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Abstract: Pancreatic inflammation and the resulting cellular responses have been implicated in
pancreatitis, diabetes, and pancreatic cancer. Inflammatory responses due to the bacterial endotoxin,
lipopolysaccharide (LPS), have been demonstrated to alter cellular metabolism, autophagy, apoptosis,
and cell proliferation in different cell populations, and hence increases the risks for organ toxicity
including cancer. The exact molecular mechanism is however not clear. In the present study, we
investigated the role and mechanism of an antioxidant, azadirachtin (AZD), a limonoid extracted
from the neem tree (Azadirachta indica), against LPS-induced oxidative stress in the pancreatic β-cell
line, Rin-5F. We demonstrated that cells treated with LPS (1 µg/mL for 24 h) showed increased
reactive oxygen species (ROS) production, DNA damage, cell cycle arrest, and apoptosis. Our results
also showed that LPS induced alterations in the AMP-activated protein kinase (AMPK)/mammalian
target of rapamycin (mTOR) pathways, suppressing autophagy and augmenting apoptosis. Treatment
with Azadirachtin (25 µM for 24 h), on the other hand, rendered some degree of protection to the
pancreatic cells from apoptosis by inducing the autophagy signals required for cell survival. These
results may have significance in elucidating the mechanisms of pancreatic β-cell survival and death
by balancing the molecular communication between autophagy and apoptosis under inflammatory
and pathological conditions.
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1. Introduction

Lipopolysaccharide (LPS), a bacterial endotoxin, induces septic shock, which may
result in multiple organ dysfunction. The release of inflammatory mediators, such as
tumor necrosis factor (TNF-α) and interleukins are considered to be the main triggers
inducing cellular response and organ dysfunction [1]. These pro-inflammatory media-
tors are also responsible for initiating the cascade of secondary factors and signaling of
autophagy, apoptosis, or cellular proliferation [2–6]. Homeostasis of pro-inflammatory
and anti-inflammatory responses have also been implicated in a number of diseases [7,8].
Inflammatory stress promotes oxidative stress and vice versa. A high-fat diet can cause
alterations in gut microbiota and induce up to three-fold lipopolysaccharide production,
contributing to increased oxidative and ER stress, glucotoxicity, and lipotoxicity-associated
complications, resulting in decreased pancreatic functions and triggering type 2 diabetes
(T2D) development [9–11]. LPS-induced pancreatitis and β-cell mass destruction have
been reported to be due to increased reactive nitrogen species and inflammatory signal-
ing [12–14].

Using both in vivo animal models for type1 and type 2 diabetes [15–19] as well as
in vitro models for glucolipotoxicity in different cellular models [20–23], our laboratory
has demonstrated the significance of inflammation, oxidative stress, redox homeostasis,
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mitochondrial dysfunction, and reprogramming of energy metabolism in diabetes. The aim
of the present study was to identify protective mechanisms of a potent anti-inflammatory
compound, isolated from neem, on LPS-induced inflammation in a cell culture system
using the insulin-secreting pancreatic beta cell, Rin-5F.

Azadirachtin (AZD), a phytochemical limonoid extracted from neem (Azadirachta
indica) leaves and fruit, with known anti-inflammatory properties, has been reported to be
beneficial in a number of inflammatory and oxidative stress-related abnormalities for more
than 2000 years. In many degenerative disorders including diabetes, and various types of
cancers including pancreatic cancer, the potential of neem plant extract is considered to be
due to the abundant presence of the active limonoid, azadirachtin. Azadirachtin and related
limonoids have been shown to protect β-cells from oxidative and inflammatory stress-
induced cytotoxicity by manipulating the cell signalling kinases and anti-inflammatory
responses [24–28]. The present study focuses on the identification of biochemical markers
in Rin-5F cells affected by LPS treatment and the mechanism of protection of cytotoxicity by
AZD. We report here that AZD alters β-cells’ responses towards oxidative/inflammatory
stress by regulating cellular DNA damage, cell proliferation, and cellular signalling path-
ways regulating autophagy and apoptosis.

2. Materials and Methods
2.1. Materials

Azadirachtin (AZD, # A7430)), LPS (# L6511), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, # M2128), propidium iodide (# P4170), Hoechst 33,342
(# B2261), and cellular DNA fragmentation ELISA kits (# 11 585 045 001) were purchased
from Sigma-Aldrich (St Louis, MO, USA). 2,7-Dichlorofluorescein diacetate (DCFDA, #
D399) was purchased from Molecular Probes, Inc. (Eugene, OR, USA). Kits for caspase-3 (#
BF3100) and -8 assays (# K113-25) were procured from R&D Systems (Minneapolis, MN,
USA). Apoptosis detection kits (# 556547) for flow cytometry were purchased from BD
Pharmingen (BD Biosciences, San Jose, CA, USA). Rin-5F cells (#CRL-2058) were obtained
from the American Type Culture Collection (Manassas, VA, USA). Polyclonal antibod-
ies against cleaved caspase-3 (# 9661), poly (ADP-ribose) polymerase (PARP, # 9542)),
autophagy-related protein (Atg5, # 8540)), microtubule-associated light chain 3 (LC3, #
2775), SQSTM1/p62 (# 5114), c-Jun N-terminal kinase (SAPK/JNK, # 9252), phosphorylated
c-Jun N-terminal kinase (p-SAPK/JNK, # 9255), protein kinase B (AKT, # 4691), phosphory-
lated protein kinase B (p-AKT, #4060), AMP-activated protein kinaseα (AMPKα, #2532),
phosphorylated AMP-activated protein kinaseα (p-AMPKα, # 2531), mammalian target
of rapamycin (mTOR, # 2972), and phosphorylated mammalian target of rapamycin (p-
mTOR, # 2971) were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA).
Monoclonal antibodies against heat shock protein (Hsp-70, #H 5147) were purchased from
Sigma-Aldrich (St Louis, MO, USA) while heme oxygenase-1 (HO-1, #ab 13243) was from
Abcam (Cambridge, England, UK) and cyclin B1 (#sc-7393), p21 (#sc-6246), and β-actin
(#sc-47778) from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

2.2. Methods
2.2.1. Cell Culture and Treatment

Rin-5F cell line is an insulin-secreting, epithelial pancreatic cell line derived from rat
islet beta cells. The cells were cultured in RPMI-1640 GlutaMax medium supplemented
with 10% foetal bovine serum in the presence of 5% CO2—95% air at 37 ◦C as described
before [20,21,29]. Cells cultured to 80% confluence were treated with 1 µg/mL of the bacte-
rial endotoxin, LPS for 24 h, based on literature reports and our previous studies [22,30,31].
In some cases, cells were treated with 25 µM azadirachtin for 24 h alone or in combination
with LPS. After the desired time of treatment, cells were harvested, washed with PBS
(pH 7.4), and homogenized and lysed in the appropriate lysis buffers required for the
assays as described before [20,21,29].
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2.2.2. Cell Viability, DNA Damage and Apoptosis Assays

MTT assay was used to determine the mitochondrial dehydrogenase-based cellular
viability. Briefly, cells treated with LPS and/or AZD were assessed for cell viability by the
reduction of MTT dye to form insoluble purple formazan crystals, which were dissolved in
acidified alcohol and the viable cells quantitated using an ELISA reader (TECAN Infinite
M200 PRO, Austria) at 550 nm as described before [20,21].

DNA damage by apoptosis was assessed using Hoechst 33,342 dye staining of frag-
mented nuclei. Briefly, cells grown on coverslips were treated with LPS and/or AZD for
24 h and fixed with 3.7% formaldehyde. The cells were then stained with Hoechst 33,342
and observed by fluorescence microscopy (Olympus Corporation, Tokyo, Japan). Apop-
totic cells showed fragmented nuclei. Oxidative stress–induced DNA damage was also
measured after electrophoresis of DNA from LPS and/or AZD–treated cells and staining
with ethidium bromide.

Cellular DNA damage was also measured using the cellular DNA fragmentation kit
(Sigma-Aldrich, St Louis, MO, USA) as per the vendor’s protocol. Briefly, cells were grown
to confluency and cell count adjusted to around 2 × 105 cells/mL medium and labeled
with 5′-bromo-2′-deoxy-uridine (BrdU, used as a metabolic labeling agent by the nuclear
DNA of target cells). After an overnight incubation at 37 ◦C, cells were centrifuged and
resuspended in BrdU-free culture medium. The BrdU-labeled cells (1 × 105 cells/mL) were
then treated with LPS and/or AZD for 24 h. After treatment, the cells were lysed to extract
the apoptotic DNA fragments from the cytoplasm. The cell extracts were then transferred
to 96-well microtiter plates, which were pre-coated with anti-DNA antibody overnight and
treated with blocking buffer to block all the non-specific binding sites. The plates with
the cell extracts were incubated for 90 min at room temperature followed by washing the
wells. The DNA in the samples were then fixed and denatured and then treated with anti-
BrdU-peroxidase conjugate solution. After an incubation for 90 min at room temperature, a
substrate was added and incubated in the dark until color development was sufficient, stop
solution was added, and measurement was taken at 450 nm using a plate reader (TECAN
Infinite M200 PRO, Austria).

Apoptosis in the LPS and/or AZD–treated cells were measured using a Becton Dick-
inson FACSCanto II analyser (BD Pharmingen, BD Biosciences, San Jose, CA, USA) as
described before [22,31]. Briefly, Rin-5F cells were treated with LPS and/or AZD for 24 h
and re-suspended in binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2)
at a concentration of 1 × 106 cells/mL. A fraction of this cell suspension (1 × 105 cells)
was then incubated with FITC-conjugated Annexin V and propidium iodide. After 15 min,
binding buffer was added and viable, apoptotic and necrotic cells were measured by flow
cytometry.

Caspase-3 and caspase-8 activities were measured in the cell lysate using the caspase-
specific peptide substrates, Ac-Asp-Glu-Val-Asp (DEVD) and Ac-Ile-Glu-Thr-Asp (IETD)
respectively, conjugated to the chromophore, p-nitroanaline. Cleavage of this peptide
by the respective caspases releases the chromophore, which is measured colorimetrically
at a wavelength of 405 nm as recommended in the vendor’s protocol (R&D Systems) as
described before [20,29].

2.2.3. Measurement of Intracellular Reactive Oxygen Species (ROS)

DCFDA, a cell permeable probe, which measures peroxides preferentially was used
to measure the intracellular ROS production. LPS and/or AZD-treated cells were in-
cubated with DCFDA and the fluorescence analyzed fluorometrically using the ELISA
reader (TECAN Infinite M 200 PRO, Austria), microscopically using the Olympus fluo-
rescent microscope (Olympus Corporation, Tokyo, Japan) and by flow cytometry using
the FACSCanto II Flow Cytometer (Beckton Dickinson, San Jose, CA, USA) as described
before [21,32].
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2.2.4. Cell Cycle Analysis by PI Staining

For cell cycle analysis, Rin-5F cells were fixed with 70% ethanol, treated with renatured
RNaseA and stained with propidium iodide (PI) after treatment with LPS and/or AZD for
24 h and the different stages of cell cycle analyzed by flow cytometry as described by Piazza
et al. [33]. The total DNA content was quantified at an excitation wavelength of 488 nm
and detection wavelength of 620 nm using the FACSCanto II Flow Cytometer (Beckton
Dickinson, San Jose, CA, USA) and the data analyzed using ModFit LT 3.2 software (Verity
Software House; Topsham, ME, USA). Results are shown as representative histograms
(from three repetitive experiments) showing percentage DNA distribution in each phase of
the cell cycle.

2.2.5. SDS-PAGE and Western Blot Analysis

Total cell extracts (25–50 µg) from control and LPS and/or AZD-treated Rin-5F cells
were separated by 12% SDS-PAGE [34] and electrophoretically transferred onto nitrocellu-
lose membrane by Western blotting [35]. Transferred proteins were checked by reversible
Ponceau S staining for equal loading and then probed with primary antibodies against
cleaved caspase-3, PARP, Hsp-70, HO-1, Atg-5, LC3, p62, Akt, p-Akt, mTOR, p-mTOR, and
JNK and p-JNK. Immunoreactive bands were visualized using the appropriate conjugated
secondary antibodies. Equal loading of protein was confirmed using beta-actin as loading
control. Proteins were visualized by enhanced chemiluminescence using the Sapphire
Biomolecular Imager (Azure biosystems, Dublin, CA, USA) or using X-ray films. Relative
band intensity was quantified using Image Studio Lite Ver.5.2 (LI-COR Biosciences, Lincoln,
NE, USA) and expressed as relative ratios normalized to beta-actin or its respective total
proteins as appropriate.

2.2.6. Statistical Analysis

Values shown are expressed as mean ± SD of at least three individual repetitive
experiments. Statistical significance of the data was assessed using SPSS software (version
23) by analysis of variance (ANOVA) followed by least significant difference (LSD) post-
hoc analysis for comparison between the different groups. p-value < 0.05 obtained after
post-hoc analysis was considered statistically significant.

3. Results
3.1. Effects of LPS and AZD on Cell Viability, Apoptosis and Cell-Cycle Arrest

To check the toxicity and effects on cell viability, Rin-5F cells were treated with LPS
alone (1 µg/mL) for 24 h and with different doses of AZD (10 µM to 100 µM) for different
time intervals (24 h and 4) and cell viability assessed by MTT assay. Rin-5F cells showed
almost 22% reduction in cell viability (Figure 1A) after treatment with LPS alone (1 µg/mL)
for 24 h. On the other hand, different doses of AZD (10 µM to 100 µM) caused no significant
alterations in cell viability after 24 h or 48 h of treatments. These results suggest that AZD
is not toxic to the pancreatic β-cells under the present culture system conditions and hence
we used 25 µM of AZD for 24 h in the follow-up experiments.

Next, we investigated the effects of LPS and/or AZD on apoptosis of Rin-5F cells. As
shown in Figure 1B, cells treated with 1 µg/mL LPS exhibited around 15% late apoptotic
or necrotic cell death, whereas treatment with 25 µM AZD for 24 h alone or in combination
with LPS resulted in less than 10% late apoptosis. These results suggest some degree of
protection by AZD on LPS-induced cell death.

In support, caspase-3 and caspase-8 activities were also found to be significantly
increased (about 30%) by LPS alone (Figure 1C), while AZD alone or in combination with
LPS caused only a slight increase in the caspase activities. Caspase activation by AZD alone
was significantly lower than that with LPS alone, showing the non-toxic effect of AZD at
this concentration. AZD also helped in moderately reducing the activation of caspases,
again suggesting a protective effect of AZD.
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To further check whether LPS induces cell cycle arrest, we performed cell cycle analysis
by staining the cells with propidium iodide and the fluorescence was quantitated using
the FACSCanto II Flow Cytometer (Beckton Dickinson, San Jose, CA, USA). As shown in
Figure 1D, LPS-treated cells showed an accumulation of cells in the S and G2/M phase
(G0/G1-72.8%, S-13.3%, and G2/M-12.2%) compared with the control untreated cells
(G0/G1-83.4%, S-8.8%, and G2/M-7.2%). AZD alone showed (G0/G1-83.7%, S-8.9%, and
G2/M-7.0%) whereas in combination with LPS, the cell cycle distribution was G0/G1-
80.7%, S-10.5%, and G2/M-8.3%. This again suggests the apoptotic effect of LPS and
confirms the protective effect of AZD.
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Figure 1. LPS-induced effects on cell viability, apoptosis, and cell-cycle regulation in Rin-5F cells. Rin-5F cells were treated
with LPS alone (1 µg/mL) for 24 h and with different doses of AZD (10 µM to 100 µM) for different time intervals (24 h and
48 h), and MTT assay performed to assess cell viability (A). Apoptosis was measured in the cells treated with LPS (1 µg/mL)
with or without AZD (25 µM) for 24 h by flow cytometry (B). A representative dot plot showing percentage of cells in the
individual quadrants from three individual repetitive experiments is shown, and the average values are represented as a
stacked column chart. Activities of caspases-3 and -8 were measured in treated and untreated cells colorimetrically using
their respective substrates and the chromophore released was measured colorimetrically at a wavelength of 405 nm (C).
Results are expressed as mean ± SD of three individual repetitive experiments. Asterisks indicate significant differences
fixed at p ≤ 0.05 (* indicates significant difference relative to control untreated cells, whereas # indicates significant
difference relative to LPS-treated cells). Cell cycle analysis was performed by staining the cells with propidium iodide, and
the fluorescence was quantitated using the FACSCanto II Flow Cytometer at an excitation wavelength of 48 m with detection
at 620 nm. Cell cycle data from the resulting histograms were analyzed with ModFit LT 3.2 software (Verity Software House;
Topsham, ME) and expressed as percentage DNA distribution in each phase from three individual repetitive experiments.
A representative histogram with DNA distribution in each phase is shown in (D).

3.2. LPS-Induced ROS Generation and Attenuation by AZD

ROS generation has been known to play a major role in apoptotic cell death. DCFDA
staining was performed in cells treated with LPS and/or AZD and analyzed by microscopy,
fluorimetry, and flow cytometry. The microscopic analysis in Figure 2A shows increased
ROS positive cells after LPS treatment in Rin-5F cells compared with AZD alone or in
combination. A marked increase in ROS production after LPS treatment was also confirmed
fluorometrically (Figure 2B). When LPS treated cells were incubated with AZD, a significant
reduction in the production of DCFDA-sensitive ROS was observed.
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Figure 2. LPS-induced ROS generation in Rin-5F cells. ROS generation in Rin-5F cells treated with
LPS alone (1 µg/mL) with or without AZD (25 µM) for 24 h was demonstrated using DCFDA probe
microscopically (A) on cells grown on cover slips, fluorimetrically (B) using the ELISA reader, and by
flow cytometry (C) using the BD FACSCanto II Flow Cytometer at an excitation wavelength of 488 nm
and an emission wavelength of 525 nm, which showed increased ROS production after LPS treatment.
Scale bar in (2A) indicates 50 µm. Results are expressed as mean ± SD of three individual repetitive
experiments. Asterisks indicate significant differences fixed at p ≤ 0.05 (* indicates significant
difference relative to control untreated cells, whereas # indicates significant difference relative to
LPS-treated cells).

FACS analysis also demonstrated a marked (three-fold) increase in ROS production
after LPS treatment, while AZD treatment alone showed no appreciable production of ROS.
LPS-induced ROS was significantly reduced in the presence of AZD (Figure 2C).
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3.3. LPS-Induced DNA Damage

DNA fragmentation has been known to be the ‘hallmark’ for apoptosis. So, to further
confirm the apoptotic effect of LPS, we performed DNA fragmentation assay after treatment
of Rin-5F cells with LPS and/or AZD. Agarose gel electrophoresis showed DNA breakdown
after LPS treatment (Figure 3A). However, a significant reduction was observed when
cells were treated with AZD in combination with LPS, suggesting a protection of DNA
from LPS-induced cytotoxicity. Cellular DNA damage by ELISA using the cellular DNA
fragmentation kit (Sigma, St Louis, MO, USA) also showed increased DNA fragments in
the cellular cytoplasm in LPS-treated cells and significant reduction with AZD alone or
in combination (Figure 3B). Similarly, Hoechst 33,342 DNA-staining of Rin-5F cells and
microscopic visualization exhibited markedly reduced Hoechst-positive cells after LPS
treatment in comparison with AZD alone or in combination (Figure 3C).
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Figure 3. LPS-induced DNA damage in Rin-5F cells. DNA damage was assessed in Rin-5F cells
treated with LPS alone (1 µg/mL) with or without AZD (25 µM) for 24 h. DNA break-down was
confirmed using 2% agarose gel electrophoresis and staining with ethidium bromide (A). Cellular
DNA damage was also assessed by ELISA using the cellular DNA fragmentation kit (B). Results are
expressed as mean ± SD of three individual repetitive experiments. Asterisks indicate significant
differences fixed at p ≤ 0.05 (* indicates significant difference relative to control untreated cells,
whereas # indicates significant difference relative to LPS-treated cells). Staining of the nuclei was also
performed using the Hoechst 33,342 dye and the slides observed under a fluorescence microscope
(C). Scale bar indicates 50 µm. Red arrows indicate apoptotic cells showing damaged nuclei. Repre-
sentative results from control and LPS alone and AZD with or without LPS from three individual
repetitive experiments are shown.
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3.4. LPS-Induced Expression of Oxidative Stress and Apoptosis Markers

To further prove the oxidative stress and apoptosis caused by LPS, we checked the
expression of oxidative stress, apoptosis, and autophagy markers. As shown in Figure 4A,B,
LPS treatment markedly enhanced the expression of cleaved caspase 3 and PARP. AZD
treatment in combination with LPS significantly reduced the expression of these apoptotic
marker proteins. The expression of Hsp-70, an oxidative stress marker protein, was also
increased after LPS treatment, which was normalized after AZD treatment close to control
values (Figure 4C). On the other hand, the expression of HO-1, another redox marker
protein, was significantly (almost 50%) reduced after LPS treatment, which came close to
control levels after AZD treatment (Figure 4D). AZD treatment alone showed almost no
change in the expression of these proteins when compared with control cells.
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Figure 4. LPS-induced expression of oxidative stress markers. Protein extracts from Rin-5F cells
treated with LPS with/without AZD were separated on 12% SDS-PAGE and transferred on to ni-
trocellulose paper by Western blotting and protein bands detected using the appropriate primary
antibodies. Specific antibodies against cleaved caspase 3 (A), PARP (B), Hsp-70 (C), and HO-1 (D)
were used to detect the respective proteins and visualized by enhanced chemiluminescence using the
Sapphire Biomolecular Imager (Azure biosystems, Dublin U.S.A) or using X-ray films. Beta actin
was used as a loading control. Histograms represent the relative ratios of the quantitated proteins
normalized against the loading control. The figures are a representative of at least three individual
repetitive experiments. Asterisks indicate significant differences fixed at p ≤ 0.05 (* indicates signifi-
cant difference relative to control untreated cells, whereas # indicates significant difference relative to
LPS-treated cells).

3.5. LPS-Induced Alterations in the Expression of Autophagy Markers

We further tried to investigate the regulation of autophagy by LPS. Figure 5A,B shows
a four-fold increase in the expression Atg-5 protein and a two-fold increase in the expression
of p62 protein respectively, after LPS treatment. AZD, on the other hand, significantly
reduced the enhanced expression of these marker proteins. However, the expression
of LC3 protein involved in the elongation of autophagosomes was decreased after LPS
treatment, while AZD treatment alone enhanced the expression of this protein (Figure 5C).
Treatment of cells with AZD in the presence of LPS showed moderate alterations on the
expression of the proteins when compared with control cells. These results suggest a
restricted autophagic machinery in Rin-5F cells after LPS treatment, perhaps resulting in
their increased apoptosis under these conditions.
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Figure 5. LPS-induced alterations in the expression of autophagy markers. Protein extracts from
Rin-5F cells treated with LPS with/without AZD were separated on 12% SDS-PAGE and transferred
on to nitrocellulose paper by Western blotting. Transferred proteins were incubated with primary
antibodies against Atg-5 (A), p62 (B), and LC3 (C), and specific proteins visualized by enhanced
chemiluminescence using the Sapphire Biomolecular Imager (Azure biosystems, Dublin USA) or
using X-ray films. Beta actin was used as a loading control. Histograms represent the relative ratios
of the quantitated proteins normalized against the loading control. The figures are representative
of at least three individual repetitive experiments. Asterisks indicate significant differences fixed
at p ≤ 0.05 (* indicates significant difference relative to control untreated cells, whereas # indicates
significant difference relative to LPS-treated cells).

3.6. LPS–Induced Alterations of Cell Cycle Progression Markers

To confirm the cell cycle arrest observed by flow cytometry, we investigated the
expression of p53 protein, known to suppress cell cycle progression and cause apoptosis
and cell death. Our study demonstrated an increased expression of p53 (Figure 6A) after
LPS treatment, which reduced significantly on treatment with AZD. We also observed
an increase in the expression of its transcriptional target, p21, which can cause cell cycle
arrest at the G1/S phase or G2/M phase (Figure 6B). We further studied the expression
of cyclin B1 to confirm cell cycle arrest at the G2/M phase. Consistent with our cell cycle
flow cytometry results, we observed an LPS-induced decrease in the expression of cyclin
B1 protein, which was increased after AZD treatment, confirming cell cycle arrest at the
G2/M phase (Figure 6C).
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Figure 6. LPS-induced alterations in the expression of cell cycle regulatory markers. Protein extracts
from Rin-5F cells treated with LPS with/without AZD were separated on 12% SDS-PAGE and
transferred on to nitrocellulose paper by Western blotting. Transferred proteins were detected
using specific antibodies against p53 (A), p21 (B), and cyclin B1 (C), and visualized by enhanced
chemiluminescence using the Sapphire Biomolecular Imager (Azure biosystems, Dublin USA) or
using X-ray films. Beta actin was used as loading control. Histograms represent the relative ratios
of the quantitated proteins normalized against the loading control. The figures are representative
of at least three individual repetitive experiments. Asterisks indicate significant differences fixed
at p ≤ 0.05 (* indicates significant difference relative to control untreated cells, whereas # indicates
significant difference relative to LPS-treated cells).

3.7. LPS-Induced Alteration of the JNK/Akt and AMPK/mTOR Signaling Pathways

We further investigated the correlation of apoptosis, ROS production, and autophagy
to the expression of cell signaling markers after LPS and AZD treatment alone or in
combination. As shown in Figure 7A, phosphorylation of the AMPK protein, a key energy
sensor and regulator of autophagy/apoptosis, significantly increased after LPS treatment.
This could be due to increased ATP consumption after LPS treatment, which could be
the cause for the pathway leading towards apoptosis. Treatment with AZD, alone or
in combination, also moderately increased the levels of p-AMPK, compared with the
control cells. Concomitant to this, we observed a decrease in the phosphorylation of
mammalian target of rapamycin (mTOR), which is also a sensor of metabolic signals (like
reactive oxygen species, ATP level) after LPS treatment (Figure 7B). A significant increase in
expression was observed after AZD treatment, though it was much lower compared with
the control untreated cells. Treatment with AZD alone, however, showed no appreciable
change. These results may suggest that cells are facing autophagic regulation and are
going into catabolic mode to regulate energy metabolism after LPS treatment. Next, we
checked the expression of phosphorylated Akt (p-Akt), which was significantly increased
in Rin-5F cells treated with LPS (Figure 7C). No significant change was observed after
AZD treatment, though the expression was significantly low in cells treated with AZD
alone. A similar increase in the expression of ROS-sensitive JNK signaling protein was
observed after LPS treatment, suggesting the activation of downward signaling pathways
altering autophagy and apoptosis, which would determine the fate of cells under this type
of oxidative/inflammatory stress condition (Figure 7D). Increased phosphorylation of JNK
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protein was also observed after AZD treatment, alone or in combination, though it was
significantly lower compared with the LPS-induced cells.
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4. Discussion

β-cells are metabolically highly active for the generation of ATP and insulin secre-
tion by aerobic energy metabolism and mitochondrial respiratory function, especially
in response to elevated blood glucose levels [36,37]. This renders β-cells susceptible to
ROS production and oxidative stress. On the other hand, beta cells are also highly vul-
nerable towards oxidative stress due to insufficient antioxidant defenses such as lower
expression of SOD, GSH-Px, and catalase in comparison with other tissues [38,39]. LPS
induces oxidative stress and inflammatory stimuli, which may trigger the induction of
autophagy and/or apoptosis. The final outcome of cell death or survival depends on the
complex cross-talk between numerous apoptosis-related and autophagy-related proteins
and signaling cascades.

Our previous studies, using Rin-5F cells, have shown that these cells exhibit increased
inflammatory and oxidative stress responses under glucolipotoxicity conditions, as well
as when treated with streptozotocin, a β-cell damaging diabetogenic agent [20,23,32]. In
the present study, we further elucidated the molecular mechanism of increased oxida-
tive/inflammatory stress after treating these cells with a bacterial endotoxin, LPS, alone
or in combination with a non-toxic concentration of AZD, a known anti-inflammatory
phytochemical limonoid extracted from neem. Our results demonstrated increased ROS
production, caspase activation, DNA fragmentation, and cell cycle arrest, resulting in
increased apoptosis in LPS-treated cells, which was attenuated after AZD treatment.

In order to elucidate the molecular mechanism of LPS-induced cell death and pre-
vention by AZD, we further investigated the expression of proteins involved in oxidative



Biomedicines 2021, 9, 1943 13 of 18

stress, autophagy, apoptosis, and cell signaling cascades. These proteins positively or
negatively regulate both autophagy and apoptosis. The net effect of whether cells are
going to survive by induction of autophagy or go in to autophagy-induced cell death
or apoptosis depends on the cell type, stimuli, and escape from cell death due to ther-
apeutic/preventive treatments. Autophagy may play a synergistic role in cell death by
providing a membrane-based intracellular platform for caspase processing, by inhibiting
the apoptosis by removing apoptotic mitochondria for intrinsic apoptosis, or by degrading
the caspases for extrinsic apoptotic pathways. Initially, autophagy functions as an adap-
tive response to stress, however, in the face of extreme or chronic stress, cells undergo
autophagy cell death [40,41]. Our results show that LPS-induced cleavage of pro-caspase 3
and PARP to initiate apoptosis was markedly reduced after AZD treatment. This confirmed
our observation that Rin-5F cells treated with LPS undergo oxidative stress, as seen by the
increased production of ROS followed by DNA fragmentation. This was also supported by
the increased expression of oxidative stress marker protein, Hsp-70. On the other hand,
HO-1 expression, which is under the regulation of redox-regulating genes, was reduced
in LPS-treated cells and enhanced after AZD treatment. HO-1 is a cytoprotective protein
known to curtail cytotoxicity caused by oxidative stress and inflammatory reactions and
by reducing ROS production [42].

Increased expression of apoptosis-regulating protein p53, was also observed after
LPS treatment and AZD caused a reduction of LPS-induced p53. There have been studies
suggesting the role of p53 both in extrinsic and intrinsic apoptosis. Increased expression of
p53 triggers the expression of apoptotic proteins, resulting in increased apoptosis [43,44].
In the extrinsic pathway, cytoplasmic p53 activates caspase 8 and caspase 3. Our study
also showed increased activities of caspase 8 and caspase 3 proteases after LPS treatment.
There are reports showing that p53 activation can promote cell cycle arrest and apoptosis
through transcription-independent mechanisms [45,46]. p53 is known to prevent cell
cycle progression of cells with damaged DNA. Regarding DNA damage, p53 is activated,
which in turn induces the production of p21 protein, which is a cyclin-dependent kinase
(Cdk) inhibitor. Cdks are required for cell cycle progression from G1 to S phase and
G2 to M phase. Thus, p53 could induce G1/S phase or G2/M phase cell cycle arrest
depending on the cyclin inhibited [47]. This was confirmed in our present study, which
revealed a greater proportion of cells in the S and G2/M phase after LPS treatment by
flow cytometric analysis compared to the control cells, correlating with the inhibition of
cyclin B1. The distribution normalized close to control levels after treatment with AZD.
The increased activation of p53 after LPS treatment, accompanied by p21 accumulation
and down-regulation of the cell cycle regulatory protein, cyclin B1, resulted in cell cycle
arrest at the G2/M phase. Researchers have also shown that p53 represses autophagy
through AMPK/mTOR pathways [48]. Our results showed activation in the expression of
AMPK associated with a decrease in the expression of mTOR after LPS treatment. However,
a decrease in autophagy and increase in apoptosis was observed in these cells. This is
in agreement with a study that indicated that inactivation of mTOR can sensitize the
proapoptotic response to bacterial infection [49].

We also showed an increased Akt activation/phosphorylation by LPS in Rin-5F cells,
however, this was not inhibited after AZD treatment, suggesting the limited role of AZD
in Akt-mediated regulation of autophagy/apoptosis/survival in Rin-5F cells under the
present experimental conditions. AZD showed no effect on Akt expression in the control
untreated cells as well. Also, our study showed an increased expression of AMPK and a
decreased activation of mTOR after LPS treatment. There are a number of studies support-
ing our observation of LPS-induced alterations in AMPK/mTOR signaling various cellular
systems [50–53]. We also observed a moderate increase in AMPK activation and a moderate
decrease in mTOR phosphorylation after AZD treatment. AZD has also been shown to
inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis, and
also induces autophagy and apoptosis via AKT/mTOR/Atg5 pathways [54,55]. mTOR
signaling plays a major role in autophagy as well as in apoptosis, depending on the specific
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cellular conditions and downstream targets such as p53 [44]. These researchers have also
shown that alterations in the Akt/mTOR pathways in cancer cells can also induce both
autophagy and apoptosis.

Oxidative stress activates JNK1, thus promoting autophagy. However, constitutively
active JNK1 prevents the initiation of autophagy. On the contrary, under extreme stress
conditions, JNK1 induces apoptosis through caspase 3-dependent pathways. Thus, JNK cell
signaling represents an important link between autophagy and apoptosis [56]. Our results
showed an increased expression of p-JNK in LPS-treated cells, which was reduced after
AZD treatment. AZD treatment alone also increased the expression of p-JNK, suggesting
that AZD itself plays some role in inducing cell death or survival and that it may be
related with the type of cell system and activation of other signaling cascades under stress
conditions. Our results also demonstrate an altered expression of autophagy-regulating
proteins, Atg-5, p62, and LC3. While Atg-5 and p62 expressions were increased after
LPS treatment and inhibited after AZD treatment, the LC3 expression was repressed in
Rin-5F cells after LPS treatment. AZD treatment alone, on the other hand, increased the
expression of LC3 but not when treated along with LPS, suggesting some independent
mechanism involved in the regulation of apoptosis or autophagy when treated alone or
in combination with LPS. Further studies are needed to elucidate the exact mechanism of
action of these proteins involved in the autophagy/apoptosis machinery. LC3 and p62 play
important roles as receptors at the phagophore membrane to process protein aggregates
and damaged mitochondria for engulfment. Under oxidative stress conditions and with
increased ROS, inhibition of autophagy promotes p62, increases the level of caspases, and
increases apoptosis [57]. Proteins regulating the elongation process of autophagy have
also been shown to participate in the apoptotic pathway. Cleavage of Atg-5 contributes to
apoptosis in various cell types. Moreover, N-terminal Atg-5 cleavage fragments promotes
nuclear fragmentation and prevents LC3 accumulation, suggesting the ability of cleaved
Atg-5 to induce apoptosis but not autophagy. Similarly, caspase-3-induced cleavage of
autophagy-related proteins also induces apoptosis [58]. Autophagy has also been shown
to be mutually associated and regulated by the cell cycle [59,60].

5. Conclusions

Pancreatic β-cells have shown high sensitivity towards inflammatory and oxidative
stresses. Cells exposed to bacterial endotoxin, LPS, responded by enhanced ROS, DNA
degradation, cell cycle dysregulation, and cell death. When treated with an antioxidant
phytochemical, AZD, these responses were diverted to repair the damages caused by
inducing autophagy-type cellular defense. As shown in the schematic model (Figure 8),
autophagy and apoptosis cross-regulate each other through an interconnecting network
of cell-signaling proteins and autophagy- and apoptosis-related proteins. Our present
study suggests a possible cross-talk between signaling proteins and may have therapeutic
implications in better understanding the molecular mechanism of pancreatic β-cell survival
and death under inflammatory and other pathological conditions, including cancer. Further
studies on the recognition of the signal cascade and the resulting metabolic consequences
will establish precisely the role of the molecular communication in determining the fate
of cells.
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