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Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcg receptors
(FcgRs), link the humoral and cellular arms of the immune response, providing a diverse
armamentarium of antimicrobial effector functions. Findings from HIV-1 vaccine efficacy
trials highlight the need for further study of Fc-FcR interactions in understanding what may
constitute vaccine-induced protective immunity. These include host genetic correlates
identified within the low affinity Fcg-receptor locus in three HIV-1 efficacy trials – VAX004,
RV144, and HVTN 505. This perspective summarizes our present knowledge of FcgR
genetics in the context of findings from HIV-1 efficacy trials, and draws on genetic variation
described in other contexts, such as mother-to-child HIV-1 transmission and HIV-1
disease progression, to explore the potential contribution of FcgR variability in modulating
different HIV-1 vaccine efficacy outcomes. Appreciating the complexity and the
importance of the collective contribution of variation within the FCGR gene locus is
important for understanding the role of FcgRs in protection against HIV-1 acquisition.

Keywords: FCGR genes, Fc gamma receptor (FcgR), variant, polymorphism, copy number, HIV - human
immunodeficiency virus, vaccine, disease progression
INTRODUCTION

Despite enormous research efforts over 30 years, a highly efficacious preventative HIV vaccine
remains elusive. Nonetheless, each vaccine efficacy trial provided new insight. Only one HIV-1
vaccine trial has shown some level of protection against HIV-1 acquisition. The RV144 vaccine trial
(1), conducted in Thailand, achieved modest vaccine efficacy at 31.2%, while 6 other efficacy trials –
VAX003 (2), VAX004 (3), HVTN502 (the Step trial) (4), HVTN503 (the Phambili trial) (5),
HVTN505 (6), and HVTN702 (the RV144 follow-on trial) (7) – failed to prevent HIV-1 acquisition
in vaccinees, and even increased risk in some individuals (4, 8). Many differences could account for
the efficacy outcomes, including the vaccine regimen (design, virus subtype, and adjuvant), diversity
of circulating virus strains, sex, modes of transmission, different risk populations, geography, and
host genetics.

The initial immune correlate analysis from RV144 (9) provided the impetus for more detailed
study of immune correlates to better understand vaccine-induced immune protection against
org December 2021 | Volume 12 | Article 7882031
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HIV-1. These subsequent studies and analyses have revealed the
inordinately complex nature of immunological mechanisms that
collectively act to provide protection against acquisition of HIV-
1 [reviewed in (10)]. In particular, they have highlighted many
HIV-specific antibody parameters as correlates of HIV-1
acquisition risk (9, 11–14), many of which bind FcgRs to
mediate their functions. Indeed, FcgR-mediated effector
functions associate with vaccine protection (9, 15). Host
genetic correlates further implicating a role for FcgRs have
been identified in three efficacy trials, VAX004 (16), RV144
(17), and HVTN505 (18); each conducted in different population
groups with distinct allelic variability across FcgRs (19).

Here we summarize our present knowledge of FcgR genetics
in the context of findings from HIV-1 efficacy trials, and include
studies of mother-to-child HIV-1 transmission and HIV-1
disease progression. We highlight the complexity of the FCGR
locus, the importance of using validated methods to aid
interpretation, the inclusion of FCGR gene copy number
determination, and population genetic differences, among
other considerations outlined.
THE LOW AFFINITY FcgRs AND HOST
GENETIC VARIABILITY

IgG, elicited through active immunization (infection or vaccination)
or transferred passively (intravenous infusion or transplacental),
modulates an antiviral response through several mechanisms. The
antigen binding fragment (Fab) may neutralize virus infection by
binding viral surface proteins and preventing attachment to host
receptors, while the antibody Fc domain direct immune
mechanisms through the engagement of FcgRs. Cross-linking of
FcgRs on the cell surface through multivalent interactions, initiates
responses that include antibody-dependent cellular cytotoxicity
(ADCC), antibody-dependent cellular phagocytosis (ADCP),
oxidative burst, release of inflammatory mediators, and regulation
of antibody production (Figure 1A) (21–24).

FcgRs are a complex family of activating and inhibitory
receptors, comprising three classes of molecules and different
isoforms: FcgRIa, FcgRIIa/b/c, and FcgRIIIa/b (Figure 1B). All
FcgRs are glycoproteins belonging to the Ig superfamily and
consist of a ligand-binding a-chain with two (FcgRII and
FcgRIII) or three (FcgRI) extracellular Ig-like domains, a
transmembrane domain, and intracytoplasmic domain. The
activating or inhibitory signaling motifs are located either within
the a-chain (FcgRII) or associated signaling subunits (FcgRI and
FcgRIIIa) (25). Unique to the FcgR family, FcgRIIIb attaches to the
cell membrane with a glycosylphosphatidylinositol anchor.
Despite lacking intrinsic cytoplasmic signaling domains,
FcgRIIIb induces several cell responses (26–28). Each FcgR is
expressed on specific cell types, either constitutively or induced,
and has particular affinities for IgG and its subtypes (IgG1-4). The
genes that encode FcgRs – FCGR1A, FCGR2A/B/C, and FCGR3A/
B – are further subject to considerable allelic variation, resulting
from segmental genomic duplications/deletions or single
nucleotide polymorphisms.
Frontiers in Immunology | www.frontiersin.org 2
FCGR2C, FCGR3A, and FCGR3B occur at different gene
copies due to the gain or loss of defined copy number regions
(CNR1-5, Figure 1C). The number of FCGR genes per diploid
genome directly correlate with FcgR surface density and function
(29, 30). In addition to this gene dosage effect, duplications/
deletions create chimeric FCGRs that alter the cellular
distribution, expression, and function of FcgRs. A deletion of
CNR1, present in 7.4-18.1% of individuals depending on
ethnicity, juxtaposes the 5’-regulatory sequences of FCGR2C
with the coding sequence of FCGR2B, creating the chimeric
FCGR2B’ and expression of FcgRIIb on cytotoxic NK cells where
it inhibits cell activation and ADCC (31, 32). A CNR2 deletion,
present in <1.5% of individuals, leads to an FCGR2A/2C chimera
that result in reduced FcgRIIa surface levels and oxidative burst
response (32, 33). Conversely, a CNR2 duplication, present in
1.6-4.5% of individuals, leads to an FCGR2C/2A chimeric gene
that increases FcgRIIc expression levels.

Allelic variation for FcgRI is low. In contrast, several single
nucleotide variants with a known phenotypic or functional
consequence exist for FcgRIIa/b/c and FcgRIIIa/b (34). Distinct
amino acid changes in the membrane proximal Ig-like domain of
FcgRIIa and FcgRIIIa alter their affinity for IgG subtypes and
associated effector functions, including FcgRIIa-p.H166R (alias
H131R, rs1801274) and FcgRIIIa-p.F176V (alias F158V,
rs396991) (35–38). Conversely, in the transmembrane domain
of FcgRIIb, the p.I232T variant (rs1050501) alters its inclusion in
lipid rafts and inhibitory signaling (39). In FcgRIIIb, a
combination of six amino acid changes determine the human
neutrophil antigens (HNA) 1a/b/c – molecules that are
antigenically distinct and modulate neutrophil phagocytosis
and oxidative burst (40). Unlike other FCGRs, FCGR2C occurs
predominantly as a pseudogene, where a combination of
FCGR2C minor alleles – p.X57Q (alias X13Q) and c.798+
1A>G (rs76277413) – determine its surface expression (20, 41).
Other co-inherited single nucleotide variants (haplotypes) within
the promotor region of FCGR2B/C and spanning FCGR3A
modulate surface expression levels of FcgRIIb/c and FcgRIIIa,
respectively (42–44).

Over the past few years, research identified several new FCGR
variants of clinical relevance in the context of HIV-1 (described
below). Although, linkage disequilibrium (co-occurring variants) in
the FCGR locus has impeded identification of potential causal
variants (19, 45, 46). Studying FCGR variants in different
population groups in the same and/or different context may help
define a role for specific variants, since linkage disequilibrium is
inconsistent between geographical populations (19). Of note,
describing new FCGR variants and assigning them to specific
FcgRs warrants caution, since high nucleotide sequence homology
between FCGRs could lead to inaccurate assignment of variants to
specific genes (34); thus, highlighting the need for validated
genotyping methods. In general, for the description of new and
conventional FCGR variants, we encourage the use of a single
international genotypic variation nomenclature as described by
the Human Genome Variation Society (HGVS) to enable cross-
referencing of FCGR variants between studies (34, 47). We include
here the HGVS name for all variants.
December 2021 | Volume 12 | Article 788203
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FIGURE 1 | FcgR function, structure and variability. (A) FcgRs activate or inhibit immune mechanisms that include killing of infected cells through antibody-dependent
cellular cytotoxicity, clearance of immune complexes through phagocytosis, release of reactive oxygen species [superoxide anion (O-

2) and hydrogen peroxide (H2O2)],
and regulation of B cell activation through co-engaging the B cell receptor and inhibitory FcgRIIb by immune complexes. (B) FcgRs comprise a family of receptors: FcgRI,
FcgRIIa, FcgRIIb, FcgRIIc, FcgRIIIa, FcgRIIIb; also known by their cluster of differentiation (CD) markers CD64, CD32a, CD32b, CD32c, CD16a, and CD16b, respectively.
The FcgRs IgG binding chain activates or regulates immune responses depending on its association with or inclusion of an immunoreceptor tyrosine activation motif
(ITAM) or inhibitory motif (ITIM). Unique among FcgRs, FcgRIIIb attaches to the cell membrane with a glycosylphosphatidylinositol (GPI) anchor. Each receptor has a
specific cell expression profile and affinity for IgG and its subtypes (IgG1-4), shown as affinity constants (KA×10

5 M-1); -, no binding. Expression patterns: #inducible
expression; •in individuals bearing the FCGR2C expression variants (20); †very low expression or expressed by rare subsets; *expressed in individuals bearing a FCGR2C-
FCGR3B gene deletion. (C) The cluster of FCGR2A/B/C and FCGR3A/B genes on chromosome 1q23.3 that encode FcgRIIa/b/c and FcgRIIIa/b are polymorphic.
Variants include nonsynonymous single nucleotide polymorphisms that alter the receptor’s binding affinity for certain IgG subtypes, determine expression of an otherwise
pseudogene, increase surface expression, glycosylation, and subcellular localization. Large segmental duplications and deletions in the FCGR cluster further modify FcgR
expression levels and create chimeric genes that yield FcgRs with altered cellular distribution and/or function. Created with BioRender.com.
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FcgR GENE VARIANTS AND HIV VACCINE
EFFICACY TRIALS

In HIV-1 vaccine efficacy trials, studies have shown clear
associations between FcgR-mediated effector functions and risk
of HIV-1 acquisition following vaccination (9, 15, 16, 48). To
dissect further, three vaccine efficacy studies to date have
investigated FcgR variation as a modifier of antibody Fc-
Frontiers in Immunology | www.frontiersin.org 4
mediated effector functions and HIV-1 acquis it ion
risk (Figure 2A).

The VAX004 trial evaluated a recombinant envelope protein
(AIDSVAX B/B) prime-boost regimen in predominantly
Caucasian men who have sex with men (3). Vaccine recipients
who remained uninfected had higher antibody-dependent cell-
mediated virus inhibition (ADCVI) responses, which encompass
ADCC, ADCP and the induction of soluble antiviral factors, than
A

B

FIGURE 2 | FCGR variant associations with HIV-1 vaccine efficacy trial outcomes. (A) To date, three HIV-1 vaccine efficacy trials investigated the association
between FCGR variants and HIV-1 acquisition risk: VAX004, RV144 and HVTN505. The trials differed with regard to vaccine modalities, target HIV-1 subtypes, study
populations, mode of HIV-1 transmission, and host ethnicities. In VAX004 and HVTN505 vaccinees bearing minor alleles within FCGR2A and FCGR2B, enhanced
Fc-mediated effector functions [antibody-dependent cellular viral inhibition (ADCVI) and antibody-dependent cellular phagocytosis (ADCP), respectively] associated
with reduced risk of HIV-1 acquisition. In VAX004, enhanced HIV-1 acquisition occurred in vaccinees homozygous for the FcgRIIIa-176V allele. Co-inherited intragenic
minor alleles in FCGR2C enhanced vaccine efficacy in RV144, but increased HIV-1 acquisition risk in HVTN505. Similarly, co-inherited minor alleles in the 5’
untranslated region of FCGR3B associated with HIV-1 acquisition risk in HVTN505. (B) Defining FCGR genetic associations with HIV-1 vaccine efficacy is affected by
several factors relating to the vaccine, the host, the virus and methodology used. Created with BioRender.com.
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https://biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lassaunière and Tiemessen FcgR Variants and HIV-1 Vaccines
those who became infected (48). The magnitude of ADCVI
responses inversely correlated with the HIV-1 acquisition rate,
but only in individuals bearing low affinity alleles for FcgRIIa-
p.H166R (HR/RR genotypes) and FcgRIIIa-p.F176V (FF
genotype) (48) (Figure 2Ai). When adjusted for linkage
disequilibrium between the two variants, an independent
association with FcgRIIa-p.H166R remained. However, the
FcgRIIa-p.H166R variant itself did not predict acquisition rate
(16). Conversely, in the low risk behavioral group, vaccinees
homozygous for the p.176V allele were at greater rate of
acquiring HIV-1 compared to those who received the placebo
(hazard ratio 4.51), suggesting enhanced infection from the use
of AIDSVAX B/B in this genotype group (16).

The RV144 trial, which evaluated a heterologous ALVAC-
HIV (vCP1521) canary pox vector prime and AIDSVAX B/E
protein boost regimen, demonstrated modest vaccine efficacy
(31.2%) in Thai individuals (1). The primary determinants of
vaccine efficacy were binding IgG to the variable loops 1 and 2
(V1V2) region of gp120 and binding of plasma IgA to envelope
(9). In a secondary analysis, the combination of high levels of
ADCC and low plasma anti-HIV-1 envelope IgA antibodies
inversely correlated with HIV-1 acquisition risk (9). Variants
within FcgRIIIa, the major FcgR involved in NK cell-mediated
ADCC, did not associate with HIV-1 acquisition risk (17)
(Figure 2Aii). Conversely, three single nucleotide variants within
FCGR2C significantly modified vaccine efficacy that include
FCGR2C 126C>T (HVGS name: c.134-96C>T, rs114945036),
c.353C>T (p. T118I, rs138747765), and c.391+111G>A
(rs78603008) (17). All variants were in complete linkage
disequilibrium in Thai RV144 trial participants, forming a
haplotype. Possession of the haplotype associated with an
estimated vaccine efficacy of 91% against CRF01_AE 169K HIV-1
and 64% against anyHIV-1 strain, compared to 15% and 11% in the
absence of the haplotype, respectively. The functional significance of
the variant is unrelated to FcgRIIc surface expression, since only one
study participant carried an FcgRIIc-p.57Q allele that predicts
expression (17). Alternatively, the haplotype locates within a weak
transcriptional enhancer (49). The minor alleles likely abrogate
binding of repressor proteins within the regulatory motif and
increase mRNA expression. Indeed, in Epstein-Barr virus
transformed lymphoblastoid B-cell lines from European
Caucasians, the minor allele haplotype associated with increased
expression of FCGR2A and/or FCGR2C exon 7 (50). Other FCGR2C
variants in complete linkage disequilibrium with the haplotype
include c.113-1058T>C (rs2169052/rs115953596) and c.113-
684C>T (rs111828362) (49) were not genotyped in RV144
participants and warrant further investigation. Of significance,
two components of the haplotype, p.T118I (rs138747765) and
c.391+111G>A (rs78603008), are rarely polymorphic in Africans
(19), where the RV144 follow-up trial HVTN 702 failed to protect
against HIV-1 infection (7).

The HVTN 505 trial that evaluated another heterologous
prime-boost regimen – a multigene, multiclade DNA prime and
recombinant adenovirus 5 (rAd5) boost – did not show any
efficacy in a cohort of predominantly Caucasian men who have
sex with men (6). However, ADCP responses and binding of
Frontiers in Immunology | www.frontiersin.org 5
immune complexes to recombinant FcgRIIa-p.166H inversely
correlated with HIV-1 acquisition risk (15) (Figure 2Aiii). The
associations increased for individuals without HIV-1 envelope
IgA. Intriguingly, in a phase IIa clinical trial of the same DNA/
rAd5 regimen (HVTN 204) (51), a different group did not detect
ADCP responses (52). The cause of the distinct observations is
unclear; both groups used the same assay albeit a different
antibody source (isolated IgG vs. serum) and antigen (vaccine
clade-specific gp120 vs. Con S gp140) (52). In the HVTN 505
trial participants, targeted sequencing of regions encoding the
extracellular domains of FcgRs identified several variants that
associated with HIV-1 acquisition risk or Fc-mediated effector
functions. An FCGR2A intronic variant modified HIV-1
acquisition risk, FCGR2A-intron13-645-G/A (HGVS name:
c.742+290G>A, rs2165088) (15). In vaccine recipients bearing
the minor allele of c.742+290G>A, the magnitude of ADCP
responses and FcgRIIa-p.166H binding to antibody-rgp140
complexes associated with reduced risk of HIV-1 acquisition
(15). The functional consequence of FCGR2A c.742+290G>A is
unknown and it does not appear to be in complete or high
linkage disequilibrium with other variants in, or flanking,
FCGR2A. Inverse correlations between ADCP with HIV-1
acquisition risk similarly occurred for participants bearing
minor alleles of two FCGR2B variants (synonymous FCGR2B-
exon5-523-G/A; HGVS name: c.336G>A, rs6665610 and
FCGR2B-intron14-352-T/G; HGVS name: c.760+26T>G,
rs6666965) (18). c.336G>A is in high linkage disequilibrium
with seven other FCGR2B variants and associated with decreased
expression of FCGR2A (18).

Furthermore, in HVTN 505 participants, a four-variant
FCGR2C haplotype and three-variant FCGR3B haplotype
associated with increased HIV-1 acquisition risk (hazard ratio
9.79 and 2.78, respectively) (18) (Figure 2Aiii). The FCGR2C
haplotype comprise two of the three FCGR2C variants identified
as protective in the RV144 vaccine trial (p.T118I, rs138747765;
and c.391+111G>A, rs78603008). The lack of association with
the third FCGR2C variant (c.134-96C>T, rs114945036) is likely
due to incomplete linkage disequilibrium of the three FCGR2C
variants in Caucasians (49), the predominant ethnicity of HVTN
505 participants. Additional FCGR2C variants were in complete
linkage disequilibrium in HVTN 505 participants, FCGR2C-
intron15-403-C/T (HGVS name: c.760+81C>T, rs373013207]
and FCGR2C-intron15-433-G/A (HGVS name: c.760+111G>A,
rs201984478). The functional consequences of these variants
remains to be determined. The haplotype within FCGR3B that
also associated with increased HIV-1 acquisition comprise three
variants in the 5’ untranslated region of FCGR3B, 111 to 126
nucleotides upstream of the transcription start site and
potentially in the gene promoter region. These include
FCGR3B-5’utr222-G/A (HGVS name: c.-111G>T; rs34085961),
FCGR3B-5’utr44-T/A (HGVS name: c.-181T>A, rs34322334),
and FCGR3B-5 ’utr99-C/G (HGVS name: c.-126C>G,
rs61803026). In individuals with the FCGR3B haplotype,
vaccination was less likely to induce potentially protective
envelope-specific IgG and/or CD8+ T-cell responses than for
individuals without the FCGR3B haplotype.
December 2021 | Volume 12 | Article 788203

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lassaunière and Tiemessen FcgR Variants and HIV-1 Vaccines
FcgR VARIANTS IN OTHER HIV
INFECTION AND DISEASE CONTEXTS

Mother-to-child-transmission. Investigations of FCGR variants
and mother-to-child-transmission risk are limited to two Kenyan
cohorts and one South African cohort (53–55). In a Kenyan
cohort of grouped perinatal HIV-1 transmission routes (in utero,
intrapartum, and breastfeeding), infants with the FcgRIIa-
p.166HH genotype were at increased risk of acquiring HIV-1
compared with infants bearing the p.166HR genotype (53).
Studies of a Kenyan cohort with a large representation of
breastfeeding HIV-1 transmission and our South African
cohort with predominantly in utero and intrapartum HIV-1
transmission, did not replicate these findings (55, 56). In the
latter two cohorts, the maternal FcgRIIIa-F176V variant
associated with HIV-1 transmission, although with contrasting
findings. In the Kenyan cohort of predominantly breastfeeding
women, heterozygous mothers (FV) had an increased risk of
transmitting HIV-1 compared to homozygous mothers
(combined FF/VV); however, carriage of the 176V allele did
not predict HIV-1 transmission (56). If adjustment for multiple
comparisons were applied in the study, the association would not
have been statistically significant. In contrast, our South African
cohort revealed a protective role for the 176V allele in in utero
transmission, where the association remained significant after
adjustment for multiple comparisons (55). A recent study of
FCGR2C variability in South African children revealed a
protective role for a single gene copy of FCGR2C/3B per
diploid genome (57). In contrast, children bearing the minor
allele of the FCGR2C variant c.134-96C>T (rs114945036) –
identified as protective in Thai RV144 vaccine recipients (17) –
were more likely to acquire HIV-1 compared to children
homozygous for the c.134-96C allele (57).

Disease progression. The FcgRIIa low affinity genotype,
p.166RR, predicted a faster CD4 decline compared to
p.166RH/HH in the Multicenter AIDS Cohort Study (MACS)
of predominantly Caucasian men who have sex with men (58). A
similar analysis in Kenyan women – a different host genetic
background, sex and route of transmission – showed no effect
(59). In addition, the variant did not modify natural control of
HIV-1 infection in African Americans (60, 61). Despite
convincing evidence for a role for ADCC in natural HIV-1
control [reviewed in (62)], the FcgRIIIa-p.F176V variant does
not appear to modify HIV-1 disease course in Caucasians (58) or
African Americans (60) (after adjusting for multiple
comparisons). Neither FcgRIIa-p.H166R, FcgRIIIa-p.F176V,
nor FcgRIIb-p.I232T associated with HIV-1 control in the
French multicentric CODEX cohort (63). Of note, the potential
for FcgR variants to modify HIV-1 control may only become
apparent when considering variability within the ligand, such as
IgG g chain phenotypes (GM allotypes). For example, in
individuals bearing the FcgRIIa p.166HH or FcgRIIIa p.176FV/
VV genotypes, HIV-1 viraemic control was more likely in the
absence of the IgG GM21 allotype (61). Beyond the protein-
coding region, a variant located 3.1 kilobases upstream of
FCGR2A, g.1954 A>G (rs10800309), modified HIV-1 disease
Frontiers in Immunology | www.frontiersin.org 6
progression in a cohort of predominantly Caucasian men and
women (63). In particular, homozygosity for g.1954A allele,
which associates with increased FcgRIIa surface expression on
myeloid cells, predicted natural control of HIV-1 independent of
HLA-B57 and HLA-B27 (63). Another non-coding variant, the
FCGR2C variant c.134-96C>T (rs114945036), predicted HIV-1
disease progression in South Africans (49), the same population
where the RV144 follow-on trial, HVTN702, failed to show
efficacy (7). However, in the French multicentric CODEX
cohort of predominantly Caucasian individuals, the same
FCGR2C variant did not associate with disease progression
(63). It is unclear whether the different outcomes of RV144
and HVTN702 result from diverse population genetics, that
include FCGR2C, or vaccine-associated factors that include
differences in HIV-1 subtype envelopes, mismatched
circulating strains, adjuvant or additional booster vaccination.
Regardless, the collective findings further emphasize the
importance of the FCGR2C locus, and additional study in
different contexts will help elucidate the underlying protective/
deleterious mechanisms.
DISCUSSION

Many factors affect the host immunological response to
immunization and to the pathogen (HIV) encountered. These
include i) the route of inoculation and of HIV-1 acquisition, ii)
immunogen/virus variability, iii) vaccine regimen (modality,
dose, timing, adjuvant), iv) other prior exposures (related or
unrelated), comorbidities and pre-existing infections, v) age, vi)
sex, vii) geography (population genetics), and viii) genetic
variation of the host (Figure 2B). The immune milieu present
at antigen encounter is affected by all these factors, which
collectively define what could be called “an immunological
founder effect” – a measure of an individual’s immune
capability that dictates the likelihood of producing a protective
response to vaccination or infection. As context matters, the
antibody Fc-FcgR axis, implicated in protection from acquisition
of HIV-1 in vaccine recipients, would be expected to be
modulated by these factors.

Investigations of FcgRs and their variants warrant several
considerations. i) There are no association studies of FCGR copy
number variation and HIV vaccine outcome. In RV144, ADCC
was a correlate of protection. It is therefore plausible that a CNR1
deletion, which results in the expression of the inhibitory FcgRIIb
on NK cells and subsequent inhibition of ADCC, may have an
effect on vaccine efficacy. ii) Investigations of single nucleotide
variants need to adjust for FCGR gene copy number. Certain
minor alleles are more prevalent in individuals with more than
two gene copies and may confound quantitative trait loci studies
of FCGR variants (49). iii) Investigations of Fc-mediated effector
functions should consider the autologous FcgR variants since
they modulate binding of the receptor to antibodies, surface
expression levels of the receptor, and/or cell activation/inhibition
(64). iv) FCGR genes are highly homologous. Assigning single
nucleotide variants to specific FCGRs requires validated
December 2021 | Volume 12 | Article 788203
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methods. v) Considerable linkage disequilibrium between single
nucleotide variants exist across the FCGR gene region (19, 45,
46), complicating identification of potential causal variants. vi)
Increasing evidence suggest a clinical significance for non-coding
FCGR variants highlighting potential complex cis- or transgene
regulation that warrants characterization and investigation in
other contexts. vii) FcgRs often co-occur on the same cell type.
Elucidating the role of a single variant requires adjusting for
allelic variants in co-expressed FcgRs, since the collective
function of all co-expressed FcgRs will determine the effector
response. Furthermore, phenotypic and functional analyses of
FCGR genotype combinations are highly relevant, as
demonstrated by an association of the FCGR2A rs1801274:
rs10800309 diplotype with cell-type specific FcgRII expression
(65) and FcgRIIa: FcgRIIIb haplotypes with neutrophil function
(66). viii) FCGR variation – gene copy number variation, single
nucleotide variants, and linkage disequilibrium – differ
significantly between population groups and genetic
association cannot necessarily be extrapolated between groups.
ix) Phenotypic and functional consequences of allelic variants
should be studied in the disease context and immune milieu of
the condition under study, since disease may alter allelic
function (67).

In summary, FCGR genetic variants have been associated with
protective or deleterious infection and disease outcomes. Much
insight can be gained into the potential functional significance of
these variants by testing samples from other efficacy trials. For
example, HVTN 702, which was non-efficacious in South
Africans immunized with subtype C envelope ALVAC-HIV
(vCP2438) prime and an MF59-adjuvanted subtype C bivalent
envelope protein boost (7). Similarly, individuals passively
immunized with broadly neutralizing antibody (VRC01) in the
Frontiers in Immunology | www.frontiersin.org 7
Antibody Mediated Prevention (AMP) trials (68) provide
another informative study model. Harnessing host genetic
variation between populations, and studying the collective
contribution of FCGR variants in different infection/disease
contexts, will provide much needed insights into what
constitutes protective immunity to HIV-1. Importantly, the
considerations discussed here extend beyond the context of
HIV, bearing relevance to other infections and vaccination
strategies that encompass endemic [e.g. malaria (69)], epidemic
[e.g. influenza and respiratory syncytial virus (70–72)], pandemic
[e.g. severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (73)], and emerging/re-emerging infectious diseases [e.g.
Ebola (74, 75)].
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