
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Reproducibility, reliability and variability of FA and MD in the older healthy
population: A test-retest multiparametric analysis

Pedro A. Luque Lagunaa,b,c,1,⁎, Anna J.E. Combesa, Johannes Strefferf,g, Steven Einsteine,f,
Maarten Timmersd,g, Steve C.R. Williamsa, Flavio Dell'Acquab,c

a Department 5 of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
bNatbrainlab, Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
c Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
d Janssen Research and Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
e Janssen Research and Development LLC, Titusville, NJ, US
fUCB Biopharma SPRL, Chemin du Foriest B-1420 Braine-l'Alleud, Belgium
g Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium

1. Introduction

Diffusion tensor imaging (DTI) is a diffusion-weighted magnetic
resonance imaging (DW-MRI) technique used to probe in vivo the
properties of the grey-matter and white-matter tissue. By measuring the
random displacement of water molecules inside the brain, DTI can
provide quantitative metrics sensitive to many properties of tissue mi-
crostructure such as cell density, membrane permeability, axonal
complexity, degree of myelination, etc. (Pierpaoli et al., 2001;
Beaulieu 2002; Vos et al., 2012). Its remarkable ability to detect a wide
range of biological changes and its clinical availability have made of
DTI a method of choice for the investigation of many neurodegenera-
tive disorders and white-matter pathologies (for a review on the ap-
plication of DW-MRI and DTI in neurology see Goveas et al. (2015) and
Raja et al. (2019)). In particular, DTI metrics such as fractional aniso-
tropy (FA) and mean diffusivity (MD) (Basser and Pierpaoli 1996) are
widely used today to investigate the onset and the progression of many
neurological conditions and they have been proposed as surrogate
biomarkers in studies and clinical trials developing new treatments for
Alzheimer disease (AD) (Galluzzi et al., 2016; the PharmaCog
Consortium et al., 2019), amyotrophic lateral sclerosis (ALS)
(Duning et al., 2011), multiple sclerosis (MS) (Kapoor 2017;
Vavasour et al., 2019; Zivadinov et al., 2018; Zhou et al., 2018), cer-
ebral small vessel disease (SVD) (Croall et al., 2017), brain tumours
(Ellingson et al., 2010; Moffat et al., 2005) and other neurological
conditions (Boespflug et al., 2011; Egger et al., 2013; Huhn et al., 2018;
Nath et al., 2010; Paldino et al., 2012). In these studies, differences in
FA and MD are interpreted as brain changes that reflect the progression
of a neurological condition or the biological response to treatment. To
be useful, however, study results have to be not only statistically

significant but also reproducible and reliable.
Reproducibility and reliability quantify two different aspects of the

consistency of the measurements. Reproducibility is the ability to ob-
tain similar values from different acquisitions of the same subject and it
is measured by indices of within-subject variability across different
scanning sessions. High reproducibility is defined by a low within-
subject variability and implies a low measurement error (repeatability).
Having a high reproducibility is particularly important in neuroimaging
studies that rely on robust quantitative measurements. On the other
hand, reliability refers to the overall consistency of the measurements
across subjects and it is measured by indices that compare the within-
subject variability with the ‘true’ between-subject variability (i.e. the
‘error-free’ variability between subjects). If the within-subject varia-
bility is small compared to the between-subject variability, then there is
high reliability because it is relatively easy to distinguish between
different subjects based on the quantitative values of the measurements.
Reciprocally, if the within-subject variability is large compared to the
between-subject variability, the reliability is low. Under low reliability,
two similar subjects could yield very different measurements purely
because of the errors related to the within-subject variability rather
than for the existence of a genuine difference between their true values.
Therefore, high reliability is required when interpreting changes in the
metrics’ values as genuine changes across subjects.

Reproducibility and reliability are separate properties of the metrics
and do not imply each other. Ignoring this fact can lead to a dubious
interpretation of (unreliable) results or inappropriate use of (inexact)
measurements. Metrics that show good reproducibility may or may not
demonstrate also good reliability (and vice-versa) depending on the
scale of the between-subject variability. The between-subject variability
is also related to the statistical power associated with a metric, for
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example in terms of minimum sample sizes required to detect changes
of a given magnitude in the metrics’ values. A metric will be most useful
in those regions where it is reproducible, reliable and has sufficient
statistical power. The design of neuroimaging studies (and the inter-
pretation of their results) benefits from having a good characterisation
of the employed metrics in terms of their reproducibility, reliability and
between-subject variability across the brain.

In the case of FA and MD, there have been several studies in-
vestigating different aspects of the test-retest variability of diffusion
MRI measurements in healthy populations. While some of these studies
have provided results for reproducibility, reliability and between-sub-
ject variability [Grech-Sollars et al. (2015); Marenco et al. (2006);
Vollmar et al. (2010); Wang et al. (2012);], most of them have focused
on one or two properties only, such as reproducibility and reliability
(Albi et al., 2017; Bisdas et al., 2008; Boekel et al., 2017; Jansen et al.,
2007; Lemkaddem et al., 2012; Liu et al., 2014), reproducibility and
between-subject variability (Heiervang et al., 2006; Pannek et al., 2011;
Veenith et al., 2013; Willats et al., 2014), only reproducibility
(Pfefferbaum et al., 2003), only reliability (Brandstack et al., 2016;
Duan et al., 2015) or between-subject variability only (Sadeghi et al.,
2015). The reference values provided by these studies show how the
reproducibility, the reliability and the between-subject variability of FA
and MD change from region to region across the entire brain anatomy.
It remains unclear, however, the extent to which these results, based on
data acquired mostly on young healthy adults, can also be applied to an
older healthy population. Compared to young adults, older healthy
adults show substantially different patterns of age-related DTI changes
across the brain (Madden et al., 2012) and different age trajectories at
each anatomical region (Barrick et al., 2010; Bender and Raz 2015;
Cox et al., 2016; Lebel et al., 2012; Lövdén et al., 2014; Sexton et al.,
2014; Sullivan et al., 2010). It would be expected that the different
trajectories observed in older healthy adults would also translate into
differences in terms of the statistical properties of the DTI metrics. In
consequence, it would be more effective for studies and trials in-
vestigating diseases and disorders in the older population to consider as
reference the statistical values derived from data acquired on older
individuals. This is the case with most neurodegenerative conditions,
which show a much higher prevalence amongst older adults and are
characterised by peak ages of onset typically around 50 years or later
(Andren et al., 2017).

To evaluate the reproducibility, the reliability and the between-
subject variability of FA and MD across the brain in the older popula-
tion, we analysed DTI data from a longitudinal study aimed at the test-
retest reliability of structural and functional neuroimaging in healthy
adults using conventional MRI acquisition protocols. We used the
within-subject coefficient of variation (CVws), the intra-class correlation
coefficient (ICC) and the between-subject coefficient of variation (CVbs)
to characterise the test-retest reproducibility and reliability of the me-
trics as well as their between-subject variability. We computed values
for these coefficients voxel-wise in the brain differentiating between
grey-matter and white-matter voxels. In addition, we compared the
coefficients on six predefined white-matter regions of interest (ROIs)
where we also carried out statistical power calculations to compare the
ability of the metrics to detect changes in these regions. We then pro-
duced whole-brain statistic maps of reproducibility, reliability and be-
tween-subject variability from the CVws, ICC and CVbs values obtained
at each voxel in the brain. Finally, we analysed the statistical properties
of the metrics and their interaction across the brain anatomy using a
multiparametric segmentation approach that allowed us to integrate
and visualise straightforwardly the information from the three statistic
maps combined.

2. Materials and methods

2.1. Participants

Sixteen healthy adults (8 females) with an age range of 53–65 years
were recruited for the study. All subjects were scanned on three sepa-
rate occasions over a period of two months, having 1-week and 4-week
follow-ups after the first scanning session under the assumption that
only minimal within-subject differences are to be expected between the
different time intervals. Each participant gave written informed consent
before taking part in the study, which was approved by the King's
College London Psychiatry, Nursing and Midwifery Research Ethics
subcommittee. The MRI data were acquired using a 3T GE MR750
system equipped with a C-GE HNS 12-channel head coil.

2.2. Image acquisition

For each scanning session, a total of 60 diffusion-weighted MRI
volumes (b-value 1500s/mm2) and 9 b=0 s/mm2 diffusion-weighted
MRI volumes (3 with reverse phase-encoding direction) were acquired
with isotropic resolution of 2× 2×2mm using a spin-echo single shot
EPI pulse sequence with echo time TE = 75.4 milliseconds and re-
petition time TR = 12 s (peripherally pulse gated).

2.3. Preprocessing of DTI data

All diffusion data were corrected for artefacts due to subject motion,
Eddy currents and magnetic field susceptibilities distortions using FSL
“eddy” (Andersson and Sotiropoulos 2015) and FSL “top-up” pre-
processing tools (Andersson et al., 2003; Smith et al., 2004).

2.4. Computation of DTI metrics

FA and MD maps were computed for each diffusion dataset fol-
lowing the fitting of the diffusion tensor at every voxel using the im-
plementation in ExploreDTI (Leemans et al., 2009) of the ‘Robust Es-
timation of Tensors by Outlier Rejection’ (RESTORE) algorithm
(Chang et al., 2005). In total, three different pairs of FA and MD maps
were produced for every participant (one pair for each time-point).

2.5. Image normalisation to MNI space

The FA and MD maps for each participant were all normalised to the
same anatomical space. For this purpose, each FA map from every
subject and time-point was spatially normalised to the FMRIB58 FA
1×1×1mm isotropic template with a non-linear elastic registration
(Smith et al., 2006). Consecutively, each mathematical transformation
obtained during the normalisation of the FA volumes was applied to the
corresponding MD pair. The normalisation process allows the statistical
analysis of the images in an anatomically congruent manner across all
subjects. In particular, the statistical properties of the metrics can be
evaluated at the level of single voxels, on specific anatomical regions or
any other regions obtained through specific segmentation of the ana-
tomical space.

2.6. White-matter and grey-matter segmentation

A preliminary objective was to investigate differences in the prop-
erties of the metrics that are to be expected in the white matter com-
pared to the grey matter. To discriminate between cortico-spinal fluid
(CSF), white-matter voxels and grey-matter voxels, we used a template
of anisotropic power (AP) values (Dell'Acqua et al., 2014) obtained
from whole-brain AP maps obtained from data acquired on 200 healthy
subjects from the Human Connectome Project (Van Essen et al. 2013).
In the AP template, values near zero are associated with isotropic dif-
fusion and indicate the presence of water or CSF. The highest AP values,

P.A. Luque Laguna, et al. NeuroImage: Clinical 26 (2020) 102168

2



on the other hand, are associated with the presence of underlying mi-
crostructure typical of white-matter regions. We used an arbitrary
threshold around the 20th percentile of the total distribution of AP
values to distinguish between voxels in the white matter (above) or the
grey matter (below). For each tissue type, the mean FA and MD values
were calculated over all the voxels included in the corresponding re-
gion.

2.7. Anatomical regions of interest

To evaluate the statistical properties of the metrics across different
white-matter regions and to compare the results with the existing lit-
erature, we delineated (manually) six different regions of interest
(ROIs) in the FMRIB58 FA template (Fig. 1) to match ROIs used by
previous studies. We used Marenco et al. (2006) for the genu of the
corpus callosum (GCC), the splenium of the corpus callosum (SCC), the
posterior limb of the left internal capsule (PLIC) and the orbitofrontal
white matter (OFWM). For the centrum semiovale of the left frontal
white matter (LFWM), we followed Vollmar et al. (2010). Finally, the
third component of the left superior longitudinal fasciculus (SLF) was
manually drawn in the FMRIB58 FA template using the Johns Hopkins
University (JHU–ICBM) white matter atlas as a reference (Mori et al.,
2008). For each ROI, we computed the mean values of the metrics over
all the voxels occupied by each region for further statistical analysis.

2.8. Statistical model for test-retest variability

For the analysis of variance, we used a two-way mixed-effects model
by considering subjects as random effects and sessions as fixed effects.
This allowed us to separate the total variability of the data into two
components: the within-subject variability and the between-subject
variability. The within-subject variability represents the differences in
the values of the metrics observed when scanning the same subjects on
multiple occasions. Such differences can be caused by a combination of
factors, such as changes experienced by the subjects between different
sessions, differences in the scanning conditions and the experimental
noise intrinsic to the acquisition. The between-subject variability is the
variability not explained by factors related to the within-subject
variability. Under test-retest conditions akin to our study, and assuming
no significant bias introduced by the age differences between the par-
ticipants, the between-subject variability can be interpreted as the
inter-subject biological variability of the metrics, i.e. the variability
explained by true inter-individual biological differences that are not
explained by factors related to within-subject variability (Sadeghi et al.,

2015).

2.9. Statistical coefficients

The following statistical coefficients were computed to characterise
the reproducibility, reliability and between-subject variability of the
metrics: CVws, ICC and CVbs. By separating the total variability into
within-subject variability and between-subject variability, we could
estimate the corresponding values for the within-subject coefficient of
variation (CVws) and the between-subject coefficient of variation
(CVbs). For the ICC, we used the third form of the intraclass correlation
coefficient (ICC3, 1) as defined by Shrout and Fleiss (1979). Refer to
Appendix A for the mathematical definitions and calculation formulas
for each index. The CVws summarises the within-subject variability of
the metrics. Lower CVws values identify voxels or regions where the
metrics’ values were more reproducible across the three sessions. The
ICC estimates the correlation between metrics values corresponding to
different sessions in terms of their consistency across subjects. Statis-
tical group differences detected in voxels or regions with higher ICC are
considered to be more reliable in the sense that changes in the metric
values are expected to be consistent across all subjects. The CVbs

summarises the between-subject variability of the metrics values. High
CVbs values are associated with increased capacity of the metrics to
discriminate between individuals within the same population. How-
ever, higher CVbs values also require larger sample sizes to detect
predefined percentage changes in the metric values at the group level
(they are associated with lower statistical power).

2.10. Computation of CVws ICC and CVbs across the brain anatomy

We used the statistical toolbox designed for ICC analysis of neu-
roimaging data by Caceres et al. (2009) to calculate CVws, ICC and CVbs

values at each voxel, anatomical ROIs and also for the whole-brain
white mater and grey matter regions. For each combination of metric
and statistical coefficient, the ICC toolbox produced a whole-brain
statistic parametric map with the values of the corresponding coeffi-
cient at every voxel. We also evaluated the distribution of each statis-
tical coefficient across all-brain voxels, white-matter voxels and grey-
matter voxels by computing the corresponding histogram of frequency
densities. For each anatomical region, the ICC toolbox yielded the value
of the coefficients calculated from the regional averages of each metric.

Fig. 1. Anatomical Regions of Interest. Six regions of interest manu-
ally delineated in the FMRIB58 FA 1×1×1 mm isotropic template
to define anatomical areas commonly used for detecting white-matter
changes in clinical populations: (a) genu of the corpus callosum (GCC)
- 45 voxels, (b) the splenium of the corpus callosum (SCC) - 84 voxels,
(c) the posterior limb of the left internal capsule (PLIC) - 52 voxels, (d)
the centrum semiovale on the left frontal white matter (LFWM) - 1180
voxels, (e) the third component of the left superior longitudinal fas-
ciculus (SLF) - 435 voxels, and (f) the right orbitofrontal white matter
region (OFWM) - 122 voxels.
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2.11. Statistical power calculations

We calculated the minimum sample size required to detect long-
itudinal changes of predetermined magnitudes in the average values of
FA and MD over each ROI assuming that ROI average values are nor-
mally distributed in the population. More specifically, we calculated the
number of subjects required to detect 2%, 4% and 6% group-level
longitudinal changes from baseline values (either increase or decrease)
with statistical power of at least − β1 = 0.8 and statistical significance
level =α 0.05 (see Appendix B. Statistical power calculations). The
chosen percentage values are in line with previously reported rates of
longitudinal changes in FA and MD detected on various neurodegen-
erative conditions across different brain regions (Schmierer et al., 2004;
Blain et al., 2007; Teipel et al., 2010; Kitamura et al., 2013;
Mahoney et al., 2015) (Table 1).

2.12. Multiparametric segmentation of statistical maps

In addition to the analysis based on anatomical regions, we also
wanted to investigate the relationship between the three statistical
properties of the metrics (reproducibility, reliability and between-sub-
ject variability). We were particularly interested in identifying brain
regions where the statistical properties of each metric were compara-
tively homogeneous to provide whole-brain statistical atlases for each
metric based on the information from the three statistical coefficients
combined. For that purpose, we segmented each CVbs map into separate
regions according to different (low or high) levels of reproducibility and
reliability using the following threshold criteria: CVws = 10% to dif-
ferentiate between regions of low (CVws > 10%) and high
(CVws < 10%) reproducibility, as in (Marenco et al., 2006), ICC = 70%
to differentiate between regions of low (ICC < 70%) and high
(ICC > 70%) reliability, as levels above 70% are usually associated
with reasonably good to very good reliability (Boekel et al., 2017;
Duan et al., 2015; Marenco et al., 2006; Vollmar et al., 2010).

3. Results

3.1. Whole-brain, white matter and grey matter

When considering average values of FA and MD across the whole
brain, the white matter and the grey matter, the reproducibility and
reliability of both metrics are good with CVws values below 5% and ICC
values above 80% (Table 2). The between-subject variability sum-
marised by the CVbs is similar between all averaged measures with CVbs

values around 7.5% except for the case of grey-matter MD averages that

yield CVbs = 17.74% (Table 2).
Across different voxels, the variability of both metrics becomes

more heterogeneous and shows clear differences between the white
matter and the grey matter (Fig. 2). In the white matter, both metrics
demonstrate good reproducibility with CVws values well below 10%
levels in most voxels (FA: CVws = 10% ± 6%), MD:
CVws = 4% ± 2%). In the grey matter, MD has good reproducibility
(MD: CVws = 4% ± 6%) while FA is found reproducible in less than
25% of grey-matter voxels (FA: CVws = 14% ± 5%). Both metrics
show good reliability levels in the white matter with ICC values well
above 70% in most voxels (FA: ICC = 77% ± 13%, MD:
ICC = 74% ± 19%). In the grey matter, the reliability is still good in
approximately half of the voxels, with a larger proportion of high ICC
values in the case of FA (ICC = 67% ± 20%) compared to MD
(ICC=62% ± 47%). Finally, the between-subject variability of the
metrics in white-matter voxels is twice as high for FA
(CVbs= 40% ± 26%) compared to MD (CVbs= 21% ± 18%). The
same effect is also found across the grey matter, with an increase in the
between-subject variability (FA: CVbs= 49% ± 26% and MD:
CVbs= 26% ± 35%).

3.2. ROI analysis: reproducibility and reliability

Overall, the reproducibility and reliability of FA and MD improved
with the use of anatomical ROIs compared to the voxel-level results
(Table 3). Both FA and MD show good reproducibility in all ROIs with
CVws values that ranged between 1% and 1.8% for FA and between
1.1% and 2.8% for MD. Reproducibility is higher for FA than for MD in
the SCC, the GCC and the PLIC. The reliability of both metrics is also
generally high, with ICC values above 70% in all ROIs except for the
MD in the GCC (ICC = 54%). Reliability is always higher for FA than
for MD, with ICC values that ranged from 76% to 97% for FA, compared

Table 1
Percentage rates previously reported for longitudinal changes in FA and MD. Each row shows the detected longitudinal percentage change in a metric's average over a
specific brain region in subjects from the same clinical population. Clinical conditions: amyotrophic lateral sclerosis (ALS), mild cognitive impairment (MCI),
frontotemporal dementia (FTD), Alzheimer's disease (AD) and primary progressive multiple sclerosis (ppMS). Brain regions: corticospinal tract (CST), the body of the
corpus callosum (CC body), left and right uncinate fascicle (UF), right parahippocampal cingulum (PH-CING) and cerebellar, frontal and occipital white matter (WM)
.

Study Condition Brain Region Metric % change Time

Study Condition Brain Region Metric % change Time
Blain et al. 2007 ALS CST FA −2.70% 6 months
Teipelet al. 2010 MCI CC body FA −2.50% 12 months
Mahoney et al. 2015 FTD CC body FA −3.30% 12 months

UFLeft FA −7.90% 12 months
Kitamura et al., al. 2013 AD UF Right FA −3.20% 18 months

UF Left FA −4.50% 18 months
Blain et al. 2007 ALS CST MD 0.58% 6 months
Mahoney et al. 2015 FTD PH-CING Right MD 2.70% 12 months

UF Left MD 5.20% 12 months
Schmiereret al. 2004 ppMS Cerebellar WM MD 2.30% 12 months

Frontal WM MD 2.70% 12 months
Occipital WM MD 3.60% 12 months

Table 2
Whole-brain CVws, ICC and CVbs of FA and MD. Statistical indices are calculated
from the mean values of the metrics across all voxels in the brain, across all
white-matter (WM) and grey-matter (GM) voxels.

Metric Region Mean (SD) CVws ICC CVbs

FA Brain 0.30 (0.022) 0.69% 97.78% 7.43%
WM 0.382 (0.028) 0.70% 97.82% 7.46%
GM 0.228 (0.017) 0.76% 97.35% 7.65%

Metric Region Mean (SD) mm2/s CVws ICC CVbs

MD Brain 0.86e-03(0.10e-03) 2.72% 87.03% 12.76%
WM 0.76e-03(0.05e-03) 1.45% 89.75% 7.46%
GM 0.95e-03(0.16e-03) 4.42% 82.58% 17.74%

P.A. Luque Laguna, et al. NeuroImage: Clinical 26 (2020) 102168

4



to values between 71% and 88% for MD. In the case of MD, there is a
substantial agreement between the reproducibility and the reliability of
the metric. The ROIs where MD is the most reproducible are also the
ROIs where MD is most reliable (SLF CVws = 1.2% ICC = 88%, LFWM
CVws = 1.1% ICC = 92%). Analogously, the ROIs with lowest MD
reproducibility are also the ROIs where MD is less reliable (SCC
CVws = 2.5% ICC = 73%, GCC CVws = 2.8% ICC = 54%). In contrast,
there appeared to be less correlation between the reproducibility and
the reliability of FA. For example, the ROIs where FA is most re-
producible (SCC and PLIC) are not the ROIs where the FA is most re-
liable (OFWM and LFWM) (see Table 3).

3.3. ROI analysis: statistical power

The bar charts in Fig. 3 shows the statistical power of FA (left) and
MD (right) in terms of the minimum number of subjects needed by each
metric to detect at the group level a longitudinal increase (or decrease)
from the baseline values at each ROI. There are clear differences be-
tween the statistical power of the two metrics and also between the

power of the same metric across different ROIs. Differences in statistical
power become larger as the percentage change to be detected de-
creases. FA is most sensitive in the SCC (3–16 subjects) and the GCC
(4–18 subjects) followed by the PLIC (5–28 subjects) and SLF (8–62
subjects). The ROIs where FA is the less sensitive are the OFWM
(21–176 subjects) and the LFWM (25–213 subjects). Compared to FA,
the MD shows roughly the opposite trend: the ROIs where the MD is less
sensitive are the SCC (5–30 subjects) and the GCC (4–24 subjects) fol-
lowed by the OFWM (4–23 subjects) and the SLF (4–22 subjects). The
ROIs where MD is the most sensitive are the LFWM (3–15 subjects) and
the PLIC (3–17 subjects).

3.4. Reproducibility CVws maps

In the FA CVws map (Fig. 4 top-left slide), it is possible to appreciate
that voxels where the reproducibility is high (CVws < 10%) are found
mostly in the deep white matter (corticospinal tract and the corpus
callosum). Within these regions, the spatial distribution of the CVws

values is smoother and relatively homogeneous. A gradient in CVws

Fig. 2. Reproducibility, Reliability and Variability of FA and MD metrics across the brain. Histograms describing the distribution of the different coefficients for FA
(top) and MD (bottom) for the whole brain, white-matter and grey-matter voxels. Left: within-subject coefficients of variation. Centre: intraclass correlation coef-
ficient. Right: between-subject coefficient of variation.

Table.3
CVws and ICC of FA and MD across ROIs. The reproducibility of FA and MD is high across all ROIs with a CVws between 1% and 3% for all ROIs. The reliability of FA is
also high across all ROIs, with ICC values above 70% in all ROIs except the GCC.

ROI Mean FA FA CVws FA ICC Mean MD mm2/s MD CVws MD ICC

Splenium Corpus Callosum 0.84 1.00% 86% 7.30E-04 2.50% 73%
Genu Corpus Callosum 0.81 1.80% 76% 7.50E-04 2.80% 54%
Left Internal Capsule 0.73 1.10% 92% 6.40E-04 1.80% 71%
Superior Longitudinal Fasciculus 0.59 1.40% 94% 6.30E-04 1.20% 88%
Orbito Frontal WM 0.55 1.70% 97% 7.50E-04 1.50% 84%
Centrum Semiovale (LFWM) 0.44 1.80% 97% 6.30E-04 1.10% 85%
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Fig. 3. Statistical power of FA and MD across ROIs. Number of subjects needed to detect longitudinal changes in FA (left) and MD (right) from nominal values at
p < 0.05 significance level and − β1 statistical power= 0.80 (1-tailed). FA Nominal values: SCC 0.84, GCC 0.81, PLIC 0.73, SLF 0.59, OFWM 0.55, LFWM 0.44. MD
Nominal values: SCC × −.73 10 3 s/mm2, GCC × −0.75 10 3 s/mm2, PLIC × −0.64 10 3 s/mm2, SLF × −0.63 10 3 s/mm2, OFWM × −0.75 10 3 s/mm2, LFWM × −0.63 10 3 s/mm2.

Fig. 4. Reproducibility, Reliability and Variability of FA and MD metrics across a representative axial slice of the brain. On the left, the within-subject coefficients of
variation for FA and MD show patterns of high and homogeneous levels of reproducibility across different tissue types. In the centre, the intraclass correlation
coefficient shows a more heterogeneous pattern of reliability of these measures while still high. On the right, the between-subject coefficient of variation describes
also a high variation in the between-subject variability of these metrics across different regions.
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values can be observed between the voxels in the deep white matter
towards the subcortical white matter (CVws around 20%). Voxels with
lowest FA reproducibility (CVws > 20%) are found in cortical regions,
grey-matter/white-matter boundary (U-shape fibres), the striatum, the
ventricles and voxels with CSF partial volume. In these regions, the
spatial distribution of the CVws values is noisy and more heterogeneous.

In the case of the MD, the majority of voxels across all regions show
good or very good reproducibility with CVws values well below 10%
(Fig. 4 bottom-left slide). We can identify only small groups of voxels
where the MD CVws slightly increase beyond 10% in cortical regions, in
periventricular areas and regions with CSF partial volume contamina-
tion. Only in the periphery of the cortex, we find voxels where the CVws

of MD falls below acceptable reproducibility values (CVws > 10%).

3.5. Reliability ICC maps

The voxels with the highest reliability for FA are found in cortical
areas and most of the white matter (see Fig. 4 top-centre slide). Some
other regions like the internal capsule, part of the corpus callosum and
part of the thalamus contain voxels of medium to high FA reproduci-
bility (50% < ICC < 70%). Then, voxels with low reproducibility
(ICC < 50%) are found in deep grey-matter structures (striatum and
thalamus) and regions affected by large CSF presence, such as outside
the insular cortex and other inter-lobular regions. Compared to the FA
CVws map, the spatial distribution of FA ICC values is overall quite
heterogeneous and with less anatomical contrast.

In the case of the MD ICC map (Fig. 4 bottom-centre slide), the
voxels with the highest reliability are located in the CSF within the
ventricles, near the insular cortex and the space between the two
hemispheres. In contrast, voxels close to ventricular regions, in the
grey-matter/white-matter boundary and close to the deep grey matter
structures (e.g. thalamus) are amongst those with the lowest ICC for MD
with values between 40% and 70%. The rest of the white matter and the
cortex consistently show voxels with a relative high ICC value
(ICC > 70%). The spatial distribution of ICC values in the MD ICC map
is irregular and heterogeneous, which makes it difficult to distinguish
between different anatomical regions except for the ventricles.

3.6. Between-subject variability CVbs maps

The voxels with the highest CVbs values for FA (Fig. 4 top-right
slide) are found in the cortex, in the outermost white-matter, in the
posterior horns of the lateral ventricles and inter-lobar areas. Medium
levels of FA CVbs values are found in voxels in the striatum and intra-
lobar white-matter regions. Deep white-matter regions such as the ex-
ternal capsule (EC) the anterior limb of the internal capsule (ALIC)
contain large numbers of voxels with low FA CVbs, while the lowest
CVbs values for FA are found in the GCC, the PLIC and the thalamus.
The contrast in the FA CVbs maps allows to see distinguish some ana-
tomical features like some deep white matter structures such as the
external capsule and the striatum.

For the MD, the voxels with the highest CVbs values (Fig. 4 bottom-
right slide) are found in the cortex, in the grey-matter/white-matter
boundary, in the ventricles and periventricular areas. Medium levels of
MD CVbs values are found in voxels within the striatum and also in the
subcortical white matter. The lowest MD CVbs values correspond to
voxels in the thalamus and most of the remaining white-matter regions.
The MD CVbs map shows the highest anatomical contrast amongst all
statistic maps, clearly separating voxels in the cortex, in the grey-
matter/white-matter boundary and the deep white matter.

3.7. Multiparametric segmentation of FA CVbs

Fig. 5 shows the multiparametric segmentation of the FA CVbs maps
on three representative slices (mid-axial, mid-coronal and mid-left-sa-
gittal) based on the corresponding values of FA CVws and FA ICC in each

voxel. Overall, the cortical grey matter has the highest between-subject
FA variability with low reproducibility and high reliability, whereas
most deep grey-matter structures have much lower between-subject
variability also with low reproducibility and reliability. In comparison,
the FA in the white matter has much lower between-subject variability,
high reproducibility and high reliability, except around the putamen
and parts of the corpus callosum where the reliability is low.

Quadrant I: High-reproducibility/high-reliability regions are formed
mostly by white-matter voxels characterised by low to medium levels of
between-subject variability. In particular, the between-subject varia-
bility is relatively lower at voxels in the internal capsule and deepest
white-matter regions, with higher levels of variability towards the grey-
matter/white-matter boundary.

Quadrant II: Low-reproducibility/high-reliability regions are
formed by voxels with the highest between-subject variability of FA in
the brain. These regions include the cerebral cortex, the subcortical
white matter and periventricular areas.

Quadrant III: Low-reproducibility/low-reliability regions contain
two family of voxels where the between-subject variability of FA is
either moderate (20% < CVbs < 40%) corresponding to the striatum
(including the putamen and the head of caudate nucleus) or high
(40% < CVbs < 60%) corresponding to inter-lobular regions within the
insular, prefrontal and occipital cortices.

Quadrant IV: High-reproducibility/ low-reliability regions contain
voxels where the between-subject variability of FA is relatively lower
across the entire brain (CVbs < 10%) We can identify a part of the genu
of the corpus callosum (GCC) and sections of the posterior limb of the
internal capsule (PLIC). With slightly higher between-subject variability
but still low (10% < CVbs < 20%), we can clearly identify the rest of
the internal capsule, the external capsule and the thalamus.

3.8. Multiparametric segmentation of MD CVbs

Fig. 6 shows the multiparametric segmentation of the MD CVbs map
on the same representative slices and using the same criteria for the
definition of areas of low/high reproducibility and reliability as in
Fig. 5. The between-subject variability of MD is higher in the cortical
grey matter, where the reliability is always high and the MD is (mostly)
reproducible. Deep grey-matter structures have the lowest between-
subject variability, with low reliability and high reproducibility. In the
white matter, the between-subject variability of MD is relatively low
and with high reliability except in some voxels along the internal
capsule, around the thalamus and some subcortical WM regions where
the MD is not reliable.

Quadrant I: There are many high-reproducibility/ high-reliability
voxels with a broad range of between-subject variability. At the lowest
values (CVbs < 20%) we found voxels in the putamen, along the ex-
ternal capsule and the deep white matter. With higher between-subject
variability (20% < CVbs < 40%) we found some of the subcortical
white-matter voxels. Finally, the anatomical areas found with the
highest between-subject variability in this quadrant (CVbs > 50%) are
the ventricles and the periventricular areas in the occipital lobe, the
ventral areas of the prefrontal cortex and the inter-lobular regions
surrounding the insula.

Quadrant II: like in the case of the FA, low-reproducibility/ high-
reliability regions for the MD contain the voxel with the highest be-
tween-subject variability for MD in the brain. In this case, these regions
include only the most external cortical areas where the between-subject
variability is consistently high (CVbs > 50%).

Quadrant III: In the case of the MD, the low-reproducibility/ low-
reliability region is formed mostly by voxels interfacing with the CSF
along the periphery of the brain.

Quadrant IV: High-reproducibility/ low-reliability regions are
formed by voxels where the between-subject variability of the MD is
lower than in any of the other three regions, just as in the case of FA. In
the case of the MD, these regions cover a larger range of well-defined
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anatomical areas. Firstly, the thalamus can be identified as the structure
with the lowest between-subject variability in MD (CVbs < 10%), to-
gether with white-matter voxels along the internal capsules and the
genu of the corpus callosum. With slightly higher between-subject
variability (10% < CVbs < 20%) we can find the striatum (putamen
and head of caudate) and a few subcortical white-matter regions likely
following the trajectory of intra-lobar fibres (Howells et al., 2018).

4. Discussion

In this study, we have assessed the test–retest reproducibility, re-
liability, between-subject variability and the statistical power asso-
ciated with FA and MD measurements in an older healthy population.

The study is based on an acquisition setup of 60 diffusion directions, 9
non-diffusion weighted volumes, b-value= 1500s/mm2 and isotropic
resolution of 2mm. With these settings, the results show that the re-
producibility of MD is good (CVws < 10%) across the entire brain and
very good for most white-matter regions (CVws < 5%). In contrast, FA
showed good reproducibility only in white-matter voxels, but this is
expected because of the very low FA values and increased sensitivity to
noise in CSF and grey-matter regions. Overall, the voxel-wise reliability
of both FA and MD is good, with voxel values well above ICC>70% in
the cortex and the subcortical white matter for both metrics. In the deep
white-matter near grey-matter structures, however, only FA showed
consistently good reliability while only MD showed good reliability in
some deep grey-matter structures. In respect to the between-subject

Fig. 5. Multiparametric segmentation of
whole-brain FA CVbs by reproducibility and
reliability. The FA CVbs whole-brain map (left)
is segmented into four groups of anatomical
regions showing similar levels of reproduci-
bility and reliability (right). Quadrant I: re-
gions formed by voxels with high FA reprodu-
cibility (CVws <10%) and high FA reliability
(ICC >70%) - Quadrant II: regions formed by
voxels with low FA reproducibility (CVws

>10%) and high FA reliability (ICC >70%) -
Quadrant III: regions formed by voxels with
low FA reproducibility (CVws >10%) and low
FA reliability (ICC <70%) - Quadrant IV: re-
gions formed by voxels with high FA reprodu-
cibility (CVws <10%) and low FA reliability
(ICC <70%).

Fig. 6. Multiparametric segmentation of
whole-brain MD CVbs by reproducibility and
reliability. The MD CVbs whole-brain map (left)
is segmented into four groups of anatomical
regions showing similar levels of reproduci-
bility and reliability (right). Quadrant I: re-
gions formed by voxels with high MD re-
producibility (CVws <10%) and high MD
reliability (ICC >70%) - Quadrant II: regions
formed by voxels with low MD reproducibility
(CVws >10%) and high MD reliability (ICC
>70%) - Quadrant III: regions formed by
voxels with low MD reproducibility (CVws

>10%) and low MD reliability (ICC <70%) -
Quadrant IV: regions formed by voxels with
high MD reproducibility (CVws <10%) and
low MD reliability (ICC <70%).
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variability, it changed greatly from region to region for both metrics.
The regions with the lowest between-subject variability were the re-
gions with low reliability and high reproducibility and the other way
around.

4.1. Reproducibility

Compared to previous studies, the reproducibility of overall FA and
MD values in white-matter and grey-matter regions is high. In parti-
cular, in the case of FA, our results have shown better CVws values
compared to previous reproducibility studies reporting values between
1% and 5% (Pfefferbaum et al., 2003; Vollmar et al., 2010;
Willats et al., 2014; Veenith et al., 2013; Grech-Sollars et al., 2015).
Interestingly, only the CVws for MD in overall grey matter is slightly
higher (CVws= 4.42%) than previously reported values for this index.
When looking at selected regions of interest, the reproducibility values
for both FA and MD are consistently better (between 1% and 2.8%)
than those reported by a previous study (Marenco et al., 2006) for FA
(2.5–10.16%) and MD (2.49–6.20%) with data collected with 8
averages of 6 diffusion directions at 1100 s/mm2 b-values on a 1.5 Tesla
system. In our study, the GCC appeared the least reproducible of all the
regions for both FA and MD (FA CVws= 1.8%, MD CVws= 2.8%),
showing a much higher CVws than the SCC (FA CVws= 1.0%, MD
CVws= 2.5%) – the same effect observed by Veenith et al., al. (2013).
Other studies showed GCC values closer to those of the SCC, as in
Marenco et al. (2006) and Willats et al. (2014), but in these studies, the
GCC ROI had a substantially larger size. As expected, the reproduci-
bility of both DTI metrics decreased when evaluated at the voxel level.
This is in line with the voxel-wise values reported in previous studies
(Jansen et al., 2007; Pannek et al., 2011; Willats et al., 2014). In the
white matter, it remained within acceptable levels (below 10%) in a
majority of voxels for both metrics. In grey-matter voxels, only MD
maintained good or very good reproducibility levels for most voxels. On
the contrary, FA showed good reproducibility in less than 25% of grey-
matter voxels. The observed decrease in reproducibility for overall
measures and ROIs replicates the effect reported by
Vollmar et al. (2010), where the CVws was found to be more than twice
as large when using voxel-wise values compared to ROI averages. The
CVws maps show consistently low FA reproducibility in grey-matter
voxels, but good reproducibility for MD as in Marenco et al. (2006) and
Willats et al. (2014). Notwithstanding, many voxels in grey-matter
structures such as the thalamus share similar CVws values with white-
matter voxels. Overall, these results suggest that even in an older po-
pulations DTI metrics provide a good reproducibility across all white
matter and most of grey matter regions.

4.2. Reliability

The reliability of overall whole-brain measures is high (above 82%
in MD) or very high (over 97% for FA) and always better in the white
matter compared to the grey matter. The ICC for overall FA values is
also very similar to those reported by Vollmar et al. (2010) and higher
than by Grech-Sollars et al. (2015) (88% in grey matter, 53% white
matter). The ICC for overall MD values is also higher than in Grech-
Sollars et al. (2015) (48% in grey matter, 41% white matter) although
in that study all reported values seem particularly low. Looking at re-
gions of interest, the SCC, the OFWM and the LFWM, our ICC results
show higher values for MD and similar values for FA compared to
Marenco et al. (2006). Compared to another study from
Duan et al. (2015), the ICC values from our study are higher in most of
the selected regions except the corpus callosum regions (76% vs 87% in
GCC and 86% vs 94% in SCC) again probably because of the different
sizes of these regions). At the voxel-level, our results are either
equivalent to or better than previous studies. E.g. in this work, the mean
voxel-wise values of 77% (FA) and 74% (MD) are comparable to the
80% (FA) and 73% (MD) mean values reported by Jansen et al. (2007).

Also similar to our results, in Duan et al. (2015) the number of voxels
showing more than moderate reliability (ICC > 40%) was around 90%
of voxels for FA and 75% of voxels for MD.

4.3. Statistical power

Considering the older population recruited in this study, we can
report that the statistical power of our diffusion metrics is more than
adequate to detect, from a relatively small number of subjects (N<55),
longitudinal changes greater than 4% in most white-matter regions and
changes greater than 2% in the deeper white-matter structures. In all
regions except for the corpus callosum, MD requires substantially fewer
subjects than FA to detect the same percentage change in the metrics
values.

4.4. Between-subject variability

Except for deep CSF regions (i.e. ventricles, intra-lobar and intra-
hemispheric CSF), a gradient showing high to low between-subject
variability is evident when going from more external to internal re-
gions. Here, deep white- and grey-matter structures show the lowest
between-subject variability. The multiparametric segmentation of the
CVbs maps reveals in anatomical terms the relationship between the
reproducibility and the reliability of the metrics with the between-
subject variability. Both FA and MD metrics show the highest between-
subject variability in the regions where they are also most reliable but
less reproducible (cortical regions) while they show the lowest be-
tween-subject variability where they are less reliable but more re-
producible (subcortical grey matter and deep white matter). In the case
of FA, these are the subcortical and the intra-lobar white-matter regions
where FA shows medium levels of between-subject variability (CVbs

between 20% and 40%). In comparison, the between-subject variability
of MD ranges more widely from CVbs = 10% to CVbs = 40% in the
corresponding high-reproducibility/high-reliability regions (the cortex
and some subcortical white-mater and grey-matter subregions).

4.5. Data quality and age of participants

The improved reproducibility of our results respect to previous
studies could be in part explained by the increased quality of the MRI
data collected for this study (number of diffusion-weighted directions,
number of b0s images directions, the use of peripheral pulse gating, the
quality of the hardware). Also, the low within-subject variability of the
metrics could have benefited from the fact that each participant was re-
scanned at approximately the same time of the day of the first session
(Thomas et al., 2018). Altogether, the results suggest that investing in
good acquisition protocols may be very beneficial also for the estima-
tion of traditional DTI metrics and not only for more advanced High
Angular Resolution Diffusion Imaging (HARDI) methods
(Dell'Acqua and Tournier 2018) and tractography applications.

The characteristics of our older cohort could be another factor ex-
plaining some of the results in our study. For example, the lower CVws

for the overall FA and MD could be a consequence of older brains being
more stable compared to those from younger adults, and therefore less
likely to experience significant changes between sessions. Another ex-
ample could be the slightly higher CVws for the overall MD in grey-
matter regions, which could be explained by the fact that cortical grey
matter reduces in the older population, increasing the probability of
partial volume with other structures and CSF.

4.6. Effect of the anatomy

In agreement with previous studies (Marenco et al., 2006;
Venkatraman et al., 2015), the results from the multiparametric seg-
mentation make evident that the statistical properties of both metrics
across the brain are determined not only by the tissue type (grey matter
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versus white matter) but also by the anatomy. For example, for both FA
and MD, there are clear differences between the high reliability and low
reproducibility of voxels within the cortical grey-matter compared to
the high reproducibility and mostly low reliability in deep grey-matter.
Within the deep grey-matter, the properties of the metrics are further
determined by each specific grey-matter structure, for example, the
difference in reproducibility values between the thalamus and the basal
ganglia. This effect of the anatomy in the properties of the metrics is
also visible in the white matter where the reliability goes from being
high in intra-lobar white-matter regions to be below 70% near deep
grey-matter structures. The anatomy has also a clear effect on the sta-
tistical power estimated for each metric across different brain regions.
For example, both metrics require far fewer subjects to detect changes
in deep white-matter regions compared to more superficial white-
matter regions. These findings closely reflect the regional differences
depicted by the CVbs maps, because changes in statistical power across
regions are related largely to changes in the between-subject variability
of the metrics.

4.7. Limitations of the study

While the preprocessing pipeline used in this study follows the re-
commendations of well-established guidelines for the pre-processing
and post-processing of diffusion MRI data (Jones and Cercignani, 2010;
Jones et al., 2013), it does not represent the current state of the art.
Additional pre-processing steps recently developed specifically for DW-
MRI such as data de-noising (Veraart et al., 2016) or the correction of
Gibbs ringing artefacts (Veraart et al., 2015), could have improved the
reproducibility and reliability of the DTI metrics. The cost-benefit of
using extra pre-processing steps will also depend on the quality of the
original data. For example, we observed decreased reproducibility in
voxels located towards the most frontal and the temporal regions of the
brain, suggesting that susceptibility geometrical distortions from EPI
may have a significant effect even after pre-processing. These EPI dis-
tortions could have been attenuated by acquiring a full DTI dataset with
reversed-encoding (Irfanoglu et al., 2015), at the cost of increasing the
acquisition time.

The post-processing of the DTI metrics can also make a great dif-
ference in the final results. For example, methods based on free water
elimination (FWE) (Pasternak et al., 2009) developed to ameliorate the
limitations of the single diffusion compartment in DTI. The use of FWE
can improve the reproducibility of FA and MD in elderly subjects and
without detriment to their sensitivity (Albi et al., 2017). That said, for
many studies, the most determinant step after the computation of the
DTI maps is probably the normalisation of the images. The method used
in this study is the same one provided by the TBSS pipeline
(Smith et al., 2006). This approach was chosen over other alternatives
because TBSS is a widely used method for the voxel-based analysis of
DTI data. By using this normalisation approach, we keep our pipeline in
line with the kind of methods used by the cited literature. However, the
registration of the images in the TBSS pipeline, based on FA maps, is
known to retain some extents of misalignment that might introduce
uncertainty in grey matter and at the interface between white and grey
matter, influencing later statistical results. This misalignment can ne-
gatively impact the reproducibility and reliability of the metrics in
cortical regions and near deep grey-matter structures. The results from
the multiparametric segmentation showed in Fig. 5 and 6 strongly
suggest this possibility. This seems to be the case especially for MD, as
normalising each MD map using the same transformations calculated
from the corresponding FA map may be not optimal since FA is fea-
tureless in grey-matter regions. With an older population, this regis-
tration may be more problematic. Therefore, we recommend for the
normalisation of the images the use of more advanced methods of
image registration such as ANTs (Avants et al., 2011) or methods spe-
cific for the registration of DTI data to improve the alignment of brain
structures in the FA and MD images (Irfanoglu et al., 2016).

4.8. Relevance of the results and potential applications

The results on the reproducibility and reliability of FA and MD
confirm the validity of using these two metrics for the study of brain
changes in older adults. The two metrics appear to complement each
other in terms of their statistical properties across the brain: FA is more
reliable in the white matter while MD is more reproducible and it is
associated with higher statistical power in the grey matter.

The CVws and ICC values in the six anatomical regions and the
provided power calculations can guide future studies to decide which
metric to use in each region and the number of participants to be re-
cruited. Adequate sample sizes provide sufficient statistical power to
the study and help to contain scanning costs, computational needs and
the overall running time of the studies (Ioannidis et al., 2014). If sample
sizes are relatively small, results tend to be less reliable (Button et al.,
2013) and to appear only in regions where the statistical power is
comparatively high (usually regions with low between-subject varia-
bility). In this context, the reliability (ICC) maps can identify those
regions (voxels) where statistical results are most likely to reflect gen-
uine effects of interest in the population. Likewise, the reproducibility
(CVws) maps can identify those regions where the metrics are also ro-
bust, a requirement for the satisfactory formulation of any useful bio-
marker (Strimbu and Tavel, 2010).

The multiparametric segmentation of the CVbs maps reveals those
regions where FA and MD are reproducible, reliable, and show ade-
quate levels of between-subject variability and statistical power.
Identifying such optimal regions in advance can simplify the statistical
analysis and facilitate the control for false positives due to multiple
statistical comparisons (Lindquist and Mejia, 2015). Finally, the mul-
tiparametric segmentation of the CVbs maps can help researchers and
clinicians to understand intuitively the relationship between reprodu-
cibility, reliability and between-subject variability, and the effect that
the brain anatomy has on these properties of the metrics. Under-
standing this relationship becomes especially important when evalu-
ating and comparing results across multiple brain regions where the
performance of these two metrics may change from region to region
(De Santis et al., 2014).

5. Conclusion

In this study, we have characterised the test-retest reproducibility,
reliability, between-subject variability and statistical power associated
with FA and MD in older healthy subjects. The values of the CVws, CVbs

and ICC across the brain confirm the validity and support the use of FA
and MD metrics to study brain changes in this particular age group. Our
results also show that FA and MD are very different in terms of their
statistical properties, which change in a dissimilar manner across the
entire brain anatomy. The statistical power calculations combined with
the multiparametric segmentation of the between-subject variability
can guide researchers to identify those brain regions where FA and MD
would be most effective and reliable in finding statistical differences in
diffusion MRI data. This information will be particularly useful for the
design, sample-size calculations and interpretation of the results of fu-
ture studies using DTI as a neuroimaging biomarker in older popula-
tions.
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Appendix A. Indexes of reproducibility, reliability and between-subject variability

When data have been acquired for each subject on multiple occasions, the statistical properties of the metrics such as reproducibility, reliability
and the between-subject variability can be summarised by statistical indices based on the different sources of variability. The within-subject
variability summarises the variability observed when acquiring data from the same subjects on multiple occasions. The between-subject variability is
the variability of the metric across different subjects (after excluding the within-subject variability). The mathematical definitions of each index
based on the corresponding variabilities are defined next.

Within-subject coefficient of variation

The within-subject coefficient of variation (CVws) summarises the within-subject variability of the metric across multiple sessions,

= ×CV σ
μ

100%ws
ws

where μ is the grand mean and σws is the within-subject standard deviation which is estimated by

=
−

×σ n
k

WMS^
1ws

where k is the total number of sessions, n is the total number of subjects and WMS is the within-subject mean square. A lower CVws > 0 values are
associated with higher reproducibility.

Intraclass correlation coefficient

As an index of reliability, we use the third form of the intraclass correlation coefficient ICC3, 1. The ICC3, 1 consists of between-subject variability
divided by the total variance of the metric according to a two-way mixed-effects model (fixed session effects random subject effects). Under this
model, the ICC3, 1 can be consistently estimated (with bias) by

=
−

− −
ICC BMS EMS

BMS k EMS( 1)3,1

where BMS is the between-subject mean square, EMS is the error mean square and k is the total number of sessions. A higher 0< ICC3, 1< 1 value is
associated with a higher level of reliability (consistency) in the metric's values across the different scanning sessions.

Between-subject coefficient of variation

The between-subject coefficient of variation (CVbs) summarises the between-subject variability of the metric across the population.

= ×CV σ
μ

100%bs
bs

where μ is the grand mean and σbs is the between-subject standard deviation which is estimated by

=
−

×σ k
n

BMS^
1bs

where k is the total number of sessions and n is the total number of subjects and BMS is the between-subject mean square.
Within our test-retest scenario, the BMS is computed using the mean values of the metric across three sessions. Therefore, the σbs can be

considered to be a better estimation than the total variance σ to the between-subject variability of the metric. Lower CVbs > 0 values are associated
with higher statistical power when using the metric to detect group differences.

Appendix B. Statistical power calculations

We perform statistical power calculations based on the between-subject variability of the metrics to estimate the minimum sample size required
by each metric to detect a statistically significant change in the metrics from their nominal values. More specifically, we calculated the number of
subjects required per group to detect longitudinal changes in FA and MD of 2%, 4% and 6% (increase or decrease) in each ROI with statistical power
1- β=0.8 and statistical significance level =α 0.05.
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Statistical hypothesis test

For the power calculations, we used the statistical test most commonly employed to detect longitudinal changes in data, a t-test on the difference
between two dependant means (matched pairs). The null hypothesis of this t-test states that the population means μx and μy of two matched
observations X and Y are equal. In this case, we can reformulate this test in terms of the difference = −Z X Y and the following null and alternative
hypothesis:

=H μ: 0z0

≠H μ: 0.z1

The number of subjects required to detect a certain value of |μz|≠ 0 at significance level α and statistical power 1 - β is given by the minimum
number of degrees of freedom n required for a central t-distribution to have a critical value T such as:

= > −T Z
σ n

t
¯

ẑ
n α,1 /2

and

− < − −− − − −β F t F t1 ( ) ( )n λ n α n λ n α1, ,1 /2 1, ,1 /2

where Z̄ is the difference between sample means, σ̂ z
2 is the unbiased sample variance, −tn α,1 /2 is the − α(1 /2)th percentile of a central t-distribution

with n degrees of freedom, and −Fn λ1, is the cumulative function of a non-central t-distribution with −n 1 degrees of freedom and noncentrality
parameter =λ n μ σ/z z.

Power calculations

The previous computation can be carried out by the statistical software package G*power (Faul et al., 2007) that requires passing to it as inputs
the desired significance level α, the statistical power − β1 , and the effect size index for the corresponding t-test (Cohen 1988):

=
∣ ∣

=
∣ − ∣

+ −
d

μ
σ

μ μ

σ σ ρ σ σ2
z

z

z

x y

x y xy x y
2 2

where σx2 and σy2 are the population variances corresponding to the first and the second observations, and ρxy is the correlation between the random
variables corresponding to the two observations. To obtain the size effect as required by G*power, we used the in-vivo MRI data from the first session
to estimate the value of the population mean μx and the population variance σx2 corresponding to the first observation X. We also pooled the MRI
data from the second and third sessions to estimate the population variance σy2 for the second observation Y and the correlation ρxy between the first
observation X and the second observation Y. By setting −μ μx y to the required value for each percentage change (pc), we compute dz as

=
∣ ∣

+ −
d

μ pc

σ σ ρ σ σ

·

2
z

x

x y xy x y
2 2

where =pc 0.02, 0.04, 0.06. Finally, we used G*power to compute the minimum sample size required to detect each of the computed effect sizes with
a statistical significance =α 0.05 and a statistical power =β 0.8.
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