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Abstract

To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed
genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction
and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells
(PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.

Tests for gene expression changes that discriminate between COPD cases (FEV < 70% predicted, FEV,/FVC < 0.7)
and controls (FEV,> 80% predicted, FEV,/FVC > 0.7) were performed using Significance Analysis of Microarrays
(SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM
median FDR = 0 or BADGE p < 0.01) we identified differential expression for 45 known genes. Correlation of gene
expression with lung function measurements (FEV; & FEV;/FVC), using both Pearson and Spearman correlation
coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation
(p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our
peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two
genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue
and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of
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patients with COPD and may provide insight into potential mechanisms involved in the disease.

Introduction

Chronic obstructive pulmonary disease (COPD), an
inflammatory disorder that is characterized by a slowly
progressive development of irreversible airflow limita-
tion, is currently the fourth leading cause of death in
the United States. Sixteen million Americans live with
the disease, and there are 800 million affected indivi-
duals worldwide. Strongly associated with cigarette
smoking, COPD is expected to be the third most com-
mon cause of death and fifth most common cause of
disability worldwide by 2020[1]. COPD is typically diag-
nosed late in life, and late in the course of disease when
the patient presents with significant physiological
impairment [2,3]. The need for improved early diagnosis
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and the identification of novel therapeutic targets for
this debilitating disease has recently gained heightened
interest.

Chronic obstructive bronchitis/bronchiolitis with peri-
bronchiolar fibrosis (small airways disease), and abnor-
mal enlargement of airspace distal to the terminal
bronchioles with destruction of lung parenchyma
(emphysema) are the pathological hallmarks of disease.
Small airways disease and emphysema can present alone
or in combination, with varying degrees of severity [4,5].
COPD is now considered primarily an inflammatory dis-
order involving abnormalities in both innate and adap-
tive immune responses. Inflammatory abnormalities in
COPD include a significant increase in macrophage
numbers in the lung and alveolar space, at the sites of
alveolar destruction. Increased macrophage numbers
may be due to increased monocyte recruitment and may
result in higher secretion of inflammatory proteins lead-
ing to pathophysiological features of COPD [6].
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However, systemic impairments have also been observed
in patients [7].

Environmental factors contribute to varying suscept-
ibility to COPD in the general population with the
greatest environmental exposure in developed countries
being tobacco smoke[8,9]. Exposure to other airborne
pollutants, such as ozone, also appears to increase risk.
While an increasing rate of smoking contributes to the
growing incidence of COPD in developing countries as
well, indoor air pollution associated with heating and
cooking fuel is the major environmental risk factor, con-
tributing to almost 3% of the global burden of disease
[10]. In addition to environmental risk factors, varying
genetic susceptibility to COPD exists among individuals,
particularly with respect to the response to cigarette
smoke [11,12]. Given the complexity of disease patho-
genesis, the presence of varying levels of susceptibility in
the general population and the fact that patients rarely
present early in disease pathogenesis (at a time when
disease-modifying therapy may be more effective) the
identification of biological markers of disease suscept-
ibility and/or progression are needed.

Numerous previous studies have sought to identify
disease biomarkers in various forms, such as genetic or
expression variants. DNA microarrays have been pro-
ven to be a powerful tool capable of biomarker discov-
ery for various disease states. Multiple groups have
previously applied microarray analysis to identify gene
expression changes associated with COPD [13-16]. All
these studies have used lung tissues obtained through
invasive surgical procedures. Application of discovery
approaches to samples derived from minimally-invasive
procedures may provide biomarkers for diagnosis and
therapeutic management of COPD. One previous study
used whole blood to search for novel protein markers
of COPD[16]. Here, we present a novel gene expres-
sion microarray data set generated from PBMC iso-
lated from 24 subjects with varying levels of airflow
obstruction.

Methods

Sample Collection

This study was approved by the Partners Health Care
Human Research Committee. Peripheral blood, along
with lung tissue, was obtained from 24 patients admitted
to Brigham and Women’s Hospital for suspected stage 1
lung tumors. Informed consent was provided and sub-
jects underwent lung function testing by spirometry and
completed a lung health-related questionnaire prior to
surgery. Age, height, weight, sex and surgical pathology
were obtained from subjects’ medical charts. Predicted
lung function values (FEV;, FVC) were calculated in
SAS using the Crapo equations for Caucasians and the
Hankinson equations for African-Americans. Diagnosis
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was confirmed by surgical pathology. A paper describing
identification of COPD biomarkers identified by expres-
sion profiling from the lung tissue samples has been
published previously[17].

Isolation of PBMC RNA

PBMCs were isolated by using CPT tubes (Becton Dick-
inson, Franklin Lakes, NJ) according to manufacturer’s
instructions. Approximately 8 ml whole blood was col-
lected from each subject. Following centrifugation, cells
were lysed for RNA isolation. DNAse-free total RNA was
purified using the RNeasy mini kit (Qiagen, Inc, Valen-
cia, CA) according to manufacturer’s recommendations.
RNA concentrations were determined by Nanodrop
ND-1000 (Nanodrop Technologies, Wilmington, DE).
RNA quality was assessed on an Agilent 2100 Bioanaly-
zer; samples with a RNA Integrity Score of > 6.0 were
used in this study.

Microarray Analysis

RNA samples were used for fluorescent target genera-
tion (via in-vitro transcription), hybridized, washed, and
scanned on U133 plus 2.0 GeneChips (Affymetrix, Santa
Clara, CA) according to the manufacturer’s instructions.
Two independent versions of expression intensities were
extracted from raw data files using either RMA or MAS
5.0 algorithms implemented in BioConductor. Gene
annotation information was retrieved from the Affyme-
trix analysis portal (NetAffx http://www.affymetrix.com).
Unsupervised clustering with the nonparametric boot-
strap [18] was applied to check for undesirable and
unanticipated structure or associations among the sam-
ples. Reliability of signal intensity measurements was
determined using the Detection Call in GCOS, and ana-
lysis was restricted to probe sets reliably detected in all
cases and/or all controls.

For discrete analysis (cases vs. controls), we applied
two independent tests for differential expression on each
version of the data set; Bayesian Analysis of Differential
Gene Expression (BADGE) [19] and Significance Analy-
sis of Microarrays (SAM) [20]. In SAM False Discovery
Rate (FDR) is calculated by computing the number of
significant genes for a given threshold for each permuta-
tion. The median number of significant genes from
these permutations is the median False Discovery Rate.
Since genes identified as significant from the permuted
data are in fact false positives and as such the median
number over many randomizations is a good estimate of
false discovery rate. For quantitative analysis, correlation
coefficients of signal intensity and lung function (FEV;
or FEV,/FVC) were calculated. For each probe set, we
calculated both the Pearson linear and Spearman rank
correlation coefficients for both RMA and MAS5-
derived expression intensities using SAS.
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Functional Classification

Functional classification of gene sets was performed
using EASE v2.0 [21]. Affymetrix probe set IDs for the
selected genes were used as the input list while probe
set IDs for all filtered probe set genes served as the
background set. Gene ontology categories with an EASE
score of less than 0.05 were defined as significantly
over-represented. Pathway analysis was performed using
Ingenuity Pathway Analysis (IPA) on the set of discrete
and quantitative biomarkers to identify canonical path-
ways that are associated with the peripheral markers
determined by expression analysis. Canonical pathways
with Fisher Exact test p-values less than 0.05 were iden-
tified as significantly dysregulated.

Molecular Validation

We performed quantitative real-time polymerase chain
reaction (qPCR) for the genes identified as discrete and
quantitative disease markers using assays from Applied
Biosystems (Foster City, CA). qPCR was performed on a
Agilent MX3000P (La Jolla, CA) using TagMan chemis-
try, as previously described [22]. Gene expression levels
were calculated according to the relative expression ana-
lysis approach using multiple endogenous controls

Page 3 of 10

(PPIA, GAPDH, ACTB, and HPRT1). Statistical analysis
was performed on individual sample dCt values for each
gene using either the parametric Student’s t-test or non-
parametric Mann-Whitney U-test.

Results

Subject Demographics

The studies involved 24 subjects including 12 COPD
cases with significant airflow obstruction (defined as
FEV; < 70% predicted and FEV;/FVC ratio < 0.7) and
12 control subjects with normal lung function (FEV; >
80% predicted and FEV,/FVC ratio > 0.7). Cases had an
average age of 63 years and average FEV1 of 47% pre-
dicted. Controls had an average age of 64 years and an
average FEV1 of 99% predicted (Table 1). This popula-
tion represents a subset of the population for which we
have previously reported lung tissue gene expression
patterns [17].

Expression Biomarker Discovery

Discrete Analysis

We first extracted signal intensity data using RMA and
MASS5, removed data from all probe sets that were not
reliably detectable in either all cases or all control

Table 1 Subject Demographics and Pulmonary Function Shown here are subject demographics and lung function data

Phenotype CaseID Array ID Age Race Gender FEV; %Pred FVC %Pred FEV,/FVC Diagnosis
Case 1 2797 987W 70 Caucasian Male 2522 37 56 NSC Squamous
Case 2 3589 9871 59 Caucasian Female 28.12 52 44 NSC Squamous
Case 3 2224 987H 52 Caucasian Female 31.10 46 52 NSC

Case 4 1576 987U 68 Caucasian Male 36.29 75 43 Emphysema
Case 5 3660 987K 77 Caucasian Male 4334 75 53 NSC Squamous
Case 6 2267 987N 56 Caucasian Male 46.58 67 56 NSC Squamous
Case 7 3175 9878 75 Caucasian Male 47.59 94 41 NSC Adeno
Case 8 3043 987A 61 Caucasian Male 52.12 81 59 NSC Squamous
Case 9 2336 987M 65  African-American  Female 65.66% 99 51 NSC Adeno
Case 10 2195 987E 53 Caucasian Female 60.36 88 57 NSC Adeno
Case 11 2195 987F 53 Caucasian Female 60.36 88 57 NSC Adeno
Case 12 3822 987R 64 Caucasian Male 66.81 94 54 NSC Squamous
Average 62.75 4526 74.67 51.92

Control 1 1769 987X 50 Caucasian Female 82.69 119 75 NSC Adeno
Control 2 2563 987T 55 Caucasian Female 87.07 95 76 NSC Adeno
Control 3 3712 987Q 62 Caucasian Female 87.12 80 86 NSC Squamous
Control 4 2473 9875 77 Caucasian Female 9153 81 82 NSC Squamous
Control 5 2254 987) 71 Caucasian Female 95.00 94 78 NSC Adeno
Control 6 3761 9870 40 Caucasian Male 95.37 101 82 Carcinoid
Control 7 3143 987C 71 Caucasian Male 103.28 115 72 NSC Adeno
Control 8 3708 987L 78 Caucasian Female 10442 91 85 Metastatic Renal Cell Carcinoma
Control 9 3529 987D 54 Caucasian Female 105.15 116 75 Unknown
Control 10 3555 987G 55 Caucasian Male 108.49 118 79 Inflammation
Control 11 1584 987V 68 Caucasian Female 110.95 117 74 NSC Adeno
Control 12 3769 987P 78 Caucasian Male 112.01 117 78 NSC-mixed
Average 63.25 98.59 103.67 785
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samples. We used a stringent set of conditions to iden-
tify differential gene expression in this data set, applying
multiple significance testing methods (SAM & BADGE).
A total of 691 probe sets were significantly different in
BADGE analysis at a p-value of 0.01 or less for either
RMA or MASS5 versions of data. As our data analysis
approach included a combination of multiple tests and
normalization approaches, we did not implement any
correction on BADGE p-value. SAM analysis identified
a total of 93 probe sets that were significantly different
at median false discovery rate of 0 (median FDR = 0) in
either RMA or MASS5 versions of the data. Ninety (97%)
of the probe sets identified in SAM analysis were also
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identified using BADGE, and represented 47 known
genes that we defined as differentially expressed in
PBMC from subjects with COPD cases versus controls.
Interestingly, all genes identified using these highly
stringent criteria were expressed at lower levels in cases
as compared to controls (Figure 1). A list of 90 probe
sets identified by SAM and BADGE has been provided
in Additional File 1 Table S1.

Quantitative Analysis

We also calculated Pearson’s & Spearman rank correla-
tions between expression and FEV; or FEV;/FVC for all
probe sets. A total of 146 probe sets were significantly
correlated with FEV; at p < 0.05 and 9 probe sets were

relatively low level of expression (as indicated on scale).

CONTROLS

Figure 1 Discrete biomarkers. Shown are signal intensity measurements for each of the annotated 45 genes (from 90 probe sets) identified as
significantly differentially expressed between cases and controls using both Significance Analysis of Microarrays (SAM) and Bayesian Analysis of
Differential Gene Expression (BADGE). Data from individual subjects are in columns and data for individual genes are in rows. Signal intensity
data are color-coded such that the intensity of red indicates a relatively high level of expression, while the intensity of green represents a
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significant at p < 0.01. A total of 128 probe sets were
significantly correlated with FEV;/FVC at p < 0.05 and
34 probe sets significant at p < 0.01. At a p < 0.05, 104
probe sets (representing 86 known genes) were signifi-
cantly correlated with both FEV; and FEV;/FVC (Figure
2), while at p < 0.01, the overlap was 6 probe sets,
representing 2 known genes (SOX6, LMLN; both posi-
tively correlated with pulmonary function). A list of 104
probe sets significantly correlated with both FEV; and
FEV,/EVC at p < 0.05 has been provided in Additional
File 1 Table S2A and Table S2. There was no overlap
among probe sets at p < 0.001. A total of 158 probe sets
passed criteria as either discrete (90 probesets) or

Page 5 of 10

quantitative (104 probesets at p < 0.05) gene expression
markers of COPD. Among these, 36 probe sets repre-
senting 16 known genes were significantly different in
Case-Control analysis and significantly correlated with
both FEV; and FEV,/FVC at p < 0.05 (Figure 3).

We assessed whether differences in the distribution of
tumor type between Cases and Controls contributed to
the identification of these gene expression changes. The
tumor types among the 24 subjects included 9 adeno-
carcinoma and 9 squamous cell carcinoma subjects. We
applied differential expression analysis (as described for
COPD cases and controls above) comparing all samples
classified as adenocarcinoma versus samples classified as
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Figure 2 Quantitative biomarkers. Shown are signal intensity measurements for 86 annotated genes (among the 104 probe sets) identified as
significantly correlated with FEV;%predicted and FEV,/FVC at P < 0.05. Data from individual subjects are in rows and data for individual genes
are in columns. Signal intensity data are color-coded such that the intensity of red indicates a relatively high level of expression, while the
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CASES

CONTROLS

Complete gene names and chromosomal locations are listed.

Gene Location
FBX045 F-box protein 45 3q29
GKAP1 G kinase anchoring protein 1 9921.32

N-acyl-phosphatidylethanolamine-hydrolyzing
NAPE-PLD phospholipase D 79221
PIK3C2A  Phosphoinositide-3-kinase, class 2, alpha  11p15.5-p14

RP9
SESN1

RBM41 RNA binding motif protein 41 Xq22.1-924
SOX6 SRY (sex determining region Y)-box 6 11p15.3
FOXP1 forkhead box P1 3p14.1
GUSBP1 glucuronidase, beta pseudogene 1 5q13.2
ING3 inhibitor of growth family, member 3 7931
RABGAP1 RAB GTPase activating protein 1 9q933.2
BRD7 bromodomain containing 7 16912
GOSR2 golgi SNAP receptor complex member 2 17921
ARID2 AT rich interactive domain 2 12912
STX17 syntaxin 17 9931.1

Figure 3 Biomarkers for both discrete and quantitative phenotypes. Shown are signal intensity measurements for the 16 genes (@among 36
probe sets) identified as significantly different between cases and controls and significantly correlated with both FEV1%predicted and FEV1/FVC.
Data from individual subjects are in columns and data for individual genes are in rows. Signal intensity data are color-coded such that the
intensity of red indicates a relatively high level of expression, while the intensity of green represents a relatively low level of expression.

retinitis pigmentosa 9 (autosomal dominant) 7p14.3
Sestrin 1 6g21

squamous cell carcinoma. No probe sets were identified
as consistently differentially expressed between tumor
types. Further, no probe sets identified as differentially
expressed between tumor types in any single analysis
were among the COPD biomarker gene set.

Functional Classification
In an order to identify biological systems or functions
that are associated with discrete or quantitative COPD
peripheral gene expression markers, we performed gene
ontology assessment using EASE (Figure 4A). We used
a set of 158 probe sets that were either significantly dif-
ferent in cases and controls or significantly correlated
with lung function and queried for over-represented
ontologies using EASE. There was a consistent over-
representation of functions relating to transcriptional
activity and nucleic acid binding for all sets of COPD
biomarkers. A total of 103 probe sets, or 65% of biomar-
kers tested for ontology (some of the probe sets lacked
ontological annotation), were classified in one or more
categories related to these functions.

Among all 158 peripheral biomarker genes (both dis-
crete and quantitative), 40 had an annotated molecular
function, 37 had an annotated biological process and 30

had an annotated molecular function. Eighteen of 40
genes (45%; p < 0.05) were classified for the molecular
function of Nucleic Acid Binding (GO: 0003676).
Twelve of 37 genes (32%; p < 0.05) were classified for
the biological process of DNA-dependent Transcription
(GO: 0006351) and 15 of 37 genes (40%; p < 0.05) were
classified for the biological process of nucleoside,
nucleoside & nucleotide metabolism (GO::0008150).
Among the discrete marker genes (case vs. control), 30
had an annotated molecular function and 27 had an
annotated biological process. Thirteen of 30 genes (32%;
p < 0.05) were classified for the molecular function of
Nucleic Acid Binding (GO: 0003676). Nine of 27 genes
(33%; p < 0.05) were classified for the biological process
of DNA-dependent Transcription (GO: 0006351) and 11
of 27 genes (40%; p < 0.05) were classified for the biolo-
gical process of nucleoside, nucleoside & nucleotide
metabolism (GO::0008150). Among the quantitative
marker genes (correlation), 18 genes had an annotated
molecular function and 18 had an annotated biological
process. Nine of 18 genes (50%; p < 0.05) were classified
for the molecular function of Nucleic Acid Binding
(GO: 0003676) and four of 18 genes (22%; p < 0.05)
were classified for the molecular function of
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Figure 4 Functional Classification. (A) Gene Ontology categories significantly overrepresented in peripheral COPD biomarkers (EASE score <
0.05). Given are GO category name and number, the percentage of genes within the category for COPD markers (black bars) or all genes tested
(open bars) and the EASE scores for the category. Number of genes in each category is shown on the bars. (B) Canonical pathways associated
with COPD peripheral gene expression markers identified by Ingenuity Pathway Analysis. Shown here are top ten significantly affected canonical
pathways, the percentage of genes within the pathway for COPD markers (black bars) or all genes tested (open bars) and the Fisher Exact p-
values scores for the pathway. Number of genes in each category is shown on the bars.
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Transcription factor activity (GO: 0003700). Six of 18
genes (33%; p < 0.05) were classified for the biological
process of DNA-dependent Transcription (GO:
0006351) and six of 18 genes (33%; p < 0.05) were clas-
sified for the biological process of nucleoside, nucleoside
& nucleotide metabolism (GO::0008150). A list of all
significantly over-represented Gene Ontology (GO)
classes is presented in Additional File 1 Table S3.
Pathway analysis also provided insights to canonical
pathways associated with peripheral markers (Figure
4B). Significantly over-represented pathways (p < 0.05)
included those associated with cell signaling, inflamma-
tory cell regulation, and cancer; EGF (3 biomarkers out
of a total of 171 genes associated with category in IPA),
Endothelin-1 (4 biomarkers out of a total of 101 genes)
mTOR (4 biomarkers out of a total of 124 genes),
CXCR4 (4 biomarkers out of a total of 192 genes), IL-2
(2 biomarkers out of a total of 61 genes), IL-3 (2 bio-
markers out of a total of 76 genes), IL-17 (2 biomarkers
out of a total of 77 genes), ILK (3 biomarkers out of a
total of 191 genes), IL-8 (3 biomarkers out of a total of
193 genes), breast cancer (3 biomarkers out of a total of
106 genes) lung cancer (3 biomarkers out of a total of
101 genes), and glioblastoma (3 biomarkers out of a
total of 166 genes). A list of all significant canonical
pathways is presented in Additional File 1 Table S4.

Validation

We performed qPCR-based validation for a subset of
genes identified as differentially expressed in COPD sub-
jects using both discrete and quantitative analyses using
all samples (n = 24). Validation analysis confirmed sig-
nificant correlations between microarray-based and
qPCR-based expression measures for GKAPI (|r| = 0.25,
p < 0.05) and STX17 (|r| = 0.36, p < 0.05). However,
qPCR did not confirm significant differences in expres-
sion for either of these genes between cases and
controls.

Discussion

Even with current advancements in medical technolo-
gies, appropriate diagnosis and management of COPD
remains a major challenge. Spirometry as a measure of
lung function remains the primary objective test for
diagnosis of COPD, but spirometry cannot indicate
whether airflow obstruction relates to emphysema, air-
way disease, or both processes. Additional non- or mini-
mally-invasive approaches would be very useful for
disease diagnosis and management.

In recent years, studies have attempted to identify
gene expression biomarkers for COPD [13-15]. In those
studies, genome-wide expression studies have been
based on RNA derived from surgically-derived tissue
samples. Although gene expression studies of lung
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tissues may provide useful insights into disease patho-
genesis, it is not practical to consider routine COPD
diagnosis from a sample that must be obtained through
an invasive surgical procedure. Blood samples are less
invasive, potentially provide for a larger sample size, and
allow repeated sampling to monitor disease progression
over time and to study therapeutic response.

Past genome-wide studies on different organ systems
have shown that total RNA derived from circulating
blood can distinguish between control subjects and
patients with various diseases [23-31] including inflam-
matory (e.g. preeclampsia, rheumatoid arthritis, and
chronic pancreatitis) and malignant (chronic lymphocy-
tic leukemia and renal cell carcinoma) diseases [32,33].
One of the earliest demonstrations that gene expression
changes in peripheral blood mononucleocytes (PBMCs)
were associated with disease was demonstrated on a rat
brain model, where acute neural assaults resulted in
gene expression changes in PBMCs within 24 hours
[34]. In the pulmonary system, Showe et al have used
peripheral blood gene expression signatures to identify
early-stage lung cancer in at-risk populations [35]. Kar-
imi et al. (2006) showed that in vitro exposure of PBMC
to cigarette smoke induces production of cytokines in a
TLR4-dependent manner [36].

We hypothesized that peripheral blood gene expres-
sion patterns could help to improve COPD detection,
diagnosis or progression. We assessed genome-wide
expression patterns in RNA obtained from PBMCs iso-
lated from a subset of 24 of the study subjects using the
Affymetrix U133 Plus 2.0 microarray. Data analysis
revealed novel genes that were differentially expressed
in PBMCs from COPD patients. The genes we identified
have not been previously implicated in COPD disease
pathogenesis, and as such are likely to be true markers
rather than etiological. We observed two genes, RP9 and
NAPE-PLD, showing decreased expression in both lung
tissue and blood of COPD subjects when compared to
controls. This suggests that PBMC-derived markers may
reflect processes ongoing in diseased tissues. Further,
our data serves as a proof-of-principal that peripheral
gene expression patterns, defined using minimally inva-
sive samples, can be used to describe COPD.

Genome-wide linkage screens aimed to identify dis-
ease-susceptibility genes previously identified three link-
age regions (chromosomes 2q33-36, 8pter-22, and
12p13-12) in the Boston Early-Onset COPD cohort [37]
which includes the locus for one of the novel genes
identified in our study, AT-rich domain 2 (ARID2).
ARID? is a transcriptional co-activator involved in the
regulation of cardiac gene expression [38]. Among other
genes displaying changes in expression between cases
and controls, some have notable functions. Syntaxin 17
(STX17) expression in macrophages is regulated by
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Colony-stimulating factor 1 (CSF-1), a growth factor
controlling the development of macrophages from mye-
loid progenitor cells [39]. FOXPI1 is a member of
winged-helix/forkhead transcription factors and is
important in monocyte differentiation and macrophage
function [40]. SESN1, a stress inducible sestrin regulated
by p53, has been reported to be potent inhibitor of
mTOR signaling and regulator of cell growth and prolif-
eration [41].

To our knowledge only two studies have previously
explored the value of genome-wide peripheral blood
expression assessments in patients with COPD [16,42];
both defining serum protein levels. Hurst et al assessed
paired baseline and exacerbation plasma samples from
patients with COPD and identified 36 biomarkers using
protein arrays [42]. They observed that although systemic
biomarkers were not helpful in predicting exacerbation
severity, acute-phase response at exacerbation was strongly
related to monocyte activity. Pinto-Plata et al used protein
array on peripheral blood from COPD patients and identi-
fied 30 biomarker clusters [16]. They identified a set of
biomarkers correlated with lung function.

One major limitation of the current study is that
quantitative real time-PCR (qPCR) validation indicated a
potential high false discovery rate. Possible reasons for
lack of validation for individual genes include expression
levels below sensitivity for the assays used, poor assay
specificity, alternative splice forms and inaccuracy of
array data. The phenotypic heterogeneity of COPD may
also be a cause of limited validation results in the cur-
rent study. Regardless of the root cause of poor valida-
tion, the small size of the current study is a major
limitation in the generalization of the results presented.
Another limitation of the current study is the diagnosis
of lung cancer in most subjects. Recent studies have
reported that genetic expression in PBMCs is altered in
the context of malignancy [32,43]. Lung cancer and
COPD are both typically found in smokers and the diag-
nosis of lung cancer can serve as an independent predic-
tor for COPD, independent of smoking history. Even
though we have previously shown any effects of the
tumor on gene expression are not significant in distant,
histologically normal lung tissue [17], in the case of
PBMCs the presence of tumors may contribute to
changes in gene expression. Even though four
(PIK3C2A, JUN, ENBP1, ITPR1) of our peripheral bio-
markers have been implicated in cancer pathophysiol-
ogy, none of the PBMC biomarkers were differentially
expressed between tumor types (among all subjects, or
within cases or controls alone).

In conclusion, we used microarray technology to iden-
tify gene expression differences in PBMC obtained from
COPD patients and controls. Our data contribute to the
understanding of gene expression changes occurring in
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the blood of patients with obstructive lung disease and
provide additional insight into potential mechanisms
involved in the disease process. Our data suggest that
PBMC may be a source of diagnostic markers. The iden-
tification and validation of markers may help to facilitate
the development of non-invasive methods for diagnosis,
classification of disease subtypes and/or provide a
means to define response to therapeutic intervention.
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