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Abstract

The human orbitofrontal cortex (OFC) has long been associated with food reward processing and is thought to represent
modality-independent signals of value. Food tastiness and health are core attributes of many models of food choice and
dietary self-control. Here we used functional neuroimaging to examine the neural representation of tastiness and health for
a set of 28 food categories selected to be orthogonal with respect to both dimensions. Using representational similarity
analysis, in conjunction with linear mixed-effects modeling, we demonstrate that the OFC spontaneously encodes food
health, whereas tastiness was associated with greater neural dissimilarity. Subsequent analyses using model dissimilarity
matrices that encode overall tastiness magnitude demonstrated that the neural representation of foods grows more distinct
with increasing tastiness but not with increasing health. In a separate study, we use lexical analysis of natural language
descriptions of food to show that food tastiness is associated with more elaborate descriptions of food. Together these data
show not only that the OFC spontaneously encodes the dimensions of health and tastiness when viewing appetitive food
cues, but also that the neural and cognitive representations of food categories that are the highest in tastiness are more
refined than those lower in tastiness.

Key words: food; reward; orbitofrontal cortex; multivariate pattern analysis; representational similarity analysis

Introduction

The orbitofrontal cortex (OFC) is an important region for repre-
senting the reward value of appetitive stimuli such as food and
drugs (Jasinska et al., 2014; van der Laan et al., 2011; Wagner,
2017). Activity in this region has been shown to vary as a function
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of hunger (Small, 2001; Kringelbach et al., 2003), pleasantness
(Simmons et al., 2014), liking and desire (Wagner et al., 2013; Jiang
et al., 2015). Moreover, individuals’ differences in the degree to
which people activate this region when viewing appetitive food
images predict both body mass index (BMI; Rapuano et al., 2016)
and prospective weight gain (Yokum et al., 2011).
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Non-human animal research suggests that the OFC is a con-
vergence zone for multiple sensory features of foods (Rolls and
Baylis, 1994), such as fat (Rolls et al., 1999), umami (Baylis and
Rolls, 1991), sweet, salty, bitter, and sour (Rolls et al., 1990).
Human neuroscience studies further suggest a role for this
region in representing the identity of food rewards. For instance,
Howard et al. (2015) found that the OFC was able to discriminate
between identity-specific features of food rewards (i.e. sweet vs
savory), independent of reward value (i.e. strong or weak odor
concentration). Despite these findings, there are relatively few
studies that have examined whether the OFC encodes com-
plex food attributes automatically (i.e. in the absence of explicit
task instructions to evaluate food along these dimensions). One
recent exception is a study that examined how the brain repre-
sents the nutritional attributes of foods (e.g. calories, vitamins,
fat), using representational similarity analysis (RSA), they found
that foods with similar nutrient values were associated with
similar patterns of neural activity in the OFC (Suzuki et al., 2017).

When it comes to dietary choice and self-control, researchers
have focused on the more high-level motivationally relevant fea-
tures of appetitive food (e.g. a food’s tastiness and health prop-
erties). A wealth of experimental work in humans demonstrates
that dietary choices are heavily influenced by the dimensions of
tastiness (a more immediate sensory feature) and health (a more
general feature related to long-term goals). For instance, atti-
tudes toward food tastiness and healthiness have been shown
to predict food consumption patterns across a range of stud-
ies (Zandstra et al., 2001; Hearty et al., 2007; Pelletier et al.,
2013; Aggarwal et al., 2014; Nguyen et al., 2015; Kowalkowska
et al., 2018). Furthermore, research has shown that focusing
attention on the tastiness vs the healthiness of a food item
leads to an increased desire to consume unhealthy foods (Young
and Fazio, 2013). Finally, a growing literature on value-based
decision-making has highlighted the important role of tastiness
and health in guiding dietary choices and dietary self-control
(Hare et al., 2009; Hare et al., 2011; Harris et al., 2018). Sullivan,
Hutcherson, Harris & Rangel, 2015. Taken together, these studies
argue for the fundamental role of tastiness and health in guiding
food choice. Understanding how these dimensions are encoded
in the brain may be critically important for understanding both
the cognitive and neural mechanisms underlying real-world
dietary choices as well as dietary self-control failure.

In the current study, we developed a novel food category
visual stimulus set that varied orthogonally in the dimensions
of tastiness and health in order to investigate the neural repre-
sentation of these motivationally relevant dimensions of appet-
itive foods. Specifically, we used RSA in conjunction with lin-
ear mixed-effects modeling to test whether the OFC sponta-
neously encodes the dimensions of tastiness and health when
viewing food items and whether these representations might
become more distinct the more a food is considered desirable
(i.e. increasing tastiness). The results of this analysis are corrob-
orated by a second experiment that examines whether individu-
als’ cognitive representation of food, as assessed through verbal
descriptions of foods and analyzed with the linguistic inquiry
and word count (LIWC) tool (Pennebaker et al., 2015), also shows
evidence of greater distinctiveness with increasing tastiness.

Materials and methods
Participants

Twenty healthy right-handed non-dieting participants with
normal or corrected-to-normal visual acuity and no dietary

restrictions or food allergies participated in the functional
neuroimaging experiment (12 female; mean age = 21.1; range
18–29). Two participants were excluded from analyses: one due
to excessive head motion (i.e. several instances of >2 mm head
motion) and another for falling asleep during the imaging task
as indicated by a lack of behavioral responses for a portion of
the study. The second experiment involving natural language
descriptions of food categories consisted of 59 participants (41
female; mean age = 19.6; range 18–30). Three participants were
excluded due to a lack of familiarity with one or more of the food
categories included in the task. All participants gave informed
consent in both sessions in accordance with the guidelines set
by the internal review board at The Ohio State University and
were compensated for their participation.

Stimuli

Stimuli consisted of a novel set of food images that were
designed to vary in health and tastiness. The images used in
the present study are a subset of a larger image database under
development and were chosen to vary orthogonally and to repre-
sent the maximum amount of variance along the dimensions of
tastiness and health. Images in this database consisted of high-
quality photographs of plated foods taken in a ‘tabletop photo
studio’ (i.e. lightbox) ensuring identical image background and
lighting. Each image was captured in RAW format and white
balance corrected in Adobe Lightroom to ensure approximately
identical image background characteristics. Although other food
image databases exist (e.g. Food-pics: Blechert, Meule, Busch
and Ohla, 2014; Food4Health: Charbonnier et al., 2016; OLAF:
Miccoli et al., 2014), none of these were amenable to the present
study due to a combination of: (i) image variability (e.g. food
‘scenes’ with no consistent background) that could potentially
drive the similarity of neural patterns between food categories
above and beyond the foods themselves; (ii) insufficient number
of exemplars per category to be amenable to a multivariate
pattern analysis that, optimally, ought to have multiple trials
and exemplars per category to obtain stable estimates of neural
activity while minimizng habituation to individual exemplars
(e.g. Dimsdale-Zucker and Ranganath, 2018); (iii) consisted
largely of European foods that were not readily recognizable by
Americans or likely to be considered desirable to an American
palate (e.g. french fries with Mayonnaise, egg cake, liver sausage
and other meats of dubious provenance).

For inclusion in the following study, a set of 183 unique
food images were pre-tested from a larger database of 373 food
images. A separate set of 64 participants (female = 48; mean
age = 18.9; range 18–35) with no dietary restrictions rated each of
the food images using a Likert scale (−5 to +5) on the following
dimensions: liking, tastiness and healthiness. From this set of
ratings, 28 food categories selected to span the range of tasti-
ness and health values were selected. For each food category,
the five exemplars with the lowest distance to the centroid of
each cluster in the dimensions of tastiness and health were
selected. In other words, exemplars that were most dissimilar
from the overall mean tastiness and healthiness of the cluster
were excluded from the final stimulus set. Based on these rat-
ings, a final stimulus set consisting of 28 categories of foods (e.g.
apple, cake, salad) each with five exemplars for a total of 140
unique food image exemplars (i.e. granny smith apple, chocolate
cake, Caesar salad). An example of the images comprising select
food categories is shown in Figure 1 and the distribution of tasti-
ness and health scores for each category is shown in Figure 2. A
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Fig. 1. Example food images. All food images were created in-house and plated on a uniform background. From left to right—Row 1: gala apple, Five Guys burger, green

peppers; Row 2: steak salad, pepperoni, double chocolate cake; Row 3: White Castle fries, mango, sesame trail mix.

Fig. 2. Distribution of ratings of tastiness and healthiness per category from participants in the functional neuroimaging experiment. Each point represents the average

rating across all five food items in the category.

complete list of food exemplars and categories can be found in
Supplementary Table S1.

Procedure

Participants were instructed to refrain from eating for at least
2 hours prior to the in-lab session so they would not be sated
during the experiment. Upon arrival to the experiment, they
were asked to rate their present hunger, fullness and time since
last eaten. This information was not collected for one participant

prior to participation but was collected at the end of the experi-
ment. Following this, participants completed the functional neu-
roimaging food viewing task, followed by a separate food rating
task outside the scanner (both tasks are described below). Upon
completion of both study tasks, participants provided additional
demographic information, again reported their hunger, fullness
and hours since last meal and, finally, they completed both
the Revised Restraint Scale (Heatherton et al., 1988) and the
Dutch Eating Behavior Questionnaire (van Strien et al., 1986).
A summary of these participant characteristics is provided in
Supplementary Table S2.

Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8818

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa083#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa083#supplementary-data


Table 1. Average correlation across participants between food category ratings

Measures 1 2 3 4 5 6

1. Tastiness 0.01 0.90∗∗ 0.79∗∗ 0.27 0.17
2. Healthiness 0.07 0.03 −0.40 −0.63∗
3. Liking 0.83∗∗ 0.23 0.13
4. Willingness to

consume
0.21 0.11

5. Carbohydrate
content

0.39

6. Fat content

Note: Values reflect the average correlation across all 18 participants between each rating dimension for the 28 food categories. Ratings for each food category took
place on a −5 to +5 scale. ∗P < 0.05; P∗∗ < 0.01.

Taste/Health food task

Participants completed the food-viewing task while undergoing
functional magnetic resonance imaging (fMRI). Stimulus presen-
tation and behavioral responses were recorded using PsychoPy
(Peirce, 2007, 2008). On each trial, participants were presented
with a food image and responded whether they liked or disliked
the food. The task consisted of six imaging runs, each including
140 food image trials and 45 null-event trials consisting of a black
fixation cross against a gray background. For each run, every
food category and exemplar (i.e. 28 food categories with five
exemplars each) was presented. Thus, every exemplar was pre-
sented six times, and the neural response for each food category
was estimated from 30 trials (i.e. five exemplars presented six
times). The order of event presentation was optimized per run
using Opseq2 (Dale, 1999), and the order of run presentations was
randomized across all participants. Each image was presented
for 1800 ms followed by a 200 ms fixation cross.

Food category ratings

After scanning, participants provided additional ratings of each
food category. In this task, participants were shown a collage
of all five food image exemplars that comprised each of the 28
food categories and asked to rate each category based on how
they viewed the category in general, and not to base their rating
off any one individual exemplar. Six ratings were collected: (i)
‘How much do you like this food?’; (ii) ‘If the food was given to
you for free, how willing would you be to consume it?’; (iii) ‘Is
this food healthy?’; (iv) ‘Is this food tasty?’; (v) ‘How high is this
food in fat?’ and (vi) ‘How high is this food in carbohydrates?’.
Participants responded to ratings on a −5 to +5 scale ranging
from ‘Not at All’ to ‘Very Much’. Overall, participant ratings for
tastiness and health were uncorrelated [average r(26) = 0.007]. A
summary of the average correlation between all pairs of ratings
across all subjects is provided in Table 1.

Image acquisition

Magnetic resonance imaging (MRI) was collected with a Siemens
Prisma 3.0 Tesla MRI scanner using a 32-channel phased array
coil. Structural images were acquired using a T1-weighted
[176 sagittal slices, time repetitions (TR): 1900 ms; time echo
(TE): 4.44 ms; flip angle: 12◦; 1 mm isotropic voxels). Func-
tional images were acquired using a T2-weighted echo-planar
sequence (TR: 2000 ms; TE: 28 ms; flip angle: 76◦). For each partic-
ipant, six functional runs of 185 whole-brain volumes were col-
lected (60 axial slices per whole-brain volume; 3 mm thickness;
3 × 3 in-plane resolution; multiband acceleration factor of 3).

Image pre-processing

fMRI data were analyzed using SPM12 in conjunction with a
set of in-house tools for pre-processing and analysis (SPM12w,
available at https://github.com/wagner-lab/spm12w). For each
functional run, data were pre-processed to remove sources of
noise and artifact. Images were corrected for differences in
acquisition time between slices, realigned within and across
runs and unwarped to reduce residual movement-related distor-
tions. Data were normalized into a standard stereotaxic space
(3 mm isotropic voxels) based on the SPM12 EPI template that
conforms to the International Consortium for Brain Mapping
152 brain template space. Normalized images were spatially
smoothed with an 8 mm full-width-at-half-maximum Gaussian
kernel. Volumes were inspected for scanner- and motion-related
artifacts based on the realignment parameters and temporal
signal to noise ratio (SNR) profiles for each run.

Region-of-interest selection

For each participant, a general linear model (GLM) containing
task effects and covariates of non-interest (a session mean, a
linear trend to account for low-frequency drift and six move-
ment parameters) was constructed to investigate food-related
brain activity. The GLM was then convolved with a canonical
hemodynamic response function. Whole-brain contrast maps
of activity for all food over baseline trials were entered into a
second level random effects analysis (Supplementary Figure S1
and Supplementary Table S3). Consistent with prior studies by
our group and others, viewing food images was associated with
increased activity in the left OFC. This analysis was used to
select a functionally defined left OFC cluster (88 voxels, P < 0.05
family-wise error rate corrected at the cluster level using random
field theory and with a cluster-defining threshold of P = 0.001)
centered at −30,27, −18 (t(17) = 7.45, P < 0.001 at the voxel level)
that was then used as a functional region-of-interest (ROI) to
extract patterns of activity for each food category for all sub-
sequent multivariate RSA analyses (Figure 3). Additional ROIs in
primary and secondary visual cortex were selected to use in a
second control analysis comparing OFC representations to those
located in visual areas. Three 6mm spherical ROIs (located in:
left Middle Occipital Gyrus, right inferior Occipital Gyrus and the
right Fusiform Gyrus) were identified based on the peak location
of activity within clusters of activity in the visual cortex and
thresholded as described above.

Linear mixed-effects RSA

Multivariate analyses of imaging data were conducted using
a combination of the PyMVPA toolbox (Hanke et al., 2009)
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Fig. 3. Schematic depicting the localization of the left OFC cluster and the mixed effects representational similarity analysis. (A) Task consisted of food and rest trials.

Univariate analysis of functional imaging data revealed a cluster located in the left OFC (k = 88, highlighted in red) that responded to food images. This cluster was used

for subsequent RSAs. (B) Participants’ ratings of food category taste and health were used to generate model dissimilarity matrices. (C) A neural dissimilarity matrix

was created from activity patterns in the left OFC based on each of the 28 food categories and using a correlation-based distance metric. (D) A linear mixed-effects

model was used to compute the relationship between neural representational dissimilarity and model dissimilarity matrices based on taste and health ratings.

within JupyterLab (Kluyver et al., 2016) with linear mixed-effects
modeling implemented in the R statistical language (R Core
Team, 2016) using the Lme4 package (Bates et al., 2015) and
the lmerTest package (Kuznetsova, Brockhoff and Christensen,
2017). Confidence intervals for each fixed-effect parameter were

estimated using the confint function of the Lme4 package. RSA
was used to investigate whether the multivariate patterns of
activity within the OFC encode information related to tastiness
and/or health when viewing appetitive food cues. Unlike
decoding-based approaches for multivariate pattern analysis,
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RSA takes as input the similarity of neural responses between
experimental conditions to define a neural representational
space (Kriegeskorte, Mur and Bandettini, 2008) that can in turn
be characterized via data-driven methods (e.g. dimensionality
reduction or clustering approaches) or by comparison to
similar representational spaces derived from computational
models (e.g. models of visual cortical function) or participant’s
behavior (e.g. stimulus ratings). Thus, RSA enables one to
examine whether the ensemble of neural patterns for a set
of conditions is best captured by a hypothesized model of the
neural dissimilarity based on, for example in the present case, a
participant’s own idiosyncratic ratings of tastiness and health.
Here, we implemented RSA by taking, for each participant,
the pattern of activity corresponding to each of the 28 food
categories within the functionally defined left OFC ROI. Neural
representational dissimilarity matrices (RDM) were computed
by taking the Pearson correlational distance (i.e. one correlation)
for each pair of food categories (a 2D projection of these
neural dissimilarity matrices using metric multidimensional
scaling is available in Supplementary Figure S2). Model RDMs
for tastiness and health were in turn created by computing
a single-value distance matrix consisting of the absolute
value of the difference between tastiness or health ratings for
each food item (|value x − value y|), yielding a per-dimension
representational dissimilarity matrix (DSM) that indexes the
dissimilarity between two food categories. Two additional
RDMs were constructed that instead indexed the magnitude
of tastiness and health for pairs of food categories by taking the
sum of these dimensions for each pair. Thus, higher values in
these matrices correspond to higher vs lower ratings of tastiness
or health for each pair of food categories. To investigate the
relationship between neural and behavioral RDMs, RSA was
conducted within a linear mixed-effects modeling framework
using tastiness and health RDMs as independent predictors of
the left OFC neural RDM while accounting for random intercepts
for participants. The formula for the linear mixed-effects model
is shown below, where s represents the s-th subject and f
represents the f-th food category.

OFCfs = γ 00 + μ0s + β1s Tastinessfs + β2s Healthfs + rfs

As food categories were, by design, orthogonal with respect to
tastiness and health, we were able to efficiently test the ability of
these two predictors to explain the neural dissimilarity structure
in the left OFC. All models were estimated using restricted
maximum likelihood.

V1 model (HMAX) estimation and similarity analysis

To investigate if low-level visual features of the stimuli may
have contributed to differences in pattern of activity in the left
OFC, a computational model of early visual cortex (i.e. HMAX;
Serre, Wolf, Bileschi, Riesenhuber and Poggio, 2007; code adapted
from https://maxlab.neuro.georgetown.edu/hmax.html) was
implemented on our stimulus set. Images were reduced in
size to 825 × 550 to reduce computational load prior to model
estimation. Following the approach described by Connolly et al.
(2012), the C1 units (corresponding to complex cells in V1 cortex)
in the second layer of this model were extract then flattened
(across patch sizes) into a single vector per category by averaging
across vectors for all five food exemplars per category. An
RDM was constructed by computing the Pearson correlational
distance of the average C1 vector for each pair of food categories,
yielding a V1 model dissimilarity structure. In order to see if
low-level visual features may account for representations of

tastiness and health in the left OFC, the V1 RDM was added as
a predictor in each of the linear mixed-effects models described
above.

Linguistic analysis of natural language food
descriptions for foods high and low in taste and health

A separate sample of 59 participants ranked the 28 food cate-
gories used in the functional neuroimaging experiment accord-
ing to tastiness and, separately, for health. Next participants
were presented with the three highest and lowest ranked food
categories for tastiness and again for health. If a food category
appeared more than once in either of the ranked groupings, that
category was omitted, thus participants provided 12 or fewer
food category descriptions. Natural language descriptions for
each category were typed by participants in answer to the ques-
tion: ‘Imagine you are talking to someone who has never eaten
[food category] before, how would you describe it?’. Following
this task, participants completed the same food ratings tasks
as the participants in the functional neuroimaging experiment
with the addition of one question assessing their familiarity with
each food category (i.e. ‘How familiar are you with this food?’).

Verbal responses were analyzed using LIWC (Pennebaker
et al., 2015), focusing on words related to eating (i.e. the ingest
LIWC subset including, dish, eat, etc.). Other variables we con-
sidered were the overall adjective, adverb and total word counts.
For this analysis, the average difference score for each mea-
sure across the top and bottom three ranked food categories
for tastiness and health were computed for each participant
and compared using a one-sample t-test against a difference
of zero (i.e. no difference between top and bottom ranked food
categories).

Results
Linear mixed-effects RSA of tastiness and health

To investigate whether left OFC activation patterns in response
to food category presentation represented the dimensions of
tastiness or health (or both), we implemented a random linear
mixed-effects RSA (Figure 3). The results of this analysis showed
that the left OFC simultaneously encoded both the dimensions
of tastiness and health [taste: β = −0.0053, SE = 0.002, 95%
confidence interval (CI) = (−0.0093 to −0.0013), P = 0.01; health:
β = 0.0044, SE = 0.001, 95% CI = (0.0017–0.007), P = 0.002]. As our
stimulus set was designed to be orthogonal with respect to the
dimensions of tastiness and health and individual participants
tended to rate these dimensions orthogonally, this analysis was
an efficient test of whether the left OFC encoded tastiness,
health or some combination thereof.

Neural representational similarity of tastiness is more
distinct with increasing tastiness

Given the direction of the effect for tastiness in left OFC, the
results of the previous analysis suggested that the neural rep-
resentations of food categories may grow more distinct as the
similarity in tastiness between food categories increases. This
suggests the possibility that categories higher in tastiness may
have more distinct neural representations. However, as the tasti-
ness RDM encodes only dissimilarity, we constructed a new
model RDM based on the sum of tastiness ratings for each pair
of food to more directly test this last possibility. In this way,
food category pairs low in tastiness would have lower values
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and food categories high in tastiness would have higher values
(note that technically this is no longer a dissimilarity matrix;
however, we will continue to refer to it as an RDM to be consistent
with the previous analyses). In order to provide a comparison
to the same metric computed for health, we calculated an RDM
for health magnitude and repeated the previous representa-
tional similarity regression analysis above using these two new
predictors. The results of this analysis revealed a significant
relationship between the neural representation of food category
in the left OFC and a model RDM that encodes tastiness magni-
tude [β = 0.0080, SE = 0.001, 95% CI = (0.0053–0.0107), P < 0.001] but
not for the model RDM encoding health magnitude [β = 0.0004,
SE = 0.001, 95% CI = (−0.0013–0.0021), P = 0.67].

Finally, an additional analysis was conducted testing the
above two models at varying level of smoothness (i.e. 4, 6, and
8 mm Gaussian kernels) demonstrating that the above findings
are relatively invariant to moderate levels of smoothing during
pre-processing (Supplementary Table S4). Taken together, these
findings indicate that left OFC neural patterns associated with
food categories become more distinct for food pairs higher in
tastiness but not for those higher in health.

Controlling for low-level visual feature similarity

Based on a computational model of complex cells in V1
cortex, we generated a model RDM encoding the dissimilarity
between food categories based on the output of this V1 model.
Including the V1 model RDM in the above analyses did not
impact our results, nor demonstrate evidence that the left OFC
encodes visual feature similarity. Specifically, when adding
the V1 RDM as an additional predictor to our tastiness and
health linear mixed effects (LME) model, the V1 model does
not predict left OFC neural dissimilarity [β = 0.0017, SE = 0.046,
95% CI = (−0.0896 to 0.0932), P = 0.97], and both tastiness and
health remain significant predictors of left OFC responses [taste:
β = −0.0053, SE = 0.002, 95% CI = (−0.0093 to −0.0013), P = 0.01;
health: β = 0.0044, SE = 0.001, 95% CI = (0.0016–0.0071), P = 0.002].

Linear mixed-effects RSA of tastiness and health in
three clusters of the visual cortex

In order to investigate whether regions other than the left OFC
encode the dimensions of tastiness or health, we analyzed three
significant clusters from the visual cortex: two in early visual
cortex (BA18 and BA19) and one in late visual cortex located in
the fusiform gyrus (BA37). An LME regression-based RSA of these
regions including tastiness, health and V1 model RDMs as pre-
dictors found that none of these visual ROIs encoded the dimen-
sions of tastiness or health (all P > 0.1; Supplementary Table S5);
however, neural responses in each region was predicted by the
V1 model, with the early regions showing the strongest effect
(left middle occipital gyrus: β = 1.281, P < 0.001; inferior occipital
gyrus: β = 0.2339, P < 0.001) and the fusiform ROI demonstrating a
comparatively smaller association with the V1 model (β = 0.0291,
P = 0.029).

Linguistic analysis of natural language food
descriptions

In a separate experiment, participants provided natural lan-
guage descriptions for the three highest and lowest ranked food
categories based on tastiness and health. For each of the 12
possible food categories (six for tastiness and six for health)
participants were tasked with writing, in their own words,

how they would describe the food category to someone who
was unfamiliar with it. In addition, participants also rated
food categories for general familiarity. Overall, participants
indicated being highly familiar with all food categories (mean
familiarity = 3.36 on a scale of −5 to +5, s.d.= 1.65). Nevertheless,
food categories ranked higher in tastiness were rated as being
more familiar than those ranked lower in tastiness (t(55) = 6.40,
P < 0.001). No difference in familiarity was found for the higher
and lower ranked food categories for the dimension of health
(t(55) = 0.0, P = 1.0).

A lexical analysis using the LIWC tool revealed that food
categories ranked higher in tastiness had a greater number of
ingestion related words (i.e. LWIC category ingest) than those
ranked lower in tastiness (t(55) = 2.9, P = 0.005). Moreover, the
difference score between high and low ranked food categories
was greater for tastiness than for health (t(55) = 4.14, P < 0.001).
Similar findings were found for overall word count (t(55) = 3.37,
P < 0.001), number of adverbs (t(55) = 2.035, P = 0.047) and adjec-
tives (t(55) = 3.60, P = 0.001). Although the mean difference scores
for these other three lexical attributes were always in the direc-
tion of greater for tastiness than for health, they were not, how-
ever, statistically different from the same measures computed
for the health dimension (all P > 0.08).

Discussion
Food tastiness and health are fundamental attributes of food
choice and important determinants of dietary self-control fail-
ure (Hare et al., 2009, 2011; Harris et al., 2018). Animal and human
neuroscience research has long highlighted a role of the OFC
in representing the reward and motivational value of appetitive
stimuli such as food and drugs (Rolls, 2000). In the present study,
we employed an RSA in a linear mixed-effects framework to
examine whether individuals spontaneously encode tastiness
and health features when viewing appetitive food cues. Using
a stimulus set designed to be orthogonal with respect to these
two dimensions, our results show that the left OFC encodes both
the dimensions of tastiness and health, even when participants
were not tasked with explicitly evaluating foods along these
dimensions. However, with respect to tastiness, the relationship
between neural representations in this region and taste was
more complex. In a follow-up representational similarity regres-
sion analysis, we demonstrate that the neural representation
of food in fact grows more distinct with increasing tastiness
(e.g. fries and cake vs tomatoes and rice cakes) but not with
increasing health indicating that foods high in tastiness might
be encoded with more refined neural representations than low
taste foods. In addition, these findings were found to obtain even
when accounting for low-level visual feature similarity based on
a model of V1 cortex. Moreover, among the four regions we tested
(the left OFC and three control regions in the visual cortex), these
findings were found to be specific to the left OFC. None of the
visual regions showed any evidence of encoding food taste or
health. Finally, a separate behavioral experiment provided addi-
tional evidence supporting this notion by demonstrating that
participants’ cognitive representations of foods high in tastiness
were similarly more elaborate (i.e. used more ‘ingestion’-related
words) than foods considered to be low in tastiness.

Over 15 years of functional neuroimaging research in
humans has shown that activation of the OFC is associated with
processing rewards and other motivationally relevant stimuli
(e.g. food, drugs, money, social reputation). In the domain of
food, the left OFC has been demonstrated to show increased
activity when people view appetitive food compared with
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non-food items (Kringelbach et al., 2003; van der Laan et al.,
2011; Wagner et al., 2013), is associated with the experience
of pleasantness during consumption (Kringelbach et al., 2003),
and shows decreased activity during satiety (O’Doherty et al.,
2000). Activity in this region is also altered during emotional
and motivational states that are thought to increase the desire
for foods high in tastiness (Stice et al., 2008; Wagner et al., 2013)
and is reduced in the presence of health information such as
calorie counts (Courtney et al., 2018a). In addition, research has
shown that activity in this region in response to food or alcohol
cues is associated with prospective weight gain (Yokum et al.,
2011) and frequency of drinking (Courtney et al., 2018b). More
recently, researchers have turned to the use of multivariate
pattern analysis to better understand how patterns of activity
in this region might encode different food attributes (Suzuki
et al., 2017) or might be altered by the attributes attended to
when viewing food cues (Courtney et al., 2018a). For instance,
Courtney and colleagues used RSA to show that appetitive food
representations in the OFC are altered by calorie information
more so in dieters than non-dieters. From this result, they
speculate that when presented with calorie information, dieters
may switch from a default of attending to tastiness to instead
attending to health, whereas non-dieters do this to a lesser
extent (Courtney et al., 2018b). Another study that also uses
RSA, focused on the nutritive attributes of food and showed
that the OFC spontaneously encodes low-level food attributes
such as fat content and carbohydrates (Suzuki et al., 2017). The
present study expands on this work by focusing directly on the
higher-level motivational attributes that have been shown to
be important to behavioral models of dietary decision-making
and self-control (Hare et al., 2009, 2011; Harris et al., 2018) and
further by showing that these are automatically (or at least
spontaneously) encoded by the OFC when viewing appetitive
food cues.

In a follow-up analysis, we found that the neural representa-
tion of food in the left OFC (Study 1) and the descriptions people
assign foods (Study 2) become more distinct with increasing
tastiness, indicating that individuals have more refined repre-
sentations for those foods they find the most desirable. There
are several theoretical accounts that might help explain this
phenomenon. Social psychological research on attitudes has
shown that positive attitudes toward a category of objects (e.g.
movies, music) lead to increased differentiation of items within
that category (i.e. the preference-categorization effect; Small-
man and Becker, 2017; Smallman et al., 2014) For instance, craft
beer aficionados might split hairs over the aroma and flavor
differences between two different local breweries, whereas oth-
ers who are less exuberant about craft beer may simply lump
these into broader categories such as ales and lagers. This argues
that the more distinct neural and cognitive representations that
we see for food items higher in tastiness are a result of greater
differentiation of items for food categories for which we have a
positive attitude.

A second, more speculative account, borrows from construal-
level theory (Trope and Liberman, 2003) which posits that the
complexity of how we think about and categorize objects varies
as a function of psychological distance. For example, research in
this domain (Liberman et al., 2002) shows that when individuals
are more psychologically distant from an event or object, these
are categorized in a broader, more general manner focusing
less on the fine-grained features of the object and more on
its general ones (i.e. ‘bagels are a form of bread’). In contrast,
when individuals are psychologically close to an event or object
they represent these with more fine-grained details, focusing on

the specific sensations or individuating features of the object
(i.e. ‘Montreal bagels possess a true artisanal purity, with their
subtle sweet taste and satisfying initial crunch followed by a
softer chewier texture, they stand in stark contrast to the bread
donut that is the inferior New York bagel’). From this perspective,
tastiness might lead people to adopt a lower-level construal
of the object that focuses on its finer-grained features at the
expense of more general ones, thus leading to more distinct
neural representations compared with food categories that are
lower in tastiness.

A third and final account instead considers the amount of
knowledge an individual might possess about a given food cate-
gory. For example, familiar objects tend to also be those objects
that individuals possess more knowledge of and, it stands to rea-
son, more differentiated representations for. Recently, Thornton
and colleagues used RSA to show that individuals have more
distinct neural representations for their own mental states than
they do for other individuals. They speculate that this may be
a result of the privileged access that individuals have of their
own internal states, resulting in markedly greater knowledge
for one’s own mental states than those of the others (Thorn-
ton et al., 2019). In the case of our study, we found that, even
though individuals were highly familiar with the food cate-
gories we used in this experiment, we nevertheless found that
high-tastiness foods were rated to be more familiar than foods
lower in tastiness. Thus, the increased distinctiveness of neural
and cognitive representations of high-tastiness foods may be a
result of individuals having more knowledge of this category and
therefore more unique representations (Thornton et al., 2019).

The reward circuitry underlying appetitive food cue reactivity
has been shown to be similar across several other appetitive
domains, such as tobacco (Wagner et al., 2011), alcohol (Schacht
et al., 2013; Courtney et al., 2018b), and drugs (Garavan et al., 2000).
Beyond these more primary forms of reward, secondary rewards
have also been shown to activate similar neural circuity. For
example, social cues like smiling (Somerville et al., 2011), attrac-
tive faces (Cloutier et al., 2008) and recalling pleasant memories
(Speer et al., 2014) all activate the OFC, albeit the precise location
may differ depending on domain. Given these common neural
underpinnings, our approach could be adapted to these different
reward domains to investigate whether the neural representa-
tions of these rewards share common psychological dimensions
(e.g. fried chicken, cigarettes, and drugs of abuse are all be low on
healthiness). Moreover, if the finding that appetitive items that
are higher in liking (i.e. tastiness in our study) have more distinct
neural and cognitive representations proves to be true across
domains, this may highlight an important neural mechanism
that may help explain how individuals come to crave specific
appetitive items and how these can turn to obsession in the case
of addicted individuals.

Tastiness and health are two fundamental features of foods
that guide people’s dietary choices and influence their ability
and motivation to engage in dietary self-regulation. Although
both dimensions form the basis of many decision-making mod-
els of dietary choice and self-control (Hare et al., 2009, 2011;
Harris et al., 2018), the dimension of tastiness may be particularly
important in predicting self-control failure. For instance, when
individuals attend to tastiness, their desire for tasty food items
increases but the same is not true when they attend to health
(Young and Fazio, 2013). In the present study, we show that the
left OFC, a region implicated in food reward value representa-
tions and associated with a variety of real-world outcomes (i.e.
BMI, drinking, etc.), appears to automatically represent the food
health and tastiness when viewing food cues. Moreover, our
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findings show that the neural and cognitive representation of
foods becomes more distinct with increasing tastiness, suggest-
ing that individuals have more elaborate representations of pre-
cisely those foods that are most likely to tempt them to engage
in unhealthy eating behaviors. Together, these findings suggest
that food tastiness and health are primary dimensions of food
evaluations and may be computed automatically by individuals
when confronting foods in their environment. A remaining ques-
tion for future work is whether individual differences in motiva-
tional state or in self-regulation strategy alter the weight placed
on tastiness and health when viewing food cues. Understanding
how neural representations within the brain’s reward system
are altered by these factors may offer novel insights into how
self-regulation strategies (e.g. reappraisal, response inhibition)
reshape the neural representations to better enable success or
to cause individuals to spiral into failure.
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