (AgRP), and Neuropeptide Y (NPY), while inhibiting the anorexigenic peptides, pro-opiomelanocortin (POMC), and cocaine-and amphetamine
regulated transcript (CART). Additionally, GnIH stimulates feed intake during a period of growth, also linked to AgRP and NPY upregulation. Recent evidence
suggests that AgRP and NPY have the ability to stimulate gonadotropin-releasing hormone (GnRH), which may in turn activate the HPG axis. However, with the
co-expression of vertebrate ancient (VA)-opsin and GnRH, this may be the primary site for mediating the effects of photoperiod. In the mature hen (B), GnRH inhibits
the production of GnIH and is proposed to decrease feed intake via an increase in steroidogenic activity. A decrease in feed intake stimulates POMC and CART
activity, with POMC cleaved into 3 peptides, β-endorphin, adrenocorticotropin hormone (ACTH), and alpha-melanocortin-stimulating hormone (α-MSH). ACTH and
α-MSH are able to stimulate AgRP and NPY. Meanwhile, CART, along with ACTH and α-MSH have been hypothesized to positively feedback on GnRH to stimulate
the HPG axis. However, POMC cleavage may be critical in this control with β-endorphin established to inhibit GnRH release.

Recently, melanocortin receptor accessory proteins (MRAPs)
have been reported to support and alter the interactions of
the receptors within the melanocortin system. In the chicken,
MRAP is expressed in the brain, in addition to the adrenal
gland, liver, spleen, stomach and lungs (Ren et al., 2017),
while MRAP2 is expressed predominately in the brain (Asai
et al., 2013). Currently, much of the work surrounding these
accessory proteins has been completed in mammals, where
MRAP2 has been linked to growth and metabolism (Cone,
2006; Asai et al., 2013; Sebag et al., 2013), interacting directly
with MC4R in the brain to enhance cAMP production driven
by the receptor in mice (Asai et al., 2013). Consequently,
MC4R, linked to anorexigenic activity via ACTH, has also

been found to act as an ACTH receptor in the presence
of MRAP2 in zebrafish (Agulleiro et al., 2013). Additionally,
in chickens it appears that while MRAP and MRAP2 have
the ability to decrease MC4R and MC5R expression in the
plasma membrane, they have no effect on the remaining MCRs
(Ren et al., 2017).

While the melanocortin system was initially believed to be
the primary source of control involved in appetite regulation,
involvement of these peptides in reproductive regulation has
been proposed and will be discussed at length, as summarized
in Figure 1. In addition, reproductive neuropeptides have been
reported to play a role in the control of appetite and this
integration will be considered.
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Integration Between the Melanocortin
System and Reproduction
Effects of the Orexigenic System on Reproduction
NPY is one of the most potent orexigenic regulators of food
intake (Hill et al., 2008; Pralong, 2010; Boswell, 2011), while
also believed to control reproduction through its influence on
ovulation (Dunn et al., 2004; Wu et al., 2007; Li et al., 2009).
Predominantly, NPY is hypothesized to elicit its response
through the stimulation of GnRH secretion (Contijoch et al.,
1993), as NPY perikarya are located in the hypothalamus, with
mRNA, peptide, and fibers located in the ME and fibers in
the PVN, aligning with the location of GnRH-I and GnIH
perikarya and fibres (Kuenzel, 2000; Singh et al., 2013). In
addition, central injections of NPY can induce a premature LH
surge in chickens (Contijoch et al., 1993) and mammals (Kalra
et al., 1997), implicating NPY in the promotion of earlier sexual
maturation (Fraley and Kuenzel, 1993). Furthermore, mutations
in NPY favouring heterozygote DraI +/− are associated with an
earlier age at first egg (AFE; Dunn et al., 2004), compared to
homozygous DraI +/+ or DraI −/− and may be correlated with
the total number of eggs laid (Wu et al., 2007). Interestingly, it
was determined that these same mutations in NPY DraI influence
body weight at the time of sexual maturation, with a higher
breeding value determined for the heterozygote (Fatemi et al.,
2012), further suggesting a possible link between metabolism
and reproduction.

As AgRP is co-expressed with NPY, this peptide likely
also influences reproduction in chickens, yet few studies have
considered this relationship. It is known that AgRP mRNA levels
increase during incubation in hens, however, in this same study,
voluntary decrease in feed intake observed in incubating hens was
not found to differ from pair-fed hens, while those released from
feed restriction demonstrated a significant decline in this peptide
(Dunn et al., 2015). Additionally, AgRP mRNA levels in roosters
were found to be higher during the photosensitive periods, while
declining in periods of photorefractoriness, corresponding to a
period with lower body weight and feed intake (Banerjee and
Chaturvedi, 2018). AgRP has also been found to play a role in the
reproductive system of other species, with mRNA levels declining
following ICV of E2 in mice (Olofsson et al., 2009), and mRNA
levels significantly increasing at the beginning of a breeding
season in ewes while lower levels are present at the end of this
period (Clarke et al., 2000). Thus, from information gathered
from other species, it is likely that in laying hens AgRP expression
increases prior to the initial peak of E2, at a time when energy is
needed for both growth and sexual maturation processes. Levels
would then be expected to decrease thereafter, as the hen switches
metabolic demand from growth to reproduction. Nonetheless,
this hypothesis still needs to be tested.

Effects of the Anorexigenic System on Reproduction
There is currently a gap in the literature surrounding the role
of POMC during the process of sexual maturation in the laying
hen. One study, involving the Shaoxing duck, reported a peak
in POMC mRNA levels approximately 30 days prior to the
elevation of GnRH-I mRNA (Ni et al., 2011). This is the first

reported alteration in POMC expression during this time in
an avian species. Throughout a laying cycle, POMC mRNA
levels have been reported to remain unchanged among laying
and non-laying broiler breeder hens with paired body weight
(Dunn et al., 2013), as well as in bantam hens in the laying
and incubation phases (Dunn et al., 2015). While this would
suggest that this peptide is not implicated in the reproductive
status of the hen, the activity of the cleavage products of POMC
reveal a contrasting interpretation. Treatment of broiler chicks
with α-MSH via ICV showed elevated expression of NPY and
AgRP in the IN, indicating a potential homeostatic feedback
mechanism to balance the dual control of the melanocortin
system (Delp et al., 2017), and an indirect stimulatory role in
the control of the HPG axis. Conversely, endogenous opioid
peptides have been found to play an opposing role as β-endorphin
has been linked to the suppression of LH release and ovulation
after administration into the third ventricle of white leghorn
laying hens (Sakurai et al., 1986), while [Met]-enkephalin was
found to exert an inhibitory response on the release of GnRH in
the cockerel by reducing the response to depolarization in vitro
(Stansfield and Cunningham, 1987) due to the close proximity
of these neurons to that of GnRH (De Lanerolle et al., 1981;
Sterling and Sharp, 1982). Taken together, these results imply that
while the expression of POMC remains constant throughout a
laying cycle, evaluation of the cleavage products would be more
appropriate to assess the underlying activity of this peptide and
its effects on the hypothalamic release of GnRH and or GnIH.

Similar to that of POMC, the role of CART during sexual
maturation remains relatively unknown. CART mRNA was
initially reported to be primarily present in the hypothalamus and
pituitary gland of adult laying hens and its peptide undetectable
in the ovary (Cai et al., 2015). Since, it has been established
that CART mRNA is present within subsets of follicles with
the highest expression in the theca layer of large white follicles
compared to the pre-ovulatory follicles (Li et al., 2017), ultimately
suggesting that CART does in fact have a role, which has yet to
be determined in avian species. When considering mammalian
literature, CART has been identified to be under the control
of LEP (Douglass, 1995; Gautvik et al., 1996; Kristensen et al.,
1998; Rogge et al., 2008), be responsible for regulating the stress
response (Koylu et al., 2006), the energy balance (Kristensen
et al., 1998; Rogge et al., 2008), and bone remodelling (Elefteriou
et al., 2005) in rodents, as well as ovarian follicle development
in bovine (Kobayashi et al., 2004; Sen et al., 2007). Specifically in
rats, elevated hypothalamic CART mRNA levels were found to
decrease GnRH-I interpulse intervals, increasing the frequency
(Lebrethon et al., 2000). Additionally, CART mRNA was found
to inhibit FSH signaling in cattle (Sen et al., 2007, 2008). Thus,
although limited information is available on the role of CART in
avian species, as for POMC, literature in mammals suggests an
overall suppressive role.

Melanocortin Receptors and Reproduction
As previously mentioned, MC5R is the only receptor subtype
reported to be expressed in the liver, which is of particular interest
as the liver is known to form yolk lipoproteins throughout the
laying cycle (Walzem et al., 1999). Since this process is under the
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influence of E2, a potential interaction between the melanocortin
and reproductive systems may occur in this organ to control
and direct liver metabolism based on the status of the animal.
Based on a previous study, MC5R expression appears to be
unaffected by E2 treatment (Ren et al., 2017). However, although
the role of MC5R remains uncertain, recent studies in chicken
demonstrated that MRAP is significantly upregulated by E2 in
the liver (Ren et al., 2017), possibly via peroxisome proliferator-
activated receptor gamma (PPAR-γ; Mangelsdorf et al., 1995),
as PPAR-γ gene expression increases with rising E2 levels and
decreases with age (Ren et al., 2017). Interestingly, changes in
MRAP were not found to have any influence on MC5R expression
in the liver (Ren et al., 2017).

Influence of Reproductive Neuropeptides on Appetite
Control
While activation of the HPG axis is integrated with a number
of hormones, photoreceptors, and signaling pathways, it has
become increasingly apparent that these same reproductive
neuropeptides have the ability to influence feed intake in avian
species, thereby altering the melanocortin system. Just as GnRH
and GnIH act as a dual control system on the HPG axis
(Bédécarrats, 2015), they have also been observed to play a
similar dual control on appetite. For example, in layer chicks
GnIH is known to stimulate feed intake (Tachibana et al., 2005)
in an orexigenic fashion by stimulating NPY and inhibiting
POMC in the hypothalamus (McConn et al., 2014). It has been
hypothesized that this effect on feed intake stems from the
inhibition of the remainder of the HPG axis, as feed intake has
been observed to increase with the decline in steroidogenesis
of Japanese quail (Satake et al., 2001), and decrease with E2
administration in laying hens (Jaccoby et al., 1995). While in the
laying hen there has been no difference identified in GnIH neuron
activity between ad libitum fed and feed restricted hens (Ciccone
et al., 2007), an increase in GnIH activity is observed after 48 h
of deprivation in the Peking duck (Fraley et al., 2013). Whether
this effect is species specific or genetically altered by divergent
breeding goals requires further investigation. Meanwhile, since
GnIH is able to suppress the activity of GnRH-I, it could be
hypothesized that this stimulatory neuropeptide would play an
anorexigenic role in birds. However, as previously discussed, the
endogenous opioid peptide β-endorphin has been reported to
have a tonic inhibitory effect on the expression of LH (Sakurai
et al., 1986; Stansfield and Cunningham, 1987). Interestingly,
processes from CART neurons are in close proximity to GnRH
perikarya in numerous mammalian species (Leslie et al., 2001;
True et al., 2013) and such a relationship should be evaluated in
avian species. If CART does in fact stimulate GnRH-I, evidence
of the co-expression of CART with α-MSH, observed in rodents
(True et al., 2013), suggests that the activation or suppression
of GnRH may depend on the cleavage of the POMC molecule.
Further studies will be required to determine whether or not
GnRH-I plays an anorexigenic role in the melanocortin system.
While this role of GnRH-I is unclear, the activity of the orexigenic
response to this neuropeptide has been confirmed with NPY able
to stimulate an LH surge in laying hens (Contijoch et al., 1993).
However, with the ability of NPY to stimulate corticotrophin

releasing factor (CRF) upregulation (Li et al., 2000), and the
known integration of CRF neurons with GnRH-I cells observed
in rats (Maclusky et al., 1988), it is suggested that this LH
surge is likely due to the direct stimulatory effect of NPY on
GnRH-I. Altogether, this highlights a possible pathway for the
integration of metabolic signals and the HPG axis, leading to the
hypothesis that immature hens with higher expression of GnIH
would continue to grow due to the stimulation of feed intake.
This increase in feed intake will be associated with an elevation
in NPY expression, eventually allowing an elevation in GnRH-I
to occur to activate the HPG axis.

IMPACT OF BODY WEIGHT AND
COMPOSITION ON THE HPG-AXIS

In many species, it has been shown that obesity is strongly linked
to reproductive deficiencies. In humans, obesity in women has
been linked to poor conception and implantation rates (Brewer
and Balen, 2010), while obesity in mice results in a reduction
in oocyte and preantral follicle numbers (Sagae et al., 2012).
In layers, diet-induced obesity increased proapoptotic effects
in granulosa cells through altered steroidogenesis, causing a
decrease in reproductive capacity (Walzem and Chen, 2014).
However, while obesity is clearly negatively correlated to
reproduction, excessively low body weight is also of concern,
leading to the development of the “critical weight hypothesis”
which was further confirmed in broiler breeders (van der
Klein et al., 2018; Zuidhof, 2018). This hypothesis stipulates
that puberty in immature animals could not be predicted
by age, but rather by the accumulation of body fat stores
(Frisch and McArthur, 1974). Over the years, this hypothesis has
been put to the test and while insufficient fat stores have been
found to delay the onset of sexual maturation in rats, rapid
accumulation of these stores can lead to puberty, even if these
animals are still well below target body weight (Ronnekleiv
et al., 1978), however, the dynamics and pathways behind this
concept have yet to be explored in the hen. While studies
have considered the effect of food availability on reproductive
success in wild species of seasonal breeders, in the domestic
laying hen food availability is not a limiting factor and control
of the reproductive axis is achieved mostly by modulating
environmental conditions, such as photoperiod. As demonstrated
in a recent trial involving Lohmann LSL-Lite, current commercial
strains do not necessarily require photostimulatory cues in order
to initiate the reproductive process (Baxter and Bédécarrats,
2019). This suggests that sexual maturity is not exclusively
triggered by photoperiodic cues, but rather hens are required
to reach a critical threshold in body weight or fat composition
in order to enter lay (Zuidhof, 2018; Baxter and Bédécarrats,
2019). In terms of the HPG axis, this suggests that additional
factors can overcome the inhibitory mechanisms in place prior
to photostimulation.

This is in line with previous reports showing that a particular
body weight target and degree of body fat is required in order to
achieve the initiation of maturation in both broiler breeders and
quail (Bornstein et al., 1984; Yang et al., 2013), with abdominal
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fat pad being an accurate indicator of overall fat accumulation
in all chickens (Sato et al., 2009). In broiler breeders, hens that
had not entered lay prior to 55 woa had a fat pad which was
1.5% of their body weight, while those that entered lay had
a fat pad of 2.5%, suggesting that a minimum threshold does
exist (van der Klein et al., 2018). Conversely, a study using
broiler breeder hens selected for divergent abdominal body fat
percentage, referred to as lean and fat hens, demonstrated that
lean birds showed an earlier AFE when compared to the fat
females, with an overall greater egg production (Zhang et al.,
2018), supporting the necessity to avoid excessively exceeding
the threshold of body fat percentage of the hen around the
time of sexual maturity. Interestingly, these lean and fat hens
did not statistically differ in body weight at any time (Zhang
et al., 2018). Achieving a critical threshold of body composition
during the juvenile stage thus appears required to support
the demands for egg formation throughout a laying cycle.
Seasonal migratory breeders are believed to possess a sliding body
weight set point, referred to as rheostasis, defined as the body
weight differences between physiological periods of breeding
and migration (Mrosovsky, 1990). Body weight of a common
seasonal breeder, the American Kestrel, was maintained at a
significantly lower weight throughout the year as long as the
hen remains in a non-breeding condition. Interestingly, prior to
the breeding period, the non-breeding females in in this study
were found to have a lower body weight than those that later
entered lay, suggesting the need for an adequate body weight
prior to the breeding season to initiate lay. Once they enter a
period of breeding, body weight further increased corresponding
to the week of and prior to each ovulation, with significant
correlations between body weight and concentrations of the
sex steroids, estradiol and estrone, attributed to a combination
of alterations in fat and protein deposition, along with the
maturation of the reproductive tract (Rehder et al., 1986). This
suggests various weight set points may be required throughout a
reproductive cycle.

Regulation of body weight and body composition is a very
complex process that involves many factors and hormones, some
which are also known for their role in the control of reproduction.
Although the list is quite exhaustive, for the purpose of this
review emphasis will be put on growth hormone (GH) for
its involvement in growth and general metabolism, PPAR-γ,
adiponectin, and LEP as these hormones and factors specifically
control lipid metabolism (Figure 2).

Peroxisome Proliferator-Activated
Receptor Gamma (PPAR-γ)
Peroxisome Proliferator-activated Receptor Gamma is an
important regulator of lipogenesis and adipogenesis in mammals
(Luquet et al., 2004). PPAR-γ is a member of the nuclear
hormone receptor superfamily, binding to the peroxisome
proliferator-response element, located in the promotor region
of genes directly associated with glucose, and lipid homeostasis
(Straus and Glass, 2001). It is highly expressed in all pituitary
secretory cells in humans (Bogazzi et al., 2005), as well as adipose
tissue of broilers where it plays a major role on fat deposition

(Meng et al., 2005; Wang et al., 2008; Zhang et al., 2015). In fact,
as this factor is associated specifically with the differentiation
of adipocytes and lipid accumulation, it has been linked to
NPY which is itself involved in the synthesis of preadipocytes
in chicken adipose tissue in vitro (Zhang et al., 2015; Shipp
et al., 2016). Thus, these studies suggest that PPAR-γ may be a
link between the regulation of appetite and body composition.
Additionally, elevated expression of this transcription factor
has been observed in the liver of broilers selected for fatness
in comparison to lean birds (Larkina et al., 2011; Zhang et al.,
2015), further demonstrating the ability of this factor to divert
nutrients to adipose deposition. Interestingly, variations in
PPAR-γ levels have also been associated with genotype, age,
and sex (Meng et al., 2005; Sato et al., 2009). In the laying hen,
PPAR-γ has been detected in various tissues including the brain,
liver and ovary (Sato et al., 2004; Meng et al., 2005; Hojo et al.,
2006; Ojano-Dirain et al., 2007; Wang et al., 2012), suggesting a
possible role in the control of reproduction. A 23-fold increase in
PPAR-γ mRNA was observed in the liver of layers administered
high doses of exogenous E2 (Lee et al., 2010). This was associated
with a corresponding increase in fatty acids, triacylglycerol,
and an accumulation of hepatic lipids (Sato et al., 2009; Lee
et al., 2010), thus implicating PPAR-γ in the formation of yolk
precursors in the liver, an organ under the control of E2 (Deeley
et al., 1975). If PPAR-γ upregulates the expression of MRAP,
as previously discussed, this would suggest that E2, through its
ability to directly trigger the upregulation of PPAR-γ, has the
ability to activate the melanocortin system, diverting energy
expenditure from growth to reproduction, linking sex steroids,
and energy homeostasis. As a matter of fact, this has also led to
the hypothesis that PPAR-γ may play a role in the control of egg
production overall, as demonstrated through higher expression
levels in high producing laying hens compared to low producing
lines (Chen et al., 2010). Beyond egg formation, PPAR-γ has also
been suggested to play a role in the control of gonadotropins,
with one study hypothesizing that chicken prostaglandin-D
synthase protein has the ability to regulate LH-β transcription
via PPAR signaling pathways (Chen et al., 2010). Whether this is
a direct or indirect effect is not known.

Adiponectin
Adiponectin is a cytokine predominantly secreted by the
adipose tissue with a significant role in lipid and carbohydrate
metabolism in mammals (Kadowaki and Yamauchi, 2005).
In addition to the breakdown of fatty acids, adiponectin
increases insulin sensitivity in mice (Yamauchi et al., 2002), with
involvements in energy balance and body weight (Fruebis et al.,
2001; Yamauchi et al., 2001). In the chicken, while adiponectin
is highly expressed in adipose tissue, it is also expressed in the
liver, anterior pituitary, hypothalamus, kidney, skeletal muscle,
and ovary (Maddineni et al., 2005; Chabrolle et al., 2007). Plasma
concentrations of adiponectin have been shown to decline in
broiler chicks between 4 to 8 woa, corresponding to an increase
in body weight and a 2-fold increase in abdominal fat pad
during this time (Maddineni et al., 2005). While a decline in
plasma adiponectin was not observed in birds fasted for 48 h
(Hendricks et al., 2009), mRNA levels were found to significantly
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FIGURE 2 | Proposed integration of metabolic factors with maturation of ovarian follicles. In the ovary, growth hormone (GH) binds to the growth hormone receptor
first in the theca cell layer of prehierarchal follicles, then in the granulosa cell layer during growth of hierarchical follicles. In prehierarchal follicles, GH stimulates the
production of estradiol (E2) from the theca layer, further stimulating the early stages of follicular recruitment and development. Once E2 is produced, it stimulates the
expression of peroxisome proliferated-activated receptor gamma (PPAR-γ), which in turn has the ability to inhibit E2 production, forming a negative feedback loop.
Prior to activation of the ovary, adiponectin mRNA levels increase in the theca layer allowing binding of adiponectin to its receptor (AdipoR1) present in both cell
layers. Adiponectin then down-regulates steroidogenic acute regulatory (StAR) protein and insulin-like growth factor 1 (IGF-1), which are hypothesized to stimulate
E2 synthesis in the absence of gonadotropins. Leptin (LEP), upon binding to its receptor (LEPR) mostly present in the granulosa layer, may stimulate CYP19A1 to
increase E2 production while reducing testosterone. Meanwhile, as E2 is able to stimulate adiponectin expression in the theca layer and, with adiponectin able to
inhibit the production of E2, a local negative feedback system between the two has been proposed.

decline in adipose, liver and anterior pituitary, with other tissues,
such as the hypothalamus, remaining unaffected (Maddineni
et al., 2005). This implies that while expression may be altered,
temporary metabolic changes have little to no influence over
the short-term secretion of this hormone. Adiponectin is able
to elicit its response through two receptors, AdipoR1 and
AdipoR2. While AdipoR1 is primarily found in the skeletal
muscle, adipose tissue and diencephalon, AdipoR2 was largely
localized to the adipose tissue (Ramachandran et al., 2007), with
mRNA and protein of both receptors recently found in theca
and granulosa layers of ovarian follicles (Hadley et al., 2020).
Signaling pathways are predicted to differ between receptors as
AdipoR1 activates AMPK signaling, while AdipoR2 is believed
to elicit its response through the transcription factor PPAR-α
(Yamauchi et al., 2003). Regarding appetite control, in rodents
adiponectin elicited an anorexigenic response through AdipoR1
and its co-localization with the leptin receptor (LEPR) in the
hypothalamus, with both receptors present in NPY and POMC
neurons (Guillod-Maximin et al., 2009). A similar relationship
between AdipoR1 and LEPR should be investigated in avian
species to determine the role of adiponectin and leptin in
lipid metabolism and overall energy homeostasis within the
hypothalamus. Additionally, the possibility of AdipoR1 and
AdipoR2 being involved in a permissive, and/or inhibitory role
with NPY and POMC should be explored in the hen, as there
is the potential for integration with the melanocortin system, as
discussed previously in regard to PPAR-γ. Meanwhile, AdipoR1
was upregulated by PRL, while AdipoR2 was downregulated by
GH in adipose tissue of mice, (Nilsson et al., 2005), with both

hormones inversely associated with adiponectin expression in
both mice (Berryman et al., 2004), and humans (Mantzoros
et al., 2004). Due to the critical role of these opposing hormones
during the reproductive cycle of the hen, further studies should
be conducted to determine a possible relationship in chickens. As
reported in humans (Yamauchi et al., 2001), plasma adiponectin
is negatively correlated to glycaemia in turkey hens (Diot
et al., 2015), demonstrating a potential role in elevating insulin
sensitivity. In the presence of elevated insulin concentrations,
POMC and CART expression has been reported to elevate, while
the expression of NPY is inhibited (Porte et al., 2002; Honda
et al., 2007; Shiraishi et al., 2008). This is of particular interest
as POMC has been found to increase in incubating Silkie hens, a
period known to be associated with high PRL levels, compared
to their laying counterparts (Sharp et al., 1989; Dawson, 2008;
Takeda and Ohkubo, 2019). As AdipoR1 is upregulated in the
presence of PRL, it would be expected that adiponectin levels
would elevate during this period, yet concentrations have been
observed to decline through to the end of production in turkey
hens (Diot et al., 2015), requiring further investigation to
determine its role throughout a production cycle.

Adiponectin is expressed exclusively in the theca layer of
ovarian follicles within both broiler breeder and laying hens, with
an autocrine or paracrine effect on steroidogenesis (Chabrolle
et al., 2007; Hadley et al., 2020). Interestingly, in vitro treatment
of porcine granulosa cells with recombinant adiponectin was
found to increase steroidogenic acute regulatory protein (StAR)
mRNA, along with a reduction in cytochrome P450 aromatase,
or CYP19A1 (Ledoux et al., 2006). While StAR is responsible
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for transporting cholesterol across the inner mitochondrial
membrane in order to undergo conversion to pregnenolone
(Sugawara et al., 1995; Cherradi et al., 1997), CYP19A1 converts
testosterone to E2. Altogether, this implies that regardless of
the ability of adiponectin to stimulate StAR, the decline in
CYP19A1 would inhibit the synthesis of E2. Recently, granulosa
cells from subsets of prehierarchal and preovulatory follicles
of broiler breeder and laying hens cultured with recombinant
adiponectin reported a decline in StAR mRNA abundance in
all follicle groups, with the exception of F4 (Hadley et al.,
2020). Additionally, the AMPK signalling pathway has been
determined to be activated by adiponectin in the chicken.
This AMPK pathway has been shown to differentially regulate
StAR depending on the stage of follicular development (Tosca
et al., 2006), suggesting that the unequivocal expression of StAR
in response to adiponectin in vitro can be influenced by a
variety of factors and requires further investigation. Furthermore,
activation of this pathway led to an increased production of P4,
along with an elevation in StAR and CYP19A1 levels, in the
absence of FSH (Tosca et al., 2006), indicating that another factor
may be able to overcome the need for gonadotropin stimulation
in avian species. When human recombinant adiponectin was
applied to chicken granulosa cells from pre-ovulatory follicles
for 36 h in culture, the expression of insulin-like growth factor-
1 (IGF-1)-induced P4 secretion in preovulatory follicles was
upregulated, while LH and FSH-induced P4 production in
this same subset of follicles decreased (Chabrolle et al., 2007).
This further supports the hypothesis that adiponectin is able
to influence steroidogenesis within the follicular hierarchy of
the chicken ovary, regardless of the status of the HPG axis.
Thus, we hypothesize that adiponectin provides a mechanism
through which metabolism is able to overcome the need for
photostimulation during the activation of the ovary, via the
stimulation of IGF-1 induced P4 production. Further supporting
the link between adiponectin and reproduction, a recent broiler
breeder study showed the timing of an E2 increase corresponded
to the time during which adiponectin declined in the circulating
plasma (Grandhaye et al., 2019). However, when sexually
immature leghorn chickens were treated with E2, adiponectin
mRNA abundance was found to be elevated, along with the
mRNA levels of AdipoR1, while P4 treatment caused a decline
in adiponectin mRNA (Hadley et al., 2020). In Huoyan geese,
when ovarian granulosa cells were treated with adiponectin, a
significant decline was observed in E2, while P4 concentration
increased (Meng et al., 2019). This suggests an overall negative
feedback system between adiponectin and the reproductive
steroids. Furthermore, plasma adiponectin did not vary during
the laying cycle, with a significant decline only found in turkey
hens at the end of lay (Diot et al., 2015). Altogether, this indicates
that another mechanism is utilized in order to select follicles
into the preovulatory hierarchy. As adiponectin contributes to
the downregulation of fat deposition (Hendricks et al., 2009;
Tahmoorespur et al., 2010), which aligns with the decreased
body fat percentage observed in the current commercial broiler
breeder (Zuidhof et al., 2014), it is possible that these hens
have elevated adiponectin levels, which may be influenced by
its high mRNA expression in the liver and anterior pituitary

(Maddineni et al., 2005). This would lead to the hypothesis
that adiponectin is able to act in the ovary to promote IGF-
1 induced P4, rather than LH or FSH-induced P4. This level
of control must be considered to determine the effects of body
weight and metabolic status on follicular development and
age of first egg.

Growth Hormone (GH)
Growth hormone is produced primarily by the anterior pituitary
gland under the control of hypothalamic growth hormone
releasing hormone (GHRH), with additional production in a
multitude of other tissues in addition to the hypothalamus
(Render et al., 1995). Although initially identified as a purely
somatic hormone promoting growth, a reproductive function
for GH has been proposed as plasma levels correlate with
the onset of lay in pullets (Williams et al., 1992), and the
time of ovulation in hens (Harvey et al., 1979b). Injections of
GH in immature laying hens increased ovary weight 1 week
prior to maturation (Hrabia et al., 2011). However, for this
to happen, it is critical that the growth hormone receptor
(GH-R) be expressed within the follicles (Lebedeva et al.,
2004; Hrabia et al., 2008) at that time. As GH-R expression
increases in the ovary around the time of sexual maturation
(Hrabia et al., 2008), it can be predicted that a similar GH
effect on ovarian follicles would not occur at an earlier age.
However, administration of GH increased the number of SWF
(Williams et al., 1992), which not only serve as the follicular
pool for the remainder of lay, but are also responsible for
the production of E2 during sexual maturation (Robinson and
Etches, 1986). While GH further stimulated the release of
E2 from the pre-hierarchal follicles (Hrabia et al., 2012), a
decline in this steroid hormone occurred within the hierarchy
(Hrabia et al., 2014). A relationship between E2 and GH can
also be seen in the liver, which is responsive to both hormones
(Stevens, 2007; Van Anes et al., 2010). GH has been linked
to the elevated expression of estrogen receptor beta (ER-β) in
the liver (Hrabia, 2015), suggesting an influence of GH on
vitellogenesis, as demonstrated in the pigeon (Harvey et al.,
1978). Interestingly, white leghorn laying hens with the sex-
linked dwarf gene (dw) have been found to demonstrate a
dysfunction in the GH-R gene, with a missense mutation found
in the cDNA (Hull et al., 1993, 1999), reducing the GH-
binding activity in the serum and liver without a complete
inhibition (Hull et al., 1999). While this mutation does not
appear to affect the production rate of heavy type chickens,
this dw gene was found to reduce the laying rate of medium
and light strains by up to 10% (Guillaume, 1976). Furthermore,
these dwarf hens have been determined to be abnormally fat,
with a declined ability to mobilize adipose tissue during lay
(Guillaume, 1976; Burghelle-Mayeur et al., 1989), suggesting a
role for body fat percentage in the ability to maintain high
production rates.

At the end of the laying cycle, decreasing GH concentrations
have been reported in many avian species (Scanes et al., 1979;
Sharp et al., 1979; Bedrak et al., 1981). Thus, it is evident that
GH has the ability to control reproduction at the level of the
gonads. However, further evidence also supports an effect higher
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up in the HPG axis as GH-containing neurons are located
throughout the hypothalamus of both turkey hens and ring doves,
specifically in the PVN, IN, and ME (Ramesh et al., 2000), as
well as the MBH in Japanese quail (Berghman et al., 1992),
with expression patterns similar to PRL-containing neurons
(Ramesh et al., 2000). Thus, similar to the pituitary, GH and
PRL dynamics are linked in the hypothalamus. In the pituitary
gland of turkey hens during the transition from egg laying to
expression of incubation behaviour, PRL cells replace GH cells,
as PRL becomes the predominant circulating hormone associated
with the cessation of lay (Ramesh et al., 1996). As the hen begins
to drop out of production, PRL expression in the avian brain
increased (Ramesh et al., 1996), with a corresponding decline in
GnRH (Saldanha et al., 1994).

Leptin (LEP)
After decades of controversy, erroneous publications
(Taouis et al., 1998; Ashwell et al., 1999), and hypotheses
regarding its existence (Dakovic et al., 2014), the chicken
LEP gene was recently discovered embedded in a GC-rich
portion of the genome with numerous repeated segments
(Seroussi et al., 2016). Unlike in mammals, where LEP is
predominantly produced by adipose tissue, gene expression
profiles in the chicken show moderate to high LEP mRNA
levels in the cerebellum, hypothalamus, cerebrum, adrenal
glands, embryonic testis and ovary, along with low levels in
adipose tissue, kidney, and heart. Interestingly, expression of
its receptor LEPR correlated with 86% of all tissues in which
LEP was discovered. This led to the hypothesis that in the
chicken, LEP acts mostly in an autocrine, and/or paracrine
fashion (Seroussi et al., 2016), rather than the endocrine
response observed in mammals (Kershaw and Flier, 2004).
This is further supported by the low levels of circulating LEP
found in serum (Seroussi et al., 2016). One of the obvious
differences between mammalian and avian profiles is the
strong gene expression in the pituitary of the hen, while the
hypothalamus is the primary site in mammals, suggesting
a potential shift in control of homeostasis by this hormone
(Dunn et al., 2000; Seroussi et al., 2016). Nonetheless, due
to minimal expression detected in adipose and liver tissues
in chickens, evidence suggests LEP may not play a role in
avian appetite control (Seroussi et al., 2016). Therefore, further
investigation is required to determine the stimulatory pathway
of this hormone.

As the gene encoding chicken LEP remained elusive despite
the characterization of its receptor, most studies conducted
in avian species relied on administration of mammalian LEP.
LEP signaling was implicated in a number of processes in
the domestic chicken, including glucose and insulin activity
(Kamohara et al., 1997; German et al., 2009; Huo et al., 2009),
with hyperglycemia downregulating LEPR and insulin receptor
(INSR; Rancourt et al., 2015). LEP also interacts with the
melanocortin system, through POMC/CART and NPY/AgRP
neurons (Elias et al., 1998; Davidowa and Plagemann, 2000;
Cowley et al., 2001; Nagamori et al., 2003; Takahashi and Cone,
2005). In rats, LEP led to a significant decrease in hypothalamic
NPY expression (Schwartz et al., 1996) through the inhibition

of NPY and AgRP neurons (Davidowa and Plagemann, 2000;
Nagamori et al., 2003; Takahashi and Cone, 2005), while
stimulating POMC and CART neurons (Elias et al., 1998;
Cowley et al., 2001), thus classifying LEP as an anorexigenic
hormone (Balthasar et al., 2004; Williams et al., 2009; Yosefi
et al., 2010). However, the anorexigenic effect of LEP may
depend on breed or age in chickens, as it had no impact on feed
intake in broiler chicks (Sims et al., 2017), although it could
increase body weight post-hatch, as well as average daily gain
with high doses, while LEP antagonists reversed these effects
(Yuan et al., 2017). One rationale for the proposed control of
the melanocortin system by LEP is its high level of expression
in the brain with undetectable levels in the systemic circulation
(Yosefi et al., 2010; Seroussi et al., 2016). In contrast, mammalian
LEP is highly expressed in adipose tissue resulting in significant
circulating levels, using a short form of LEPR to facilitate
its transport across the blood brain barrier (Tartaglia, 1997).
In avian species, this short form LEPR is absent (Liu et al.,
2007) and LEP exerts its actions by binding to the long form
LEPR, activating the JAK-STAT pathway (Adachi et al., 2008;
Prokop et al., 2014).

Unfortunately, far less information on a potential role of
LEP on the reproductive axis is available in chickens. A study
conducted on commercial broiler breeders fed ad libitum showed
that expression of LEPR was greatest in the granulosa cells
of the F3 and F4 follicles, though feed restriction significantly
decreased mRNA levels. No differences in relative expression
of LEPR within the theca layers of these follicles were
reported. Interestingly, LEPR gene expression in the liver was
significantly increased in hens fed ad libitum compared with
feed restricted broiler breeders (Shi et al., 2006). In the laying
hen, immunoneutralization of LEP reduced the rate of egg
production (Shi et al., 2006), while LEP treatment advanced
sexual maturation and ovarian folliculogenesis (Paczoska-
Eliasiewicz et al., 2003, 2006). This reported earlier onset of
lay was shown to occur through the stimulation of LH, as well
as E2 and P4 production (Paczoska-Eliasiewicz et al., 2006),
although a decline in testosterone induced by LEP treatment
may result from elevated conversion rate into E2 (Sirotkin
and Grossmann, 2007). Interestingly, LEP inhibited apoptosis,
as indicated by the reduced expression of apoptotic markers
within the ovary, along with the promotion of steroidogenesis
and differentiation, supporting follicular development (Sirotkin
and Grossmann, 2007). Recent studies have also shown that
chicken LEP increases the firing rate of neurons within the IN
(Bogatyrev et al., 2017), while reducing the expression of the
glucocorticoid receptor in the brain (Yuan et al., 2017). This
suggests that LEP has the ability to influence signalling within this
region of the brain.

CONCLUSION

Through divergent breeding goals, selection programs for broiler
chickens have largely focussed on rapid offspring growth
rate, resulting in poor reproductive efficiency of breeders
(van der Klein et al., 2020). In contrast, laying hen selection was
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primarily based on egg output, with commercial layers more
than doubling production over the last 50 years. Through this
review, we emphasized that the photoperiodic and metabolic
responses utilize many factors that share common pathways and
mechanisms to control sexual maturation at all levels of the HPG
axis in layer chickens. Although OPN4, OPN5, and VA-Opsin,
have all been proposed as deep-brain photoreceptors mediating
the photoperiodic response (Foster et al., 1985, 1994; Chaurasia
et al., 2005; Halford et al., 2009; Kang et al., 2010; Nakane and
Yoshimura, 2010; Davies et al., 2012; Ohuchi et al., 2012), VA-
Opsin is the only photoreceptor that has been found to meet
all four criteria outlining the activity of the opsin of interest
(68,69,71,101; Table 1). In particular, recent evidence of the
co-expression of VA-Opsin and GnRH-I strongly suggests this
DBP may be a key photoreceptor involved in the photo-induced
activation of the HPG axis (García-Fernández et al., 2015).

Beyond photoperiod, it has become clear that sexual
maturation can occur prior to photostimulation when a body
composition threshold has been met in both layers and broiler
breeders (van der Klein et al., 2018; Baxter and Bédécarrats,
2019). Thus, growth is intimately linked to and can influence
the initiation of reproduction at the hypothalamic level, and
possibly at the level of the ovary. Current knowledge suggests the
melanocortin system is strongly associated with the expression
of neuropeptides from the HPG axis, with GnIH stimulating
the orexigenic peptides AgRP and NPY, while inhibiting the
anorexigenic peptides POMC and CART (McConn et al., 2014),
as seen in Figure 1. While GnIH downregulates the expression
of GnRH, we also hypothesize that elevated expression of AgRP
and NPY activate it, thereby allowing the metabolic factors to
activate the HPG axis (Contijoch et al., 1993), yet the close
proximity of NPY and VIP perikarya in the IN and dorsomedial
hypothalamus (DMH) in the redheaded bunting cannot be
overlooked (Surbhi et al., 2016). VIP is known to participate in
the perception of photoperiod and this close relationship with
NPY neurons maybe the key to link metabolism, reproduction
and photoperiod (Silver et al., 1988; Bi, 2007; Rastogi et al.,
2013; Surbhi et al., 2016) via interaction with GnRH-I and
GnIH neurons (Surbhi et al., 2015). Once sexually mature,
higher GnRH production results in increased steroidogenesis
stimulating POMC and CART expression, thus decreasing feed
intake. While CART and α-MSH are hypothesized to positively
feedback on GnRH, ACTH stimulates AgRP and NPY (Mountjoy
et al., 1994; Kawakami et al., 2000; Strader et al., 2003; Cline
et al., 2008; Shipp et al., 2016). However, β-endorphin inhibits
LH release (Sakurai et al., 1986; Stansfield and Cunningham,
1987), highlighting the importance of the cleavage of POMC.
Interestingly, a recent study reported increased AgRP and
NPY mRNA levels with decreased POMC and CART mRNA

levels in photosensitive roosters, while the opposite gene
expression patterns were observed in photorefractory birds
(Stevenson and Ball, 2012).

At the level of the ovary, as shown in Figure 2, additional
factors involved in body composition, such as PPAR-γ, GH,
and adiponectin, have the ability to stimulate the maturation
and maintenance of the hierarchy. With adiponectin increasing
IGF-1-stimulated P4 production (Chabrolle et al., 2007), it is
hypothesized that this hormone can activate the hierarchical
development of ovarian follicles prior to activation of the upper
levels of the HPG-axis. Interestingly, GH was found to stimulate
E2 synthesis (Hrabia et al., 2012), which in turn increases the
expression of PPAR-γ (Lee et al., 2010). Contrary to mammals, it
has been suggested that LEP plays an autocrine/paracrine role at
all levels of the reproductive axis in chickens, including the ovary
(Seroussi et al., 2016) where it may participate in the maturation
of the follicular hierarchy, yet the stimulatory influence on this
hormone remains unidentified.

While a number of unanswered questions remain, this
review highlights that photostimulation is not the only cue
involved in the activation of the reproductive axis in chickens.
Metabolic status and/or thresholds can transcend photoperiodic
responses. The evidence presented here suggests that although
these pathways can act independently, they are in fact synergistic
and a coordinated response may optimize reproduction.
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