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Abstract

Background: The widely used genetic pleiotropic analyses of multiple phenotypes are often designed for examining
the relationship between common variants and a few phenotypes. They are not suited for both high dimensional
phenotypes and high dimensional genotype (next-generation sequencing) data.
To overcome limitations of the traditional genetic pleiotropic analysis of multiple phenotypes, we develop sparse
structural equation models (SEMs) as a general framework for a new paradigm of genetic analysis of multiple
phenotypes. To incorporate both common and rare variants into the analysis, we extend the traditional multivariate
SEMs to sparse functional SEMs. To deal with high dimensional phenotype and genotype data, we employ functional
data analysis and the alternative direction methods of multiplier (ADMM) techniques to reduce data dimension and
improve computational efficiency.

Results: Using large scale simulations we showed that the proposed methods have higher power to detect true
causal genetic pleiotropic structure than other existing methods. Simulations also demonstrate that the gene-based
pleiotropic analysis has higher power than the single variant-based pleiotropic analysis. The proposed method is
applied to exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) with 11 phenotypes, which
identifies a network with 137 genes connected to 11 phenotypes and 341 edges. Among them, 114 genes
showed pleiotropic genetic effects and 45 genes were reported to be associated with phenotypes in the analysis
or other cardiovascular disease (CVD) related phenotypes in the literature.

Conclusions: Our proposed sparse functional SEMs can incorporate both common and rare variants into the
analysis and the ADMM algorithm can efficiently solve the penalized SEMs. Using this model we can jointly infer
genetic architecture and casual phenotype network structure, and decompose the genetic effect into direct,
indirect and total effect. Using large scale simulations we showed that the proposed methods have higher power
to detect true causal genetic pleiotropic structure than other existing methods.

Keywords: Structural equations, Causal inference, Multiple phenotypes, Quantitative trait, Next-generation
sequencing, Pleiotropic analysis
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Background
In the past several years, a large number of statistical
methods for association analysis of both qualitative and
quantitative traits with next-generation sequencing data
were developed [1–14]. Most genetic analyses of quanti-
tative traits focus on association analysis of a single trait,
analyzing each phenotype individually and independently
[15]. However, multiple phenotypes are correlated. For
example, metabolism of lipoproteins involves choles-
terol, triglycerides, very low density lipoproteins (VLDL),
low density lipoproteins and high density lipoproteins.
These multiple traits are dependent. The integrative
analysis of correlated phenotypes often increase statis-
tical power to identify genetic associations [16, 17]. The
association analysis of multiple phenotypes is expected
to become popular in the near future [18].
Three major approaches are commonly used to

explore association of genetic variants with multiple
correlated phenotypes: multiple regression methods,
integration of p values of univariate analysis, and
dimension reduction methods [16]. Despite their differ-
ences in selection of specific methods for estimation, all
these estimation methods share the following common
features. First, many methods were designed for com-
mon variants and hence may not be appropriate for
rare ones. Second, the results of all these analyses are
difficult to interpret. They do not provide information
to indicate which phenotypes the genetic variants are
significantly associated [15]. Third, all these methods
estimate the effect of the genetic variant on each
phenotype individually and do not explore the depend-
ency patterns of genetic effects among the phenotypes
and do not provide a detailed characterization of the
relationships among the genetic effects. Fourth, all
these estimations only estimate the effects of the gen-
etic variants on the phenotypes. However, the genetic
effects can be classified into three types of effects: dir-
ect, indirect and total effects. These methods are unable
to reveal mechanisms underlying the genetic structures
of multiple phenotype association analysis [19]. The
direct effect is the measurement of the influence of a
genetic variant on a phenotype that is not mediated by
any other phenotypes in a system. The indirect effect of
a genetic variant measures the sensitivity of a pheno-
type to change of a genetic variant that is mediated by
at least one intervening variable (phenotype). The total
effect is the sum of the direct and indirect effects. The
most popular multivariate association methods are lack
of ability to decompose total effect into direct effect
and indirect effect and ignore indirect effects through
other mediating phenotypes and risk factors. Therefore,
they cannot discover how the effect of the genetic vari-
ant on the phenotype is mediated by other phenotypes
and the effect path from the initially affected phenotype

by the genetic variant through a number of mediating
phenotypes to the targeted phenotype. Pleiotropic effect
is a context dependent genetic effect and plays an im-
portant role in multivariate trait association studies and
evolution analysis [20]. The pleiotropic effect of a spe-
cific genetic variant on multiple phenotypes may be
due to either direct contribution of the genetic variant
to the multiple phenotypes or phenotype correlations
(mediations). The multivariate trait association studies
cannot distinguish the paths connecting multiple phe-
notypes and genetic effects [21].
In the past several years, there have been increasing

interests in modeling the complex structures among
phenotypes, risk factors and genotypes which are re-
ferred to as the genotype-phenotype networks and there-
fore overcome these limitations. Current methods for
inference of genotype-phenotype networks can be classi-
fied into two categories: whole network scoring methods
and local analysis methods [22–29]. Network scoring ap-
proaches assign a score to the network model for meas-
uring how well the network fits the data and develop
algorithms to search the network with the best score.
Local analysis methods analyze small sets of variables
that are pieced together into networks from multiple
causality tests between variables.
One of network scoring methods is structure equa-

tions that can be used as a tool to model the complex
network structures among phenotypes, risk factors and
genotypes [19–21, 30–32]. A graphical model in which
the variables are represented as nodes and the relation-
ships between variables are represented by edges
between the nodes can be used to model the genotype-
phenotype networks. Structural equations can generate
biological interpretations of relations among variables
and uncover the mechanism structure underlying
phenotypic and genotypic relationships. To date, in ap-
plications of the structural equation model (SEM) in
quantitative genetics, the causal structure was assumed
to be known as a priori, or partially specified, thereby
allowing selection of the causal structure for a small set
of variables from the data [21]. There are two major ap-
proaches to estimate the causal structure from the data.
One approach is based on the conditional independ-
ence and the notion of Markov equivalence of directed
acyclic graphs (DAGs) [33]. DAGs encode causal struc-
ture. However, a DAG is not, in general, identifiable
from observational data. Conditional independence
only determines the skeleton of the DAG which is the
undirected graph of the DAG by removing its direc-
tions of all edges, and the v structure of the DAG where
two nodes are directed to a common node (collider)
[34]. A number of algorithms such as PC-algorithms
have been used to estimate the equivalence class of
DAGs [35]. A second approach is to use the notion of
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‘sparse’ and develop sparse SEMs for estimating the
causal structures [36]. By incorporating the penalized
constraints of the parameters into the likelihood function
to enforce the network sparsity, we could estimate the
causal structure. Coordinate ascent algorithms are often
used to maximize the penalized likelihood functions.
Despite their successful application to joint analysis of

genetic architecture and causal phenotype networks,
current approaches often demand intensive computa-
tions and are lack of efficient computational algorithms
for implementing penalization of network structure pa-
rameters. Therefore, they cannot be used for large-scale
causal inference. Most current approaches are designed
for common variants and are difficult to be applied to
next generation sequencing (NGS) data. The purpose of
this paper is to overcome these limitations. We first de-
velop novel functional SEMs where exogenous genotype
profiles across a genomic region or a gene are repre-
sented as a function of the genomic position for genetic
association analysis of multiple quantitative traits which
is referred to as multivariate quantitative traits locus
(QTL) analysis. The functional SEMs for multivariate
QTL analysis consist of three components. The first
component is a phenotype network that is modeled as a
directed graph. The second component is a genotype
network that is represented as an undirected graph. The
third component is connections between the genotype
network and phenotype network with direction from
genotype nodes to phenotype nodes. To make the net-
work sparse and reduce the burden of computations, we
develop the novel sparse SEMs for genotype-phenotype
networks and an efficient computational algorithms
based on ADMM to search the causal structure and esti-
mate the parameters [37, 38]. We will estimate the dir-
ect, indirect and total effects of the genetic variants on
the phenotypes using estimated directed graph and
intervention calculus [39] and explore the relationships
between direct, indirect and total effects estimated from
SEMs and the genetic effects estimated from the
traditional simple regressions and multiple regressions.
Finally, the sparse SEMs are applied to exome sequence
data from the NHLBI’s Exome Sequencing Project (ESP)
with 11 phenotypes. A program implementing the devel-
oped sparse SEMs for quantitative genetic analysis with
multiple phenotypes will be published as an R package.

Methods
Multivariate quantitative trait association analysis can be in-
vestigated by phenotype-genotype networks, which can be
represented as a graph. Phenotypes, covariates such as age,
sex, race, and SNPs are variables. Variables are represented
as nodes in the graph. We assume that causal relationships
among phenotypes exist. Therefore, a phenotype network is
represented by a directed graph. A directed edge between

two nodes indicates the causal relationship between them.
Since SNPs do not have causal relationships among them, a
genotype network is represented as an undirected graph. An
edge between two nodes in the genotype network indicates
their correlation. Since all SNPs and covariates may cause
changes in phenotypes, the phenotype network and geno-
type network are connected by edges directed from covari-
ates and SNP to the phenotypes. The phenotypes and
connections between phenotypes, covariates and SNPs
can be modeled by structural equations. The genotype
network can be leant by graphical LASSO (GLASSO)
[39], here we didn’t focus on genotype network in this
paper. An example of phenotype-genotype network is
shown in Additional file 1: Figure S1.

SEMs for multivariate association analysis
The SEMs offer a general statistical framework for infer-
ring phenotype networks and connections between ge-
notypes and phenotypes. Assume that n individuals are
sampled. We consider M phenotypes that are referred to
as endogenous variables. The endogenous variables are
jointly determined in the model and are also influenced
by the variables outside the model. We denote the n ob-
servations on the M endogenous variables by the matrix
Y = [y1, y2,…, yM], where yi = [y1i,…, yni]

T is a vector of
collecting n observation of the endogenous variable i.
Covariates, genetic variants as exogenous or predeter-
mined variables are denoted by X = [x1,…, xK] where
xi = [x1i,…, xni]

T. Similar to independent variables in the
regression, the exogenous variables are outside the models
and are not influenced by the variables in the model. Simi-
larly, random errors are denoted by E = [e1,…, eM], where
we assume E[ei] = 0 and E[eiei

T] = σi
2In for i = 1,…,M.

Recall that the relationships between the phenotypes and
genotypes are traditionally described by the regressions
where the phenotypes are taken as dependent variables
and genotypes are taken as independent variables are pre-
dictors. In the regression models, the dependence rela-
tionships among dependent variables or phenotypes
cannot be explicitly expressed. Therefore, the regression
models cannot be used to determine which phenotypes
cause the variations of which phenotypes. To overcome
this limitation, we introduce linear structural equations.
The linear structural equations for modeling relationships
among phenotypes and genotypes can be written as [38].

y1γ11 þ y2γ21 þ…þ yMγM1 þ x1β11 þ x2β21 þ…þ xKβK1 þ e1 ¼ 0

⋮ ⋮
y1γ1M þ y2γ2M þ…þ yMγMM þ x1β1M þ x2β2M þ…þ xKβKM þ eM ¼ 0

ð1Þ

where the γ’s and β’s are the structural parameters of the
system that are unknown.
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Variables in the SEMs can be classified into two basic
types of variables: observed variables that can be measured
and the residual error variables that cannot be measured
and represent all other unmodeled causes of the variables.
Most observed variables (e. g. phenotypes such as BMI,
blood pressure, high density lipoprotein, low density lipo-
protein) are random. Some observed variables may be
nonrandom or control variables (e. g. genotypes, drug dos-
ages) whose values remain the same in repeated random
sampling or might manipulated by the experimenter. The
observed variables will be further classified into exogenous
variables (e.g. genotypes, age, sex, race), which lie outside
the model, and endogenous variables (e.g. phenotypes),
whose values are determined through joint interaction
with other variables within the system. All nonrandom
variables can be viewed as exogenous variables. Pheno-
types are viewed as endogenous variables. The terms ex-
ogenous and endogenous are model specific. It may be
that an exogenous variable in one model is endogenous in
another. The structural parameters γ describe the relation-
ships between phenotypes and parameters β measure the
direct genetic effects of the genotypes on the phenotypes.
In matrix notation the SEMs (1) can be rewritten as

YΓ þ XBþ E ¼ 0; ð2Þ
where Γ = [Γ1,…, ΓM], Γi = [γ1i,…, γMi]

T, B = [B1,…, BM],
Bi = [β1i,…, βKi]

T.
We assume that the random errors in the structural

equations are independent and uncorrelated with ex-
ogenous variables. We apply the sparsity penalty to each
equation to ensure that the sparse SEMs are identifiable.

Two-stage least square estimates of the parameters in
the SEMs
The ordinary least squares estimator is biased and in-
consistent for the parameters of structural equations. To
ensure the consistent estimates of the parameters in the
SEMs, we use a generalized least square method that
can be interpreted as a two-stage least square estimate
method to estimate the parameters in the SEMs [38].
Recalling that yi is the vector of observations of the

variable i, let Y− i be the observation matrix Y after re-
moving yi from it and γ− i be the parameter vector Γi
after removing the parameter γii. The ith equation:

YΓ i þ XBi þ ei ¼ 0

can be rewritten as

yi ¼ Y −i γ−i þ XBi þ ei

¼ WiΔi þ ei;

ð3Þ

where Wi ¼ Y −i X½ �;Δi ¼ γ−i
T BT

i

h iT
:

Multiplying by the matrix XT on both sides of eq. (3),
we obtain

XTyi ¼ XTY −iγ−i þ XTX
� �

Bi þ XTei
¼ XTWiΔi þ XTei: ð4Þ

It is known that

cov XTei;X
Tei

� � ¼ XTXσ2i :

The generalized least square estimate Δ̂i is given by

Δ̂i ¼ WT
i X XTX

� �−1
XTWi

h i−1
WT

i X XTX
� �−1

XTyi:

ð5Þ

The generalized least square estimate Δ̂i can be inter-
preted as a two-stage least square estimate [38].
Suppose that in the first stage, Y− i is regressed on X to

obtain

Π̂i ¼ XTX
� �−1

XTY −i and Ŷ −i ¼ XΠ̂i:

Then,

Ŵ i ¼ Ŷ −i X
� �

¼ X XTX
� �−1

XTWi:

Eq. (5) can be reduced to

Δ̂i ¼ Ŵ
T
i Ŵ i

� �−1
Ŵ

T
i yi: ð6Þ

Therefore, if Wi in eq. (3) is replaced by Ŵi, eq. (6)
can be interpreted as that in the second stage, yi is

regressed on Ŷi and X to obtain estimate Δ̂i.

Sparse SEMs and alternating direction method of multipliers
In general, the genotype-phenotype networks are sparse.
Therefore, Γ and B are sparse matrices. In order to ob-
tain sparse estimates of Γ and B, the natural approach is
the l1 -norm penalized regression of eq. (4). Using
weighted least square and l1 -norm penalization, we can
form the following optimization problem:

min
Δi

f Δið Þ þ λjjΔijj1
where f Δið Þ ¼ XTyi−X

TWiΔi
� �T

XTX
� �−1

XTyi−X
TWiΔi

� �
:

ð7Þ

The size of the genotype-phenotype network may be
large. The efficient ADMM [37] algorithm is used to
solve the optimization problem (7). The procedure for
implementing ADMM is given below (more detailed
descriptions are provided in Appendix 1).
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Under some assumptions convergence of ADMM can
be proved [37]. In practice, although it can be slow to
converge to high accuracy, ADMM converges to modest
accuracy within a few tens of iterations. When large-
scale problems and parameter estimation problems are
considered, modest accuracy is sufficient. Therefore,
ADMM may work very well for structure and parameter
estimation in the genotype-phenotype networks.
Most of the elements of matrices Γ and B are equal to

zero. The l1 − regularized Lasso for the two stage least
squares approach and ADMM algorithms are expected
to shrink most of the coefficient matrices Γ and B
toward zero, yielding sparse network structures. The
sparsity-controlling parameter λ will be estimated via
cross validation or set by users to get reasonable re-
sults. We abbreviate this sparse two stage least square
estimation of SEMs as S2SEMs.

Sparse functional structural equation models for
phenotype and genotype networks
Fast and cheaper next generation sequencing (NGS)
technologies will generate unprecedentedly massive and
highly-dimensional genomic variation data. Despite their
promise, next generation sequencing platforms also have
three specific features: high error rates, enrichment of
rare variants and large proportion of missing values.

Available causal analysis platforms for genetic studies
which are mainly designed for common variants provide
useful tools for single marker-based pleiotropic genetic
analysis, but have limitations in analyzing thousands of se-
quences collected for very large population-based studies
of humans. To address the critical barrier in causal genetic
analysis with NGS data, we extend the multivariate SEMs
to functional SEMs where exogenous genotype profiles
across a genomic region are represented as a function of
the genomic position. To effectively reduce the dimension
of the data, we use genetic variant profiles which will
recognize information contained in the physical location
of the SNP as a major data form. The densely distributed
genetic variants across the genomes in large samples can
be viewed as realizations of a Poisson process. The densely
typed genetic variants in a genomic region for each indi-
vidual are so close that these genetic variant profiles can
be treated as observed data taken from curves. The gen-
etic variant profiles are called functional.
Large simulations have shown that combining infor-

mation across multiple variants in a genomic region of
analysis will greatly enhance power to detect association
of rare variants [9]. To jointly utilize multi-locus genetic
information and reduce the dimension of the NGS data,
we propose to use a genomic region or a gene as a unit
in multiple trait association analysis and develop sparse
functional structural equation models (FSEMs) for con-
struction and analysis of the phenotype and genotype
networks. The FSEMs collectively analyze the contribu-
tion of multiple variants to the traits, reduce the errors
in the NGS data via data reduction techniques and can
effectively deal with missing data through the smooth
mechanism of the function curves of the data.
Let t be a genomic position. Define a genotype profile

xi(t) of the i-th individual as

xi tð Þ ¼
2Pq tð Þ ; QQ
Pq tð Þ‐PQ tð Þ; Qq
−2PQ tð Þ ; qq

8<
:

where Q and q are two alleles of the marker at the gen-
omic position t, PQ(t) and Pq(t) are the frequencies of
the alleles Q and q, respectively. Suppose that we are in-
terested in k genomic regions or genes [aj, bj], denoted
as Tj, j = 1, 2,…, k. We consider the following functional
structural equation models:

y1γ11 þ y2γ21 þ…þ yMγM1 þ
Z
T 1

x1 tð Þβ11 tð Þdt þ…þ
Z
Tk

xk tð Þβk1 tð Þdt þ e1 ¼ 0

y1γ12 þ y2γ22 þ…þ yMγM2 þ
Z
T 1

x1 tð Þβ12 tð Þdt þ…þ
Z
Tk

xk tð Þβk2 tð Þdt þ e2 ¼ 0

⋮ ⋮ ⋮

y1γ1M þ y2γ2M þ…þ yMγMM þ
Z
T1

x1 tð Þβ1M tð Þdt þ…þ
Z
Tk

xk tð ÞβkM tð Þdt þ eM ¼ 0

ð8Þ
where βij(t) are genetic effect functions.
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Functional principal components (FPCs) are efficient
summary statistics. The FPCs simultaneously employs
genetic information of the individual variants and correl-
ation information (linkage disequilibrium) among all var-
iants. The FPCs view the genetic variation across the
genomic region as a function of its genomic location
and uses intrinsic functional dependence structure of
the data and all available genetic information of the var-
iants in the genomic region. The neighboring genetic
variants are linked. The genotypes at one SNP are
dependent on the genotypes at nearby SNPs. The FPCs
account for the space-ordering of the genetic variation
data. Expanding the genotype functions in terms of a
few orthogonal FPCs will substantially reduce the di-
mensions of the genetic variation data while preserving
the intrinsic correlation structure and the space-
ordering of the data. Specifically, For each genomic
region or gene, we use functional principal component
analysis to calculate principal component function [14].
We expand xnj(t), n = 1,…,N, j = 1, 2,…, k in each gen-
omic region in terms of orthogonal principal compo-
nent functions:

xij tð Þ ¼
XLj
l¼1

ηijlφjl tð Þ; j ¼ 1;…; k;

where φjl(t), j = 1,…, k, l = 1,…, Lj are the l-th principal
component function in the j-th genomic region or gene
and ηijl are the functional principal component scores of
the i-th individual.
Let η be a matrix collection of all functional principal

component scores, the parameter matrix B can be de-
fined as that in Appendix 2, matrices Y and Γ can be de-
fined as that in the previous section. The structural
functional equations can be reduced in terms of func-
tional principal component scores (Appendix 2):

YΓ i þ ηBi þ ei ¼ 0;

which can be rewritten as

yi ¼ WiΔi þ ei;

where Wi ¼ Y −i η½ �;Δi ¼ γT−i BT
i

� �T
:

Then, the sparse FSEMs are transformed to

min
Δi

f Δið Þ þ λjjΔijj1
where f Δið Þ ¼ ηTyi−η

TWiΔi
� �T

ηTη
� �−1

ηTyi−η
TWiΔi

� �
:

ð9Þ
The ADMM algorithms for solving the sparse FSEMs

are the same as that in the previous section if the matrix
X is replaced by a functional principal component score
matrix η (Appendix 2).

The functional SEMs can efficiently combine both
common and rare genetic variants across the gene
region and are suitable for NGS data [14]. This model
extends the single variant-based network analysis to
gene-based analysis, which can deal with hundreds of
genes that may include tens of thousands SNPs. How-
ever, due to the computational limitation, we cannot dir-
ectly handle the whole genome sequencing data. To
construct whole genome genotype-phenotype networks,
the network construction consists of two stages. At the
first stage, we can group the genes based on the meta-
bolic pathways or cluster analysis, with each group hav-
ing at most hundreds of genes, and then apply the
functional SEMs to each group of genes to find the set
of genes significantly connected to the phenotypes. At
the second stage, adding the sets of significantly con-
nected genes identified at the first stage together to form a
new of set of genes for network construction. The func-
tional SEMs are again applied to the new set of genes to
construct the final genotype-phenotype network.

Effect decomposition and estimation
To make this paper self-contained, we introduce basic
concepts and methods for decomposition and estimation
of the effects. In the genotype-phenotype network ana-
lysis we are interested in estimation of effects of genetic
variants on phenotypes, which is referred to as genetic
effects and effects of treatment on phenotypes. All gen-
etic effects and treatment effects can be decomposed as
total (causal), direct effects and indirect effects. Distinc-
tion between total, direct and indirect effects are of great
practical importance in genetic association analysis [40].
The total effect measures the changes of response
variable Y (phenotype) would take on the value y when
variable X is set to x by external intervention. Direct
effect is defined as sensitivity of Y to changes in X while
all other variables in the model are held fixed. Indirect
effect is to measure the portion of the effect which can
be explained by mediation alone, while inhibiting the
capacity of Y to respond to X [41]. The total effect is
equal to the summation of direct and indirect effects.
Given a directed graph model G, one can compute

total effects using intervention calculus [34, 42]. Suppose
that the expected value of a response variable Y, after X
is assigned value x by intervention is denoted by
E[Y|do(X = x)]. The total effect is defined as

∂
∂x

E Y jdo X ¼ xð Þ½ �: ð10Þ

Note Xj is called a parent of X in G if there is a di-
rected edge Xj→ X. Let pax denote the set of all parents
of X in G. In the linear SEMs, we assume that E[Y|X, pax]
is linear in X and pax:

Wang et al. BMC Genomics  (2016) 17:881 Page 6 of 24



E Y jX; pax½ � ¼ αþ βX þ γTpax: ð11Þ
Then,

∂
∂x

E Y jdo X ¼ xð Þ½ � ¼ β:

When a directed graph is given, it is easy to calculate
total effect [42]. Assume that there are k directed paths
from X to Y and pi are the product of the path coeffi-
cients along the i-th path. The total effect of X on Y is
then defined as ∑i = 1

k pi. As shown in Additional file 1:
Figure S2, the total effect of X on Y is ag + bdh + acdh.
By its definition, direct effect measures the sensitivity of
Y to changes in X while all other variables in the model
are held fixed. In other words, all links from X to Y
other than the direct link will be blocked. As a conse-
quences, the direct effect is equal to the path coefficient
from X to Y. In the linear SEMs, the indirect effect of X
on Y mediated by M is equal to the sum of the products
associated with directed paths from X to Y through M
[42]. In Additional file 1: Figure S2, there is no direct
effect from X to Y. The indirect effect of X on Y which
is mediated by B and D is equal to bdh.
In the SEMs for genotype-phenotype networks, since

all SNPs only form undirected graph and there are no
directed links between SNPs although we can observe
linkage (or correlation) between SNPs; SNPs in the
genotype-phenotype networks do not have parents. The
total effect of SNP X on Y is the regression coefficient β
of the following linear regression:

E Y jdo X ¼ xð Þ½ � ¼ αþ βx;

which is a simple regression of Y on X. This indicates
that the traditional simple regression for association
studies captures the total effect of a genetic variant on a
phenotype.
If we include environments and risk factors such as

smoking and obesity in the model and want to evaluate
the effects of the environments and risk factors on the
phenotype, these variables play mediating roles and will
also be taken as phenotypes. We denote these mediating
phenotypes by YME. Since genetic variants, and other
risk factors and phenotypes will affect the mediating
phenotypes, the mediating phenotypes in the graphics
may have parents. Their parents are denoted by S. Total
effect of the mediation phenotype on the target pheno-
type is calculated by

E Y jdo YME ¼ yME;Xpa ¼ xpa
� �� � ¼ αþ βyME þ γTxpa;

ð12Þ
where β is the total effect of the mediation phenotype
YME on the target phenotype Y. In this case, a simple re-
gression of Y on YME can no longer be used to measure

the total effect of the mediation phenotype YME on the
target phenotype Y. To observe this, we simulated 1000
individuals with the SEM as shown in Additional file 1:
Figure S3. Each variable has a noise term distributed as
N(0, 1). The total effect of the mediation phenotype YME

on the target phenotype Y is 3.5. We obtain the simple
regression:

Y ¼ 1:39þ 5:85YME :

It is clear that the coefficient of the simple regression
is 5.85. This value is far away from the total effect 3.5.
However, using eq. (12) we obtain

Y ¼ 3:54YME þ 5:85X;

where the regression coefficient 3.54 measured the total
effect of the mediation phenotype YME on the target
phenotype Y.

Test statistics for path coefficients
Testing connection between the j-th gene and the i-th
phenotype in the genotype-phenotype network, we for-
mally investigate the problem of testing the coefficient
of the path directed from the j- th gene to the i-th
phenotype:

H0 : βji tð Þ ¼ 0 ; ∀t∈ 0;Tj
� � ð13Þ

against

Ha : βji tð Þ≠0 :

If the coefficient function of path or genetic effect
function βji(t) is expanded in terms of the principal com-
ponent functions:

βji tð Þ ¼
XG

g¼1
bjigφjg tð Þ;

then testing the null hypothesis H0 in Eq. (13) is equiva-
lent to testing the hypothesis:

H0 : bjig ¼ 0 ; ∀g: ð14Þ
The path coefficients bjig can be estimated by solving

problems (8) and (9). Let b̂ji ¼ bji1;…; bjiG
� �T

. The
covariance matrix of the vector of the estimators of path
coefficients for the i -th equation is given by [38]

Σ̂ i ¼ σ ii WT
i η ηTη

� �−1
ηTWi

h i−1
; ð15Þ

where

σ ii ¼ yi−WiΔ̂i
� �T

yi−WiΔ̂i
� �

=n: ð16Þ
Let Λi be the submatrix that corresponds to bji in the

matrix Σ̂i . Define the statistic for testing the directed
connection from the j-th gene to the i-th phenotype as
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Tg ¼ b̂
T
jiΛ

−1
i b̂ji: ð17Þ

Under the null hypothesis of no association H0 : bji = 0,
Tg is asymptotically distributed as a central χ(G)

2 distribu-
tion where G is the number of functional principal com-
ponents in the expansion of βji(t).
For testing a single parameter or single variant’s path

coefficient in the SEMs, the l-th parameter of the i-th
equation, the statistic is given by

Tc ¼ Δ̂il
2

var Δ̂il
� � ; ð18Þ

where var Δ̂il
� �

is the l-th diagonal element of the matrix

Σ̂i . Under the null hypothesis H0 : Δil = 0, Tc is asymptot-
ically distributed as a central χ(1)

2 distribution.
Testing for the path coefficients within the network

results in multiple testing problems. Both false discovery
rate approach and Bonferroni correction can be used to
adjust for multiple testing [43, 44].

Results
Model evaluation by simulations
We evaluated the performance of the sparse SEM ap-
proach for genetic analysis of multiple quantitative traits
in simulation studies of a genotype-phenotype network
where SNP-based simulations and gene-based simula-
tions were considered. The simulations were carried out
for common variants, rare variants and half common
and half rare variants. The genotype data were selected
from the NHLBI’s Exome Sequencing Project (ESP) with
3248 individuals of European origin, which were then
used to generate a population of 1,000,000 individuals.
We first study the SNP-based simulations. The

genotype-phenotype network consisted of two parts. The
first part was the phenotype network that was modeled by
a DAG. The second part was the connections between the
genotypes and phenotypes in which the genotypes were
directed to the phenotypes. We randomly generated a
genotype-phenotype network structure (see an example in
Additional file 1: Figure S4). The parameters Γij in the
SEMs for modeling phenotype sub-network were gener-
ated from a uniformly distributed random variable over
the interval (0.5, 1) or (−1,-0.5) if an edge from node j to
node i was presented in the phenotype sub-network;
otherwise Γij =0. Similarly, the parameters Bij in the SEMs
for modeling the direction from the genotype (SNP) node
j to the phenotype node i were generated from a uni-
formly distributed random variable over the interval (0, 1)
or (−1,0) if an edge from node j to node i was presented in
the genotype-phenotype network, otherwise Bij = 0. The
indicator variables for coding genotypes of the SNP were
as previously described. Using the randomly generated

network structure and parameters in the structural
equations, we produced the phenotypes by the model:
Y = − XBΓ − 1 + εΓ − 1, where ε ~N(0, 0.01 × I), and X is
a matrix of indicator variables for coding genotypes.
For the randomly generated phenotype network, the ex-
pected number of degrees per node is three. Simulations
were repeated 100 times. Five-fold cross validation was
used to determine the penalty parameter λ that was then
employed to infer the network while running power simu-
lations. Two measures: the power of detection (PD) and
the false discovery rate (FDR) were used to evaluate the
performance of the algorithms for identification of the net-
work structures. Specifically, let Nt be the total number of

edges among 1000 replicates of the network and N̂ t be the
total number of edges detected by the inference algorithm,
Ntrue be the total number of true edges detected among
simulated network and NFalse be the false edges detected

among N̂ t . Now, the power of detection (PD) is defined by
N
True
N̂ t

and false discovery rate (FDR) is defined by
N
False

N̂ t
.

In the SNP-based simulations we first compared the
S2SEM with ADMM algorithms with the sparse max-
imum likelihood SEMs (SML) with coordinate ascent
algorithms [36]. The SML method assumes each pheno-
type has one priori known QTL, and only focus on the
inference of phenotype network. So in this comparison
we only calculate PD and FDR for phenotype network.
We first compare the power and FDR of the S2SEM

and SML under the assumption that each QTL had only
connection with one phenotype, and no pleiotropic ef-
fects were present. We considered two scenarios: 10
phenotypes and 10 SNPs, 30 phenotypes and 30 SNPs.
Results were shown in Additional file 1: Figure S5. We
observed that if the variants were common variants, the
SML had a higher power and a lower FDR than the
S2SEM. However, once rare variants were included the
SML substantially lost power and increased FDR.
Now we compare the power and FDR of the S2SEM

and SML under the assumption of the presence of pleio-
tropic genetic effects. We considered three scenarios:
ten phenotypes and SNPs, 30 phenotypes and SNPs, and
100 phenotypes and SNPs. The simulation results were
shown in Fig. 1. We observed that even though SML still
showed very high power for common variants, its FDR
was large when the genotype had pleiotropic effects.
Again, in the presence of rare variants the S2SEM had a
higher power and a lower FDR than the SML. Even if in
the presence of only common variants, we also observed
an interesting feature that when the number of pheno-
types and SNPs exceeds some threshold, the power of
the S2SEM became higher than the SML.
Next we compare the computational time of the

S2SEM and SML methods. Table 1 showed their
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Fig. 1 Performance of S2SEM and SML. The power and FDR of the two methods for phenotype networks inference when the phenotype and
genotype number is 10 (a, b), 30 (c, d) and 100 (e, f) respectively, each genotype has pleiotropic effect for another phenotype

Table 1 The computation time for S2SEM and SML methods of one replicate for the simulations of common variants

Time(s)/replicate Phenotypes 10,
Common SNPs 10

Phenotypes 30,
Common SNPs 30

Phenotypes 100,
Common SNPs 100

Sample S2SEM SML S2SEM SML S2SEM SML

100 0.712 0.825 5.148 16.386 273.873 353.402

300 0.926 1.598 7.058 37.006 123.936 873.426

500 1.228 2.560 9.037 58.360 143.593 1535.544

800 1.850 4.230 11.967 94.564 170.799 2470.602

1100 2.463 6.315 15.541 130.116 309.795 4098.201

1400 2.972 8.755 18.856 169.985 218.933 5269.562

1700 3.736 12.032 23.879 212.400 285.213 4989.240

2000 4.515 15.473 27.664 252.855 311.480 5973.181

2300 5.517 19.388 33.685 297.721 375.167 7268.095

2600 6.488 23.515 38.413 347.531 625.959 8950.179

2900 7.646 28.127 45.708 393.149 724.829 10455.262
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program running time for one replicate of simulations in
the presence of the common variants. The computer
CPU was Intel (R) Xeon E7-4870. We can see that our
S2SEM method are much faster than SML method.
When we study the general genotype-phenotype

networks, construction of large genotype-phenotype
requires heavy computations. The SML methods are
not suitable for the general genotype-phenotype net-
work inference due to its large computational time and
have not be applied to general genotype-phenotype net-
work estimation. Next we compared the S2SEM with
the QTLnet algorithm [22] which can be used for joint
inference of causal network and genetic architecture for
correlated phenotypes. We considered three scenarios:
ten phenotypes with 30 SNPs, 30 phenotypes with 100
SNPs and 100 phenotypes and 1000 SNPs. The

procedures for randomly generating genotype-
phenotype networks were described as in the previous
section. We assumed that on the average, each pheno-
type was affected by three genetic variants.
Figure 2a and c showed the power of two methods:

S2SEM and QTLnet for detecting the structure of the
genotype (common variants, rare variants and both com-
mon and rare variants)– phenotype network as a func-
tion of sample size.
We observed three features. The first, the power of

S2SEM in all three cases was higher than QTLnet
method. Second, the power of the two methods to detect
the structure of the networks with the common variants
was the highest, followed by the half common and half
rare variants. The power of two methods to detect the
structure of the network with the rare variants was the

Fig. 2 Performance of S2SEM and QTLnet. The power and FDR of the two methods for genotype-phenotype networks inference in three different
settings, (a,b) is results for 10 phenotypes and 30 SNPs, (c,d) is results for 30 phenotypes and 100 SNPs. QTLnet method is too time consuming to
obtain results for 100 phenotypes, (e,f) only gives results of S2SEM for different SNPs frequencies
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lowest. Third, in general, the power increased when the
sample sizes increased. To fully evaluate the perform-
ance of the two methods, we also presented the FDR for
detection of the structure of the networks as a function
of sample sizes in Fig. 2 (b) and (d). It was clear that the
FDR of the S2SEM in all three cases was lower than
QTLnet method. The FDR of two methods to detect the
structure of the networks with the common variants was
the lowest, followed by the both common and rare vari-
ants. The FDR of two methods to detect the structure of
the network with the rare variants was the highest. How-
ever, the false discovery rates for these two methods and
in three cases were larger than 0.1 even the sample sizes
reached 3000, and it is larger than 0.3 in the rare vari-
ants case.
Finally, the simulation results for the third scenario:

100 phenotypes and 1000 SNPs were shown in Fig. 2(e)
and (f ). The power and FDR patterns of the S2SEM and
QTLnet were the same as that for the previous two sce-
narios. We also observed that the sample sizes increased
as the sizes of the network increased. However, when
the sample sizes exceeded 2000 the impact of the sizes
of the network on the power became small. Table 2
showed the required computational times for network
construction using the S2SEM and QTLnet. It was
clear that the S2SEM still can estimate the large
genotype-phenotype networks in a short time. How-
ever, the QTLnet method could not estimate such large
genotype-phenotype networks in a reasonable time.
Figures 1 and 2 showed that the power of the variant

by variant tests for identifying the network structure
with the rare variants was low. To increase the power
and reduce data dimensions, we develop functional
SEMs (FSEMs) for network analysis using a genomic
region or gene as a unit of analysis. To evaluate this
strategy, we presented Fig. 3 to compare the power and

FDR of the gene-based FSEMs and the SNP-based SEMs
for detection of the network structures. Since the ori-
ginal papers for QTLnet [22] did not develop the gene-
based statistics, in Fig. 3 we did not present the results
of QTLnet algorithm. Simulation were conducted for
two settings: ten phenotypes with ten genes (ten SNPs
for each gene), and 30 phenotypes with 100 genes (ten
SNPs for each gene). We observed that in all three cases:
common, rare and both common and rare variants, the
gene-based FSEM had much higher power and smaller
FDR than the SNP-based SEMs. It is interesting to ob-
serve that even if for the rare variants the gene-based
method can reach the power as high as 85 % when sam-
ple sizes were larger than 3000.

Application to real data examples
To evaluate its performance, we applied the sparse func-
tional SEMs with a gene as a unit of analysis to a sample
of 1011 European-Americans (EA) with complete exome
sequencing (total of 1,861,447 common and rare vari-
ants, 18,025 genes, of which, 5288 genes were mapped
to 259 pathways downloaded from the KEGG database)
and 11 phenotypes: high density lipoprotein cholesterol
(HDL), low density lipoprotein cholesterol (LDL), trigly-
ceride (Trig) and total cholesterol (TotChol), fast glu-
cose, systolic blood pressure (SBP), diastolic blood
pressure, body mass index (BMI), fastinsulin, Fibrinogen,
and platelet count (PLATELET) (no missing phenotype
data). Inverse rank normal transformation of the pheno-
types was used in the analysis.
The analysis consisted of two stages. At the first stage,

the sparse functional SEMs were applied to each of the
259 KEGG pathways and 11 phenotypes to infer
genotype-phenotype networks. The remaining 12,737
genes which were not mapped to KEGG pathways were
divided into 100 groups according to the order of

Table 2 The computation time for S2SEM and QTLnet methods of one replicate for the simulations of common variants

Time(s)/replicate Phenotypes 10,
Common SNPs 30

Phenotypes 30,
Common SNPs 100

Phenotypes 100,
Common SNPs 1000

Sample S2SEM QTLnet S2SEM QTLnet S2SEM

100 1.36 1320.652 27.7625 12027.462 273.873

300 1.81063 1398.773 14.7055 12700.457 123.936

500 2.37817 1476.835 19.29666 13373.882 143.593

800 3.45897 1554.466 26.23715 14047.312 170.799

1100 4.70929 1632.869 36.27526 14720.764 309.795

1400 5.89862 1710.212 43.54272 15394.201 218.933

1700 7.49375 1788.496 55.96197 16067.649 285.213

2000 9.03683 1866.751 64.34067 16741.084 311.480

2300 11.21737 1944.063 78.7097 17414.523 375.167

2600 12.93615 2022.158 87.91563 18087.964 625.959

2900 15.51082 2100.947 105.14222 18761.402 724.829
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chromosomes. Again, the sparse functional SEMs were
applied to each group of genes and 11 phenotypes. We
identified 1789 genes with P-values for testing path coef-
ficients < 0.05 from the analysis at the first stage. To dis-
sect pleiotropic genetic structure, at the second stage,
we select 142 genes that were connected with more than
one phenotype for further analysis. The sparse functional
SEMs were applied to the selected 142 genes and 11
phenotypes to infer genotype-phenotype networks. To
improve the accuracy of estimation, a stability selection
procedure was used to infer the structure of the net-
work. In other words, we randomly resampled data and
estimated the genotype-phenotype networks 100 times.
We only selected arrows when their P-values for test-
ing the path-coefficients were less than 0.05 and they
were present in the estimated network more than 80
times, i.e., the probability for each arrow to be selected
was more than 0.8. We identified a genotype-
phenotype network with 137 genes directly connected
to 11 phenotypes and 341 edges. One hundred fourteen
genes out of 137 genes showed pleiotropic genetic ef-
fects. The results were presented in Fig. 4. Additional
file 2: Table S1 shows the path coefficients and p-values
according to network in Fig. 4. We observed that the
most causal relationships among phenotypes had P-
values < 10− 7 and stability ~1. This showed that the in-
ference about phenotype sub-network is highly reliable.

We also observed that large proportion of the edges in
the phenotype network had two directions. This dem-
onstrated that the SEMs had limitations for inferring
causal networks.
We observed that PIK3R5 directly affected seven phe-

notypes, HS1BP3 directly affected five phenotypes, 11
genes directly affected four phenotypes, and 33 genes
directly affected three phenotypes and remaining 102
genes directly affected two phenotypes. To assess the
roles of path analysis in detecting genetic pleiotropic ef-
fects, we presented Table 3 that summarizes the P-values
of three genes that affecting more than four phenotypes
for path coefficients, the marginal effects of single and
multiple traits (simple regression and multiple regres-
sion), and the minimum of P-values derived from princi-
pal component analysis (PCA) based regression. Table 3
showed that the most P-values for path coefficient were
less than that for the marginal effect of corresponding
single trait. Estimation of the marginal genetic effect of
single trait only explores information of the target trait
and genetic variants. However, estimation of the path
coefficient uses information of all the relevant traits and
genetic variants. This implies that path analysis has
higher power to detect genetic risk variants than the
traditional marginal analysis. From Table 3 we also ob-
served that in general, each gene had at least one path
with P-value for path coefficient was less or close to that

Fig. 3 Performance of gene-based S2SEM and FSEM. The power and FDR of the two methods for inference of genotype-phenotype networks in
two different settings, (a,b) is results for 10 phenoytypes and 10 genes which include 100 SNPs, (c,d) is results for 30 phenotypes and 100 genes
which include 1000 SNPs
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for marginal effects of multiple relevant traits or their
PCA analysis. Additional file 3: Table S2 summarizes the
results for all the 13 genes that connected to more than
4 phenotypes.
SEMs provide a powerful tool to distinguish four types

of effects: direct, indirect, total and marginal (estimated by
a simple regression) effects. Additional file 4: Table S3
summarized the direct, indirect, total and marginal ef-
fects of one variable (phenotype or gene) that was re-
ferred to as the causal on another variable (phenotype)
that was referred to as outcome for all 11 phenotypes
and 137 genes in the Fig. 4. Investigating each type of
effect allows a more comprehensive understanding of
the relationship between variables.
Additional file 4: Table S3 listed the total 1414 pairs

of causal relations between variables. We observed 343
(24.3 %) pairs of relations with direct effects, 1283
(90.7 %) pairs of relations with indirect effects and 212
(15 %) pairs of relations with both direct and indirect

effects (Table 4 showed examples of pairs with both dir-
ect and indirect effects). This implied that the most ef-
fects are indirect effects due to mediation. In the
quantitative trait locus (QTL) analysis, we often identify
QTL by testing association of the marginal effect with
the single trait. The SEMs provide complimentary in-
formation about path coefficients. In Table 5 we listed
25 tests in which the P-values for testing path coeffi-
cients were smaller than that for testing the marginal
effects (coefficient of simple regression model, SRG)
and 25 tests in which the P-values for testing marginal
effects were smaller than that for testing the path coef-
ficients. This showed that using SEMs for path analysis
will discover additional QTLs that may be missed by
marginal association analysis. In theory, the total effect
of the causal X on outcome Y is equal to the summa-
tion of the product of the path coefficients along all
possible paths between X and Y [34]. In the previous
section, the total effect is defined as the coefficient

Fig. 4 A genotype-phenotype network consisted of 137 genes and 11 phenotypes. One hundred fourteen genes of all the gene nodes showed
pleiotropic genetic effect. The nodes in yellow color represented the phenotypes, the nodes in light red color represented genes influencing
phenotype variation, the nodes in the red color represented genes from our network were reported to be associated with 11 phenotypes or
cardiovascular diseases phenotypes, the black arrows indicated the causal relations between phenotypes, the blue arrows indicted the contribution of
the gene to one phenotype
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Table 3 P-values for four different effect tests

Outcome Causal Stability P-value for path coefficient P-value (Single trait marginal) Min (P-value) PCA P-value (Multiple traits marginal)

1.44E-03 1.57E-03

SBP PIK3R5 1 8.38E-05 9.25E-02

DBP PIK3R5 1 1.20E-03 7.62E-02

TRIGS PIK3R5 0.9 5.59E-03 1.07E-01

FASTGLUCOSE PIK3R5 0.9 1.31E-02 2.01E-01

BMI PIK3R5 0.88 1.63E-02 2.61E-01

FASTINSULIN PIK3R5 0.92 3.00E-02 7.94E-01

HDL PIK3R5 0.81 3.84E-02 2.39E-01

2.17E-04 2.43E-04

DBP HS1BP3 0.96 1.21E-04 1.58E-01

HDL HS1BP3 0.98 6.78E-04 8.15E-04

SBP HS1BP3 0.87 6.08E-03 9.10E-01

BMI HS1BP3 0.94 1.71E-02 1.91E-01

FASTGLUCOSE HS1BP3 0.91 1.99E-02 5.95E-02

4.79E-04 5.24E-04

DBP ABCC9 1 5.30E-06 6.49E-02

SBP ABCC9 0.94 2.56E-04 4.63E-01

FASTINSULIN ABCC9 0.95 2.71E-03 2.10E-03

FIBRINOGEN ABCC9 0.96 5.52E-03 7.71E-02

The tested p-value for the path coefficient, mariginal effects of single trait and multiple traits, and minimum of P-values from PCA analysis (example of three
genes that connected to more than four phenotypes)

Table 4 An example of 20 pairs of variables that had both direct and indirect effects

Outcome Causal Direct effect Indirect effect Total effect Marginal effect

BMI ATP6V1G3 −0.5701 0.0107 −0.5594 −0.5360

BMI C12orf77 −1.3704 −0.2745 −1.6449 −1.7371

BMI EPHB2 −0.2627 0.0544 −0.2083 −0.2017

BMI PIK3R5 0.0631 −0.0119 0.0512 0.0541

BMI RPS21 0.7630 0.0123 0.7754 0.8282

DBP CHUK 0.0553 −0.0355 0.0199 0.0213

FASTGLUCOSE C11orf49 0.6186 0.0146 0.6332 0.5846

FASTGLUCOSE C12orf77 −1.2863 −0.2366 −1.5228 −1.5121

FASTGLUCOSE PIK3R5 0.0674 −0.0133 0.0541 0.0530

FASTGLUCOSE TAF5L 0.2911 0.0196 0.3107 0.2942

FASTINSULIN SFMBT2 0.2874 −0.0898 0.1975 0.1930

FIBRINOGEN FAM120AOS −0.1550 0.0033 −0.1516 −0.1597

HDL CREBBP 0.1168 −0.0176 0.0992 0.1097

HDL ITPR2 0.0946 −0.0542 0.0404 0.0434

LDL TOTCHOL 0.9458 0.0161 0.9619 0.9398

SBP AQPEP −0.0425 0.0282 −0.0143 −0.0156

SBP CHUK −0.0595 0.0335 −0.0261 −0.0272

SBP MET −0.0596 0.0376 −0.0220 −0.0212
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βYX:ParentX of X in the linear regression of Y on X and
its parent set. Let Z = Parentx. The total effect βYX. Z
can be expressed by [34]

βYX:Z ¼ βYX

1−ρYZρZX
ρYX

1−ρXZ
2 : ð19Þ

Since causal relations between SNPs do not exist, any
SNP does not have its parent, i.e., the set Z = φ is empty.
Therefore, for the SNP or gene X, we have βYX. Z = βYX.
For example, the estimator of the direct effect of gene
MET on the phenotype SBP was −0.0596. MET also had
path MET → DBP → SBP. The indirect effect of MET
on SBP was 0.0621 × 0.605 = 0.0376. Thus, the total ef-
fect of MET on SBP was −0.022. The marginal effect βYX
of MET on SBP estimated by SRG was −0.0212. The
total effect of MET on SBP estimated from Fig. 4 was
close to the marginal effect of MET on SBP. This ex-
ample showed that if the causal relationships among the

variables were completely captured by a DAG, the total
effect and marginal effect were almost equal. Therefore,
in the genotype-phenotype estimation process, we can
use the relationship between the total and marginal ef-
fects to check whether the causal relationship modeled
by a DAG is complete.
Multiple SNPs within a gene jointly have significant

genetic effects, but individually each SNP make mild
contributions to the phenotype variation. Table 6 listed
P-values of 22 SNPs in seven genes for testing the path
coefficients. We observed that single SNP made only a
mild contribution to the direct effect, the multiple SNPs
made significant contributions to the phenotype vari-
ation. This showed that the gene-based genotype-
phenotype inference had higher power than the single
SNP-based genotype-phenotype inference.
Since the most existing methods for genotype-phenotype

network estimation only take a single SNP as a variable
(unite of analysis) and cannot take a gene as a unite of
analysis, next we illustrate the application of S2SEMs

Table 5 Twenty-five pairs of P-values for testing path coefficients and marginal effects, respectively

P-value P-value

Outcome Causal Path coeff Marginal effect Outcome Causal Path coeff Marginal effect

DBP ABCC9 5.30E-06 6.49E-02 HDL ITFG2 4.42E-04 1.98E-05

DBP TRPM4 9.51E-06 7.24E-02 TRIGS ST3GAL3 2.21E-04 1.16E-04

BMI POLR2F 1.14E-05 3.93E-04 PLATELET CRTAP 3.79E-04 1.58E-04

PLATELET TRMT61B 1.17E-05 1.02E-04 HDL ASCC2 5.58E-04 1.99E-04

SBP CHUK 1.44E-05 1.76E-01 FASTGLUCOSE PTH1R 5.72E-03 2.00E-04

DBP QARS 2.00E-05 8.82E-03 PLATELET PDE1B 4.61E-04 3.02E-04

PLATELET TCOF1 2.10E-05 1.36E-02 HDL HS1BP3 6.78E-04 3.56E-04

FIBRINOGEN SMC2 2.33E-05 1.06E-03 TRIGS ITFG2 7.32E-03 3.81E-04

HDL DRGX 3.20E-05 3.22E-04 HDL NT5E 3.26E-02 5.86E-04

DBP CHUK 3.33E-05 2.88E-01 HDL EPHB2 4.30E-03 6.33E-04

FIBRINOGEN C11orf49 4.58E-05 5.10E-05 FIBRINOGEN CEP170B 4.71E-03 7.04E-04

LDL LARP7 4.58E-05 3.33E-01 DBP PIDD 1.51E-03 7.53E-04

LDL CD7 5.16E-05 7.68E-02 HDL HBEGF 3.43E-03 8.44E-04

FIBRINOGEN CRK 8.66E-05 1.45E-03 FASTGLUCOSE RNF122 4.29E-02 9.17E-04

PLATELET MYLK 9.80E-05 1.14E-03 DBP AC053503.11 5.62E-03 1.08E-03

SBP STX3 1.07E-04 1.60E-03 FIBRINOGEN CNIH3 1.07E-02 1.13E-03

FASTINSULIN MPO 1.09E-04 3.22E-03 BMI NFIC 1.74E-03 1.15E-03

FIBRINOGEN OSBPL10 1.18E-04 3.99E-03 FASTGLUCOSE IHH 4.66E-02 1.17E-03

SBP ST3GAL3 1.56E-04 1.99E-03 FASTGLUCOSE ARHGAP27 1.87E-03 1.30E-03

HDL LARP7 1.60E-04 3.31E-02 SBP SLC18A2 1.42E-02 1.44E-03

HDL SOX13 1.60E-04 6.78E-03 BMI QKI 1.93E-03 1.61E-03

PLATELET SH3TC1 2.18E-04 1.25E-02 FASTGLUCOSE SLC38A1 1.44E-02 1.65E-03

SBP ABCC9 2.56E-04 4.63E-01 SBP ZNF740 4.68E-03 1.81E-03

BMI DCDC2B 2.64E-04 8.70E-02 TRIGS ADAMTS19 2.31E-02 1.82E-03

SBP TRPM4 2.71E-04 2.19E-01 PLATELET GAK 1.54E-02 2.02E-03
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for inference of genotype-phenotype network using
SNPs and compared their results with that of QTL-
driven phenotype network method (QTLnet) [22]. The
number of SNPs in 137 genes was 5482. Due to the
limitation of the size of the genotype-phenotype net-
work which the sparse multivariate SEMs can estimate,
from 137 genes in Fig. 4 we selected 45 genes that were
reported to be associated with the 11 phenotypes in the
analysis or other cardiovascular disease (CVD) related
phenotypes in the literature. A total of 1993 SNPs in
the 45 genes (248 common and 1745 rare SNPs) were
included in the analysis.
The gene-based genotype-phenotype network with

55 nodes (11 phenotypes and 44 genes) and 110 edges
estimated using the selected 45 genes and the FSEM
method was shown in Fig. 5. S2SEM can also be used
to estimate gene-based genotype-phenotype network.
The procedures were as follows. At the first stage,
S2SEM method and all 1993 SNPs were used to esti-
mate the SNP-phenotype network (Fig. 6) where a
gene was connected to a phenotype if the minimum of
P-values for the coefficients of all the paths connecting
SNPs within a gene and a phenotype was less than

0.05. At the second stage, we used Bonferroni correc-
tion to adjust P-values for multiple tests. In Fig. 7, we
plotted the estimated gene-phenotype network with 17
nodes (11 phenotypes and six genes) and 22 edges
using the selected 45 genes and the gene-based S2SEM
method where a gene was connected to a phenotype if
the Bonferroni correction adjusted P-values for path
coefficients connecting gene and phenotype was less
than 0.05. Figures 5 and 7 showed that the gene-based
FSEM method can identify much more genes influen-
cing phenotypes than the gene-based S2SEM method.
Next we study the SNP-based genotype-phenotype

network estimation using the S2SEM method. In other
words, we connected genes to the phenotypes using the
minimum of P-values for the coefficients of all the paths
that connect SNPs within a gene and a phenotype with-
out Bonferroni correction. Figure 6 plotted the estimated
genotype-phenotype network with 42 nodes (11 pheno-
types and 31 genes) and 78 edges using S2SEM method
and 1993 SNPs in the 45 genes. The path coefficients
and P-values (<0.05) for the path coefficients of the
edges connecting the SNPs in the gene to the pheno-
types were summarized in Additional file 5: Table S4.
In Additional file 1: Figure S5, we plotted the esti-
mated genotype-phenotype network with 13 nodes
(ten connected phenotypes, one isolated phenotype
and two genes) and 20 edges using QTLnet method. In
Additional file 6: Table S5, we listed the edges of the
estimated network which connect the genes and phe-
notypes using QTLnet method. While the QTLnet
method only identified two genes: LBP connected to
the phenotypes TRIGS and TOTCHOL, and DOCK1
connected to the phenotype HDL, the SNP-based and
gene-based S2SEM method, respectively, discovered
31 and six genes connected to phenotypes. These re-
sults showed that all proposed SEM methods including
FSEM, gene-based and SNP-based S2SEM methods
outperform the QTLnet method.
Similar to the gene-based FSEM method, we ob-

served several remarkable features from these results
obtained by the S2SEM method. First, we observed
three SNPs that showed pleiotropic genetic effects
(rs138251768 in the gene ADAMTS19 effected SBP and
DBP, rs116623954 in the gene CNIH3 affected FAS-
TINSULIN and FIBRINOGEN, rs13223756 in the gene
MET affected SBP and DBP). Second, multiple SNPs in
the same gene affected the same phenotype. Three
SNPs: rs754555, rs754554 and rs754553 in the gene
DFNA5 jointly affected BMI, two SNPs: rs11017658
and rs61758438 in the gene DOCK1 jointly affected
SBP. Third, the pleiotropic effects of the gene were due
to different SNPs. The SNPs: rs564665 and
rs141647150 in the gene DAB1 affected phenotypes
DBP and FASTGLUCOSE, respectively; the SNPs:

Table 6 P-values of 22 SNPs in seven genes for testing path
coefficients

Phenotype P-value testing path coef

Gene Chr SNP position Gene SNP

FASTGLUCOSE SEMA3B 3 50310922 5.98E-06 6.41E-05

FASTGLUCOSE DNAJC16 1 15873386 1.09E-05 5.62E-03

FASTGLUCOSE DNAJC16 1 15874961 3.61E-03

FASTGLUCOSE DNAJC16 1 15905501 3.94E-02

DBP OBSCN 1 228404668 1.48E-05 8.81E-02

DBP OBSCN 1 228461187 9.96E-02

DBP OBSCN 1 228482028 9.68E-02

DBP OBSCN 1 228496066 8.61E-02

DBP OBSCN 1 228503711 6.52E-04

DBP OBSCN 1 228565208 2.66E-03

DBP OBSCN 1 228565445 8.28E-02

HDL SOX13 1 204085609 4.31E-05 2.45E-02

HDL SOX13 1 204092129 9.14E-04

HDL SOX13 1 204094963 9.40E-02

HDL SOX13 1 204095220 3.56E-02

HDL SOX13 1 204095280 3.79E-02

HDL SRRM5 19 44099538 4.74E-05 6.37E-02

HDL SRRM5 19 44111890 2.21E-05

FIBRINOGEN SLC45A4 8 142225990 1.63E-04 3.97E-02

FIBRINOGEN SLC45A4 8 142226108 1.61E-02

FIBRINOGEN SLC45A4 8 142228909 8.87E-04

FIBRINOGEN LHFPL2 5 77784738 5.95E-06 4.21E-06
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rs376043577 and rs3731878 in the gene IHH affected
BMI and PLATELET COUNT, respectively; SNPs
rs2232585 and rs2232605 in the gene LBP affected
FIBRINOGEN and PLATELET COUNT, respectively.
SNPs rs2305610, rs372123385 and rs17027957 in the
gene OSBPL10 affected BMI, DBP and FIBRINOGEN,
respectively; three SNPs: rs144082896, rs140962261
and rs11547635 in the gene SYN3 affected TRIGS, SBP
and FASTINSULIN, respectively. You can find more
examples from Additional file 5: Table S4 and
Additional file 6: Table S5. Due to space limitation,
they are omitted here.
In summary, we jointly estimated genetic architecture

and phenotype network with 137 genes that were signifi-
cantly connected to phenotypes. A total of 45 genes out
of 137 genes were reported to be associated with 11 phe-
notypes or CVD related phenotypes, Additional file 7:
Table S6 summarized the results of the reported 45
genes and their associated phenotypes. For the reported
phenotypes, 6 phenotypes are from the analyzed 11 phe-
notypes. According to Fig. 4, Gene SMC2 was connected
with phenotypes: BMI, HDL and FIBRINOGEN. It was
reported associated with HDL and BMI [45, 46], and
also related with respiratory function and Echocardiog-
raphy [47, 48]. Gene RNF157 was connected with HDL,
and it was reported associated with blood pressure [49]
and HDL [45]. The other pairs of association for these

six phenotypes were found through indirect paths from
Fig. 4. For example, gene DAB1, DFNA5 and DOCK1
were reported associated with LDL [46], and there are
indirect path from these genes to LDL according to
Fig. 4. From these results we can summarized that our
gene-based FSEMs has a rather high power to detect
genetic pleiotropic effects, and it also provide a tool to
decompose the effects into direct and indirect effects.

Discussion
Alternative to the standard marginal models for genetic
association analysis of multiple correlated phenotypes,
we have developed sparse SEMs and sparse FSEMs as a
statistical framework for joint analysis of genetic archi-
tecture and causal phenotype network, which may
emerge as a new generation of genetic analysis of mul-
tiple phenotypes exploring the causal network structures
of the phenotypes. To facilitate using SEMs as a new
paradigm for genetic analysis of multiple phenotypes,
several issues have been addressed in this paper.
The first issue is to develop a unified framework for

joint analysis of genetic architecture and causal pheno-
type network with both GWAS and the NGS data. The
traditional multivariate SEMs can be applied to infer
genotype-phenotype network with common variants,
but are difficult to deal with rare variants. To overcome
this limitation, we extend the multivariate SEMs to

Fig. 5 A genotype-phenotype network consisted of 44 genes and 11 phenotypes. The network was constructed using FSEM from 45 genes.
Nodes and edges are the same as described in Fig. 4
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functional SEMs where exogenous genotype profiles
across a genomic region or a gene are represented as a
function of the genomic position for genetic analysis of
multiple quantitative traits. In other words, we extend
the variant-based genotype-phenotype network analysis
to gene-based genotype-phenotype network analysis.
The second issue is how to develop statistical methods

for jointly inferring genetic architecture and casual
phenotype network structure. There is increasing con-
sensus that the structure of the network in nature is
sparse. However, the traditional estimation methods for
the SEMs do not take the sparsity presented in the net-
work into account. To solve this problem, we developed
sparse SEMs and sparse functional SEMs to automatic-
ally incorporate the sparse condition into the estimation
process. The widely used estimation method for the
SEMs is the maximum likelihood method. However, the
penalized maximum likelihood method and coordinate
descent algorithms are not scalable to SEMs of high di-
mension. To overcome this limitation, we develop the
ADMM-based sparse two-stage least square estimation

method for the structure and parameter estimation of
the SEMs. Our experience showed that the newly devel-
oped ADMM-based sparse two-stage least square esti-
mation methods can infer networks with hundreds of
nodes.
The third issue is the true structure discovery. An es-

sential problem for the genotype-phenotype network
analysis is to accurately estimate the network structure.
By large scale simulations we showed that the true net-
work structure can be accurately recovered with high
probability. We also compared the performance of the
sparse two-stage least square estimate methods with the
QTLnet method. We demonstrated that for all the three
cases (common, rare and both common and rare vari-
ants) our sparse two-stage SEMs (S2SEM) outperformed
QTLnet method. Since the gene-based version of
QTLnet method has not been developed we only com-
pared the power and false discovery rates of the variant-
based SEMs and gene-based functional SEMs. We found
that for all spectrums of allele frequencies (common,
rare and both common and rare variants) the gene-

Fig. 6 A genotype-phenotype network consisted of 31 genes and 11 phenotypes. The network was constructed using SNP-based S2SEM method
from 1993 SNPs of 45 genes. Nodes and edges are the same as described in Fig. 4
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based functional SEMs substantially outperformed the
variant-based multivariate SEMs.
The fourth issue is how to distinguish four types of

effects: direct, indirect, total and marginal effects. The
current paradigm for genetic association analysis of mul-
tiple phenotypes is genetic marginal analysis in which
the effects of the genetic variants on the phenotypes are
estimated by regressing phenotypes on the genetic vari-
ants. This paradigm is unable to unravel the structure of
the genotype-phenotype network and to estimate direct,
indirect and total effects of the genetic variants on the
phenotypes. The direct, indirect and total genetic effects
provide valuable information for dissecting genetic
structure of complex traits. We developed sparse SEMs
and FSEMs as a causal inference tool to estimate direct,
indirect and total genetic effects in addition to estimat-
ing marginal genetic effects. We observed that the most
effects were indirect effects due to mediation. In trad-
itional QTL analysis, we often identify QTL by testing
association of the marginal effect with the single trait. The
FSEMs and SEMs provide complimentary information
about path coefficients. Interestingly, we found that many
P-values for testing path coefficients were smaller than
that for testing the marginal effects. This demonstrated

that only using marginal association analysis we might
miss identification of many significant QTLs.
The fifth issue is how to solve the large genotype-

phenotype networks with up to hundreds of nodes or
genes. A key to the large network inference is computa-
tion efficiency of the algorithms. Two strategies were
employed to solve this problem. The first strategy was to
reduce the dimension of data using functional data ana-
lysis. We first expand the genotype profiles in a genomic
region (gene) in terms of orthonormal eigenfunctions.
Genetic information across all variants in the genomic
region including all single variant variation and their
linkage disequilibrium is compressed into functional
principal component scores. We use genetic information
compressed into functional principal component scores
to infer genotype-phenotype networks. The second strat-
egy is to use ADMM algorithms to optimally solve the
sparse SEM problem. The widely used algorithms for
sparse SEMs are coordinate descent algorithms bor-
rowed from the lasso originally designed for the sparse
linear regression. The ADMM algorithms are parallel
and efficient. Their convergence rates are fast. The
ADMM algorithms allow inferring networks with hun-
dreds or even thousands of nodes.

Fig. 7 A genotype-phenotype network consisted of six genes and 11 phenotypes. The network was constructed using the gene-based S2SEM
method from 1993 SNPs of 45 genes where a gene was connected to a phenotype if the Bonferroni correction adjusted P-values for path
coefficients connecting gene and phenotype was less than 0.05. Nodes and edges are the same as described in Fig. 4
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Major limitation of the SEMs for joint inference of
genetic architecture and causal phenotype networks is the
presence of two directions associated with one edge in the
estimated network, which leads to a cyclic graph. To
remove the cycles from the graph we need to strictly en-
force the global constraint that the graph structure has to
be acyclic. Such problems are often casted into a
combinatorial optimization problem. We rank graph
structures via a scoring metric that measure how well
the DAG models fit the data. Combinatorial opti-
mization algorithms are then used to search the opti-
mal DAG with the best score [50].
Although their application to genome-wide genotype-

phenotype network construction is difficult due to
computational limitations, the SEMs are suitable to
the phenome-wide association studies where starting
phenomics, defined as the unbiased study of a large
number of phenotypes in a population. We study the
complex networks between multiple expressed pheno-
types and genetic variants. Since the number of
genetic variants in the phenome-wide association is
quite limited and hence the size of the genotype-
phenotype network is limited, the required computa-
tional time of construction of genotype-phenotype
networks using SEMs is in the range the current
computer system can reach. Advances in biosensors
and sequencing technologies generate large amounts
of phenotype and genetic data. SEMs and causal in-
ference may emerge as a new paradigm of genetic
studies of complex traits. The main purpose of this
paper is to stimulate discussions about what are the
optimal strategies to facilitate the development of a
new generation of genetic analysis. We hope that our
results will greatly increase the confidence in joint in-
ference of genetic architecture and causal phenotype
networks.

Conclusions
We have developed sparse SEMs and sparse FSEMs
as a statistical framework for joint analysis of genetic
architecture and causal phenotype network, which
may emerge as a new generation of genetic analysis
of multiple phenotypes. Our proposed sparse func-
tional SEMs can incorporate both common and rare
variants into the analysis and the ADMM algorithm
can efficiently solve the penalized SEMs. Using this
model we can jointly infer genetic architecture and
casual phenotype network structure, and decompose
the genetic effect into direct, indirect and total effect.
Using large scale simulations we showed that the pro-
posed methods have higher power to detect true
causal genetic pleiotropic structure than other existing
methods.

Appendix 1
Alternating direction method of multipliers for sparse
SEMs
The optimization problem (7) can be further reduced to

min f Δið Þ þ λjjZijj1
subject to Δi−Zi ¼ 0:

ð20Þ

To solve the optimization problem (20), we form the
augmented Lagrangian

Lρ Δi;Zi; μ
� � ¼ f Δið Þ þ λjjZijj1 þ μT Δi−Zið Þ

þ ρ

2
jjΔi−Zijj22: ð21Þ

The alternating direction method of multipliers
(ADMM) consists of the iterations:

Δi
kþ1ð Þ :¼¼ argmin

Δi

Lρ Δi;Zið kð Þ; μ kð ÞÞ ð22Þ

Z kþ1ð Þ
i :¼¼ argmin

Zi

Lρ Δ kþ1ð Þ;
i ;Zi; μ

kð Þ
� �

ð23Þ

μ kþ1ð Þ :¼¼ μ kþ1ð Þ þ ρ Δ kþ1ð Þ
i −Z kþ1ð Þ

i

� �
; ð24Þ

where ρ > 0. Let u ¼ μ
ρ . Eq. (20, 21 and 22) can be re-

duced to

Δ kþ1ð Þ
i :¼¼ argmin

Δi

f Δið Þ þ ρ

2
jjΔi−Z

kð Þ
i þ u kð Þjj22

� �
ð25Þ

Z kþ1ð Þ
i :¼¼ argmin

Zi

λjjZið jj1 þ ρ

2
jjΔ kþ1ð Þ

i −Zi þ u kð Þjj22Þ ð26Þ

u kþð Þ :¼¼ u kð Þ þ Δ kþ1ð Þ
i −Z kþ1ð Þ

i

� �
: ð27Þ

Solving minimization problem (25), we obtain

Δ kþ1ð Þ
i ¼ WT

i X XTX
� �−1

XTWi þ ρI
h i−1

WT
i X XTX

� �−1
XTyi þ ρ Zk

i −u
k

� �h i
;

which can be reduced to

Δ kþ1ð Þ
i ¼ 1

ρ
I−

1
ρ
WT

i X ρXTX þ XTWiW
T
i X

� �−1
XTWi

� 	

WT
i X XTX

� �−1
XTyi þ ρ Zk

i −u
k

� �h i

ð28Þ

The optimization problem (26) is non-differentiable.
Although the first term in (26) is not differentiable, we
still can obtain a simple closed-form solution to the
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problem (26) using subdiffenrential calculus [37]. Let Γj
be a generalized derivative of the j-th component Zi

j of
the vector Zi and Γ = [Γ1,…, ΓM +K − 1]

T where

Γj ¼
1 Zj

i > 0
−1; 1½ � Zj

i ¼ 0
−1 Zj

i < 0

8><
>:

Then, we have

λ

ρ
Γ þ Zi ¼ Δikþ1 þ uk ;

which implies that

Z kþ1ð Þ
i ¼ sgn Δkþ1

i þ uk
� �

Δkþ1
i þ uk



 

− λ

ρ

� �
þ; ð29Þ

Where

jxjþ ¼ x x≥0
0 x < 0:



Appendix 2
Estimation of parameters in the sparse structural
functional equation models for the genotype-phenotype
networks
Assume that the sparse SFEMs are given by

y1γ11 þ y2γ21 þ…þ yMγM1 þ
Z
T1

x1 tð Þβ11 tð Þdt þ…þ
Z
Tk

xk tð Þβk1 tð Þdt þ e1 ¼ 0

y1γ12 þ y2γ22 þ…þ yMγM2 þ
Z
T1

x1 tð Þβ12 tð Þdt þ…þ
Z
Tk

xk tð Þβk2 tð Þdt þ e2 ¼ 0

⋮ ⋮ ⋮

y1γ1M þ y2γ2M þ…þ yMγMM þ
Z
T1

x1 tð Þβ1M tð Þdt þ…þ
Z
Tk

xk tð ÞβkM tð Þdt þ eM ¼ 0

ð30Þ

For each genomic region or gene, we use functional
principal component analysis to calculate principal
component function [14]. We expand xij(t), j = 1, 2,…,
k in each genomic region in terms of orthogonal
principal component functions:

xij tð Þ ¼
XLj
l¼1

ηijlφjl tð Þ; j ¼ 1;…; k; ð31Þ

where φjl(t), j = 1,…, k, l = 1,…, Lj are the l-th princi-
pal component function in the j-th genomic region
and ηijl are the functional principal component
scores of the i-th individual. Using the functional
principal component expansion of xij(t), we obtain

Z
T

xij tð Þβjm tð Þdt ¼
Z
T

XLj
l¼1

ηijlφjl tð Þβjm tð Þdt

¼
XLj
l¼1

ηijlbjlm; i ¼ 1;…; n; j

¼ 1;…; k;m ¼ 1;…;M: ð32Þ
Let xj(t) = [x1j(t),…, xnj(t)]

T, ηjl = [η1jl,…, ηnjl]
T. Substi-

tuting eq. (32) into eq. (30), we obtain

y1r11 þ y2r21 þ⋯þ yMrM1 þ
XL1
l¼1

η1lb1l1 þ⋯þ
XLk
l¼1

ηklbkl1 þ e1 ¼ 0

⋮ ⋮ ⋮

y1r1M þ y2r2M þ⋯þ yMrMM þ
XL1
l¼1

η1lb1lM þ⋯þ
XLk
l¼1

ηklbklM

þeM ¼ 0

ð33Þ

Let η ¼ η11;…; η1L1;…;ηk1;…; ηkLk

h i
; B ¼

b111
⋮

b1L11

⋯
⋮
⋯

b11M
⋮

b1L1M
⋮ ⋮ ⋮

bk11
⋮

bkLk1

⋯
⋮
⋮

bk1M
⋮

bkLkM

2
666666664

3
777777775
and Y, Γ and E be defined as before.

In matrix form, eq. (33) can be rewritten as

YΓþ ηBþ E ¼ 0; ð34Þ
which has the same form as the Eq. (2) has.
If we consider only one genomic region or gene, the

matrices η and B will be reduced to η= [η1,…, ηL] and

B ¼
b11⋯ b1M
⋮ ⋮ ⋮

bL1⋯ bLM

2
4

3
5:

If we take functional principal component scores as
predictors, the models and algorithms for network struc-
ture and parameter estimation will be similar to that
discussed in Appendix 1. Specifically, the i-th equation
is given by

YΓi + ηBi + ei = 0,

which can be rewritten as

yi ¼ WiΔi þ ei; ð35Þ
where Wi ¼ Y −i η½ �;Δi ¼ γ−i Bi½ �.
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Then, the sparse SFEMs are transformed to

min
Δi

f Δið Þ þ λjjΔijj1
where f Δið Þ ¼ ηTyi−η

TWiΔi
� �T

ηTη
� �−1

ηTyi−η
TWiΔi

� �
:

ð36Þ
Finally, ADMM algorithms are given by
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Figure S2. Diagram associated with effect decomposition. Figure S3.
Diagram of a simulation example for illustrating equation (12). Figure S4.
An example for the simulated genotype-phenotype network. The network
consisted of ten phenotype nodes and 30 genotype (SNP) nodes. Figure S5.
Performance of S2SEM and SML for phenotype network inference. The power
and FDR of the two methods for inference of phenotype networks when the
phenotype and genotype number is 10 and 30 respectively. Figure S6. A
genotype-phenotype network consisted of two genes that were reported
to be associated with phenotypes in the analysis or other CVD related
phenotypes in the literatures and ten phenotypes (one isolated phenotype
didn’t appear) estimated using QTLnet method. The nodes in yellow color
represented the phenotypes, the nodes in the red color represented genes,
the black arrows indicated the causal relations between phenotypes and
the blue arrows indicted the contribution of the gene to one phenotype.
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effects of single trait and multiple traits, and minimum of P-values from
PCA analysis for 13 genes that are connected to more than 4 phenotypes
in Fig. 4. (XLSX 17 kb)

Additional file 4: Table S3. Direct, indirect, total and marginal effects
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genotype-phenotype network estimated by QTL net method. (XLSX 8 kb)

Additional file 7: Table S6. Reported 45 genes out of 137 genes that
are associated with the phenotypes in the analysis or other CVD related
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